中桩坐标计算
- 格式:doc
- 大小:154.50 KB
- 文档页数:14
高等级公路中桩边桩坐标计算方法一、平面坐标系间的坐标转换公式如图 9 .设有平面坐标系 xoy 和 x'o'y' (左手系—— x 、 x' 轴正向顺时针旋转90°为 y 、 y' 轴正向); x 轴与 x' 轴间的夹角为θ( x 轴正向顺时针旋转至 x' 轴正向.θ范围:0° —360°)。
设 o' 点在 xoy 坐标系中的坐标为( xo',yo' ).则任一点 P 在 xoy 坐标系中的坐标( x,y )与其在 x'o'y' 坐标系中的坐标( x',y' )的关系式为:二、公路中桩边桩统一坐标的计算(一)引言传统的公路中桩测设.常以设计的交点( JD )为线路控制.用转点延长法放样直线段.用切线支距法或偏角法放样曲线段;边桩测设则是根据横断面图上左、右边桩距中桩的距离(、).在实地沿横断面方向进行丈量。
随着高等级公路特别是高速公路建设的兴起.公路施工精度要求的提高以及全站仪、 GPS 等先进仪器的出现.这种传统方法由于存在放样精度低、自动化程度低、现场测设不灵活(出现虚交.处理麻烦)等缺点.已越来越不能满足现代公路建设的需要.遵照《测绘法》的有关规定.大中型建设工程项目的坐标系统应与国家坐标系统一致或与国家坐标系统相联系.故公路工程一般用光电导线或 GPS 测量方法建立线路统一坐标系.根据控制点坐标和中边桩坐标.用“极坐标法”测设出各中边桩。
如何根据设计的线路交点( JD )的坐标和曲线元素.计算出各中边桩在统一坐标系中的坐标.是本文要探讨的问题。
(二)中桩坐标计算任何复杂的公路平面线形都是由直线、缓和曲线、圆曲线几个基本线形单元组成的。
一般情况下在线路拐弯时多采用“完整对称曲线”.所谓“完整”指第一缓和曲线和第二缓和曲线的起点( ZH 或 HZ )处的半径为∞ ;所谓“对称”指第一缓和曲线长和第二缓和曲线长相等。
高速公路缓和曲线中桩坐标计算摘要:本文讲解了在利用全站仪进行缓和曲线中桩放样时,缓和曲线的基本形和卵形两种情况下中桩坐标计算的方法。
关键词:缓和曲线,基本形,卵形,中桩坐标计算随着全站仪在道路工程施工测量中的普及,传统的中线放样方法逐渐被淘汰。
目前道路工程中线放样时,只要能计算出中线上任意一点的坐标,用全站仪或者GPS RTK的坐标放样功能就可很方便、快捷地完成实地放样。
道路线形是由直线、圆曲线、缓和曲线三种线形组合而成的,而直线与圆曲线组合的线形(见图一)中桩坐标计算比较简单,在此不作阐述。
下面就缓和曲线与其它两种线形组合的线形中桩坐标计算予以分析。
缓和曲线与其它两种线形组合构成的线形主要有缓和曲线的完整形(即基本形)(见图二)和非完整形(即卵形)(见图三)二种。
一、基本形曲线中桩坐标计算:1、对于第一缓和曲线及圆曲线段(ZH~YH)(如图四),建立以ZH为坐标原点,切线方向为X′轴,半径方向为Y′轴的曲线坐标系(X′O′Y′)。
先计算曲线各点在曲线坐标系下的坐标。
⑴对于第一缓和曲线段(ZH~HY)内任一点i(此时L=K i-K ZH)若圆曲线半径R≥100m时,则X i′=L-L5/(40R2L s12) 公式①Y i′=L3/(6RL s1) 公式②若圆曲线半径R<100m时,则X′=L-L5÷[40(RL S)2]+L9÷[3456(RL S)4]–L13÷[599040(RL S)6]+L17÷[175472640(RL S)8]- L21÷[7.80337152×1010(RL10](公式③)S)Y′=L3÷[6(RL S)] - L7÷[336(RL S)3]+L11÷[42240(RL S)5] - L15÷[9676800(RL S)7]+L19÷[3530096640(RL S)9] - L23÷[1.8802409472×1012(RL S)11](公式④)⑵对于圆曲线段(HY~YH)上任一点iX i′=q+Rsin¢iY i′=R(1-cos¢i)+pL=K i-K ZH¢i=(L- L s1)*180/(Rπ)+β0内移值P=L s12/(24R)切线增值q= L s1/2- L s13/(240R2)综合⑴、⑵,根据不同坐标系的相互转换,可得ZH~YH上任一点i的中桩测量坐标为:X i=X ZH+cosA×X i′-sinA×f×Y i′(公式⑤)Y i= Y ZH+sinA×X i′+cosA×f×Y i′(公式⑥)式中f为线路的转向系数,右转时f=1,左转时f=-1 。
道路测量中缓和曲线中桩坐标计算方法的研究摘要:本文讲解了在利用全站仪进行缓和曲线中桩放样时,缓和曲线的基本形和卵形两种情况下中桩坐标计算的方法。
关键词:缓和曲线、基本形、卵形、中桩坐标计算。
随着全站仪在道路工程施工测量中的普及,传统的中线放样方法逐渐被淘汰。
目前道路工程中线放样时,只要能计算出中线上任意一点的坐标,用全站仪或者GPSRTK的坐标放样功能就可很方便、快捷地完成实地放样。
道路线形是由直线、圆曲线、缓和曲线三种线形组合而成的,而直线与圆曲线组合的线形(见图一)中桩坐标计算比较简单,在此不作阐述。
下面就缓和曲线与其它两种线形组合的线形中桩坐标计算予以分析。
缓和曲线与其它两种线形组合构成的线形主要有缓和曲线的完整形(即基本形)(见图二)和非完整形(即卵形)(见图三)二种。
一、基本形曲线中桩坐标计算:1、对于第一缓和曲线及圆曲线段(ZH~YH)(如图四),建立以ZH为坐标原点,切线方向为X′轴,半径方向为Y′轴的曲线坐标系(X′O′Y′)。
先计算曲线各点在曲线坐标系下的坐标。
⑴对于第一缓和曲线段(ZH~HY)内任一点i(此时L=Ki-KZH)若圆曲线半径R≥100m时,则Xi′=L-L5/(40R2Ls12) 公式①Yi′=L3/(6RLs1) 公式②若圆曲线半径R<100m时,则X′=L-L5÷[40(RLS)2] L9÷[3456(RLS)4]–L13÷[599040(RLS)6]L17÷[175472640(RLS)8]- L21÷[7.80337152×1010(RLS)10] (公式③)Y′=L3÷[6(RLS)] - L7÷[336(RLS)3] L11÷[42240(RLS)5] -L15÷[9676800(RLS)7] L19÷[3530096640(RLS)9] -L23÷[1.8802409472×1012(RLS)11] (公式④)⑵对于圆曲线段(HY~YH)上任一点iXi′=q Rsin cent;iYi′=R(1-cos cent;i) pL=Ki-KZH cent;i=(L- Ls1)*180/(Rπ) β0内移值P=Ls12/(24R)切线增值q= Ls1/2- Ls13/(240R2)综合⑴、⑵,根据不同坐标系的相互转换,可得ZH~YH上任一点i的中桩测量坐标为:Xi=XZH cosA×Xi′-sinA×f×Yi′(公式⑤)Yi= YZH sinA×Xi′ cosA×f×Yi′(公式⑥)式中f为线路的转向系数,右转时f=1,左转时f=-1 。
路线中桩坐标的计算公式在道路建设和维护中,桩号是一个非常重要的概念。
它用来表示道路上的位置,帮助工程师和施工人员准确地定位和测量。
桩号通常是以公里为单位,每隔一定距离就会设置一个桩号,以便对道路进行定位和管理。
在本文中,我们将讨论路线中桩坐标的计算公式,以及如何使用这些公式进行实际测量和定位工作。
路线中桩坐标的计算公式通常涉及到道路的曲线和坡度等因素。
在实际测量中,通常会使用全站仪或者GPS等设备来测量各个桩号的坐标,然后根据这些坐标来计算出路线中桩的坐标。
下面我们将介绍几种常见的计算公式。
1. 直线路段的桩坐标计算公式。
在直线路段上,桩号和坐标的计算比较简单。
假设起点的坐标为(x1, y1),终点的坐标为(x2, y2),起点的桩号为P1,终点的桩号为P2。
那么在直线路段上任意一个桩号P的坐标可以通过如下公式计算得出:x = x1 + (x2 x1) (P P1) / (P2 P1)。
y = y1 + (y2 y1) (P P1) / (P2 P1)。
其中,x和y分别表示桩号为P时的坐标,P为需要计算坐标的桩号。
2. 曲线路段的桩坐标计算公式。
在曲线路段上,桩坐标的计算会更加复杂一些,需要考虑曲线的半径、圆心、圆心角等因素。
在实际测量中,通常会使用曲线表来进行计算。
曲线表是根据设计参数和曲线类型制定的一张表格,其中包含了各个桩号对应的曲线半径、圆心角等信息。
通过曲线表,可以根据桩号和曲线类型来计算出相应的曲线参数,进而得出桩坐标。
3. 坡度路段的桩坐标计算公式。
在坡度路段上,桩坐标的计算也需要考虑坡度的影响。
假设起点的坐标为(x1,y1),终点的坐标为(x2, y2),起点的桩号为P1,终点的桩号为P2,坡度为S。
那么在坡度路段上任意一个桩号P的坐标可以通过如下公式计算得出:x = x1 + (x2 x1) (P P1) / (P2 P1)。
y = y1 + (y2 y1) (P P1) / (P2 P1) + S (P P1)。
现阶段我国公路工程中已普遍使用大地坐标进行线型的控制及测设,在施工中经常要对中线坐标进行复核、加密,才能满足公路工程施工的需要。
本文是结合公路工程的实际需要,用于由直线、圆曲线、缓和曲线组成的一般公路线型中桩、边桩等计算的公式。
一、采用公式1 直线段1.1 中桩坐标计算公式1.2 边桩坐标计算公式2 缓和曲线段2.1 中桩坐标计算公式:以ZH点为原点,当曲线左转是Y=(-Y)Xp= X1+X*COSαA→B - Y*SINαA→B,Yp= Y1+X*SINαA→B + Y*COSαA→B以HZ点为原点,当曲线右转是Y=(-Y)Xp= X1-X*COSαB→A + Y*SINαB→A,Yp= Y1-X*SINαB→A - Y*COSαB→A(X=L-L5/40/R2/L s2, Y=L3/6/R/L s)2.2 边桩坐标计算公式:以ZH点为原点以HZ点为原点边桩坐标计算公式:以ZH点为原点坐标中的中桩左侧的“-90°”改为“+90°”,中桩右侧的“+90°”改为“-90°”就OK了。
3 圆曲线段3.1 中桩坐标计算公式当E点位于顺时针方向时取“+”,当E点位于逆时针方向时取“-”。
3.2 边桩坐标计算公式XP、YP——未知点P的坐标X1、Y1——各线型起点的坐标(第二曲线段为终点)XA、YA、XB、YB——P点边桩A点、B点的坐标(A为左侧、B为右侧)α1→2——直线段起点的方位角αA→B——各线形起点的切线方位角(第二曲线段为终点)L——P点距各线形起点的长度LS——缓和曲线段缓和曲线长R——各曲线段的半径β——P点的切线角(曲线左转时取“-”、曲线右转时取“+”)T1、T2——P点至边桩A、B的距离(A为T1、B为T2)边桩与路线切线方向的夹角设定为90°,实际应用中可根据需要进行修改。
中桩坐标的计算一、测量坐标系统(一)大地坐标系统在大地坐标系中,地面点在地球表面上的投影位置用大地经度和大地纬度来表示,地面点的大地坐标是根据大地测量数据由大地坐标原点推算而得,我国大地坐标原点位于陕西泾阳县永乐镇境内,在西安市以北约40Km 处。
(二)高斯3°平面直角坐标系统我国从1952年开始采用高斯投影系统,以高斯投影的方法建立了高斯直角坐标系统。
地面点的高斯平面坐标与大地坐标可以相互转换。
高速公路的勘测设计和施工放样都采用高斯平面直角坐标系统进行的。
(三)平面直角坐标系统在测量范围较小、三级和三级以下公路、独立桥梁隧道及其它构造物,可以把该测区的球面当作平面看待进行直接投影,采用平面直角坐标系统。
二、中桩坐标计算(一)计算导线点的坐标1.方位角的确定:tg β=XY ∆∆ 方位角 : Ai =β (第一象限)Ai =180 °-β (第二象限)Ai =180° + β (第三象限)Ai =360° -β (第四象限)图 2—18 路线的方位角计算2.坐标计算:X i+1 = X i + D CosAiY i+1 = Yi + D SinAi (D :两导线点间的水平距离)(二)计算中桩坐标1.未设缓和曲线的单圆曲线坐标计算(1)圆曲线起、终点坐标计算JDi 的坐标为(X JDi 、Y JDi ),交点前后直线边的方位角分别为A i -1、A i ,圆曲线的半径为R ,平曲线切线长为T i .,曲线起、终点的坐标可用下式计算:圆曲线起点的坐标: X ZYi = X JDi -T i CosA i -1 Y ZYi = Y JDi -T i SinA i -1圆曲线终点的坐标: X YZi = X Jdi + T i CosA i Y YZi = Y Jdi + T i SinA i图 2—19 中桩坐标计算示意图(2)圆曲线任意点坐标计算ZY ~ QZ 段(YZ ~QZ 段)的坐标计算以曲线起点ZY (曲线终点YZ 点)为坐标原点,切线为X ′轴,法线为Y ′轴,建立直角坐标系:X ′= R Sin(π180'R l ) Y ′= R -R Cos (π180'R l ) 式中: l ′———圆曲线上任意点至 ZY (YZ )点的弧长;ZY ~QZ 段的各点的坐标:利用上述公式计算出以ZY 为坐标原点圆曲线段内各加桩X ′、Y ′ 的值,则ZY ~QZ 段的各点的坐标和方位角为:X = X ZYi - X ′ CosA i -1 – ζY ′sin A i -1Y = Y ZYi + X ′ SinA i -1 +ζY ′cos A i -1YZ ~QZ 段的各点的坐标:利用上述公式计算出以YZ 为坐标原点圆曲线段内各加桩X ′、Y ′ 的值,则ZY ~QZ 段的各点的坐标为:X= X YZi - X ′ CosA i –ζY ′Sin A iY= Y YZi - X ′ SinA i +ζY ′Cos A i式中:ζ — 路线转向,右转角时ζ=1,左转角时ζ= -1,以下各式同。
线路中线桩点的坐标计算如图1所示,已知两交点的坐标:JDi(XJDi ,YJDi),JDi-1(XJDi-1,YJDi-1)。
线路导线的坐标的坐标方位角A 和边长S 可按坐标反算公式求得:A i-1,i =tg -111----i i i i x x y y , (式1)S i-1,i =i i i i A x x ,11cos ---=ii i i A y y ,11sin --- (式2)S i-1,i =2121)()(---+-i i i i y y x x (式3)在选定各圆曲线半经R 缓和和曲线长度Ls 后,依照各桩点的里程桩号,即可算出相应的坐标值X,Y 。
一、 HZ 点(包括线路起点)至ZH 点之间的中桩坐标如图1所示,此段为直线。
桩点的坐标按下式计算:X JDi =X HZi-1+D i cosA i-1,iY JDi =Y HZi-1+D i sinA i-1,I (式4)式中A i-1,i 为线路导线JDi-1到JDi 的坐标方位角;Di 为桩点到HZi-1的距离(Si-1,i –THi-1),即桩点里程与HZi-1点里程之差;X HZi-1、Y HZi-1为HZi-1点的坐标,由下式计算:XHZi-1=X JDi-1+T Hi-1cosA i-1,iY HZi-1=X JDi-1+T Hi-1sinA i-1,i (式5) 同理计算出直线终点ZHi 点的坐标 X ZHi =X JDi-1+(Si-1,i –THi)cosA i-1,iY ZHi =X JDi-1+(Si-1,i –THi)sinA i-1-I (式6)二、 ZH 点至YH 点之间的中桩坐标如图1所示,此段包括第一缓和曲线及圆曲线,先计算桩点的切线支距法坐标x 、y :1、缓和曲线上桩点的切线支距法坐标x 、y :X=()L -22540SL R L Y=SRL L 63(式7)L 为桩点(测点)到缓和曲线起点ZH 的曲线长,即测长;R 为圆曲线半径;L S 为缓和曲线总长2、圆曲线上桩点的切线支距法坐标x 、y :以ZH 为起点:(带有缓和曲线的圆曲线,)X=Rsin ϕ+q=Rsin )2(1800S L L R +π+2S L –23240RL SY=R(1-cos ϕ)+p=R 〔1–cos )2(1800S L L R +π〕+RL S 242 (式8) ○1L 为桩点到HY(缓圆点,既圆曲线的起点)的曲线长,仅为圆曲线部份的长度,那么:式中ϕ=α+βo =RL π180⨯+βo =R L π0180⨯+πR L S 21800⨯=)2(1800S L L R +π, ○2假设L 为桩点到ZH(直缓点)的曲线长,那么:式中ϕ=α-βo =RL π180⨯-βo =R L π0180⨯-πR L S 21800⨯=)2(1800S L L R -π。
中桩坐标计算
任何复杂的公路平面线形都是由直线、缓和曲线、圆曲线几个基本线形单元组成的。
一般情况下在线路拐弯时多采用“完整对称曲线”,所谓“完整”指第一缓和曲线和第二缓和曲线的起点(ZH 或HZ )处的
半径为∞ ;所谓“对称”指第一缓和曲线长和第二缓和曲线长相等。
但在山区高速公路和互通立交匝道线形设计中,经常会出现“非完整非对称曲线”。
根据各个局部坐标系与线路统一坐标系的相互关系,可将各个局部坐标统一起来。
下面分别叙述其实现过程。
1、直线上点的坐标计算
如图10 a) b) 所示,设XOY为线路统一坐标系,X'-ZH-Y' 为缓和曲线按切线支距法建立的局部坐标系,则JDi-1—JDi 直线段上任一中桩P 的坐标为:
图10 a)直线第一缓和曲线圆曲线段点坐标计算(右转)图10 b)直线第一缓和曲线圆曲线段点坐标计算(左转)
(1)
式( 1 )中(, )为交点JDi-1的设计坐标;,
分别为P 点、JDi-1点的设计里程;为JD i-1 ~JD i 坐标方位角,可由坐标反算而得。
曲线起点(ZH 或ZY),曲线终点(HZ 或YZ)均是直线上点,其坐标可按式(1)来计算。
2、完整曲线上点的坐标计算
如图10 a ),某公路曲线由完整的第一缓和曲线、半径为
R 的圆曲线、完整的第二缓和曲线组成。
(1)第一缓和曲线及圆曲线上点的坐标计算
当K 点位于第一缓和曲线(ZH—HY )上,按切线支距法公式有:
( 2 )
当K 点位于圆曲线(HY—YH )上,有:
( 3 )
其中有:( 4 )
式( 2 )( 3 )(4 )中,为切线角;为K 点
至ZH i 点的设计里程之差,即曲线长;R 、、、p 、q 为常量,分别表示圆曲线半径,第一缓和曲线长、缓和曲线角
()、内移值()、切线增值()。
再由坐标系变换公式可得:
( 5 )式( 5 )中 f 为符号函数,右转取“ + ”,左转取“ - ”(见图10 b )。
图10 a)直线第一缓和曲线圆曲线段点坐标计算(右转)图10 b)直线第一缓和曲线圆曲线段点坐标计算(左转)
(2)第二缓和曲线上点的坐标计算
如图12 所示,当M 点位于第二缓和曲线(YH—HZ )上,有:
( 6 )
式( 6 )中,,为M 点至HZ 点的曲线长;R 为
圆曲线半径,为第二缓和曲线长。
再由坐标系变换公式可得:
(7 )式(7 )中 f 为符号函数,线路右转时取“ - ”,左转取“ + ”。
(3)单圆曲线(ZY—YZ)上点的坐标计算
单圆曲线可看作是带缓和曲线圆曲线的特例,即缓和曲线段长为零。
令式( 3 )( 4 )中内移值p 、切线增长q 、第一缓和曲线
长、缓和曲线角为零,计算出单圆曲线上各点的局部坐标后,由式( 5 )可得ZY~YZ 上各点的统一坐标。
图12 第二缓和曲线段点坐标计算(右转)图13 非完整
缓和曲线段点坐标计算(右转)
3、非完整曲线上点的坐标计算
如图13 所示,设非完整缓和曲线起点Q 的坐标为(,
),桩号,曲率半径,切线沿前进方向的坐标方位
角为;其终点Z 的桩号,曲率半径,则Z 点至Q
点曲线长。
若> ,则该曲线可看成是曲率半径由
∞ 到的缓和曲线去掉曲率半径由∞ 到后的剩余部分。
设
N 点为该曲线上一点,N 点至Q 点的曲线长为;O 为对应
完整缓和曲线的起点,Q 点至O 点的曲线长为,则由回旋型缓和曲线上任一点曲率半径与曲线长成正比的性质,有:
得:(8 )
设,则由缓和曲线的切线角公式及偏角法计算公式知:
(9 )
(10 )
(11 )
由图13 知:
(12 )
则直线QO 的坐标方位角为:
(13 )
O点切线方向轴的坐标方位角为:
(14 )式(13 )(14 )中,f 为符号函数,线路右转时,取“ - ”;线路左转时,取“ + ”。
故O 点坐标()为:
(15 )
将式(14)、(15)代入坐标平移旋转公式,得任一点N 的坐标为:
(16 )
式(16 )中,(,)按式( 2 )计算,代入时
用()替代; f 为符号函数,右转取“ + ”左转取“ - ”。
(三)边桩坐标计算
有了中桩坐标(x,y )及其至左、右边桩的距离 d L 、 d R 后,计算出中桩至左、右边桩的坐标方位角AZ-L 、AZ-R ,则由式(17 )、
(18 )得左、右边桩坐标(, )、(, )。
(17 )
(18 )
1、直线上点AZ-L 、AZ-R 的计算
从图10 a ) b )知:
(19 )
2、第一缓和曲线及圆曲线段点AZ-L 、AZ-R 的计算
如图10 a ) b )所示,有:
(20 )
式(20 )中,当K 点位于第一缓和曲线上,按式(9 )计算;当K 点位于圆曲线段,按式( 4 )计算。
f 为符号函数,右转取“ + ”,左转取“ - ”。
3、第二缓和曲线段点AZ-L 、AZ-R 的计算
如图12 所示,有:
(21 )
式(21 )中,按式计算;f 为符号函数,右转取“ - ”,左转取“ + ”。
四)算例
如图13 设某高速公路立交匝道( 右转) 的非完整缓和曲线
段起点Q 的桩号K8+249.527 ,曲率半径R Q = 5400m ,切线沿
前进方向的坐标方位角,坐标为(91412.164 ,79684.008 );终点Z 桩号K8+329.527 ,曲率半径R Z = 1800m 。
中桩K8+309.527 到左、右边桩的距离 d L = 18.75m , d R = 26.50m ,试计算K8+309.527 的中、边桩坐标。
1、完整缓和曲线起点O 的计算
由公式(8 )—(15 )计算得:,,,
,,,,。
2、中桩坐标的计算
由式( 2 )(14 )(16 )计算得:m ,
m ;轴的坐标方位角;,。
3、边桩统一坐标的计算
由式(9 )(20 )得:,,
式(20 )中Ai-1-i 即轴的坐标方位角。
再由式(17 )
(18 )得,;,。
(五)小结
通过坐标转换的方法,在传统测设的各个局部坐标系与线路统一坐标系间建立了纽带,通过编程能实现各个中桩边桩坐标的同步计算。
对于复曲线、回头曲线、喇叭形立交、水滴形立交等复杂线形,可将其
分解成直线、非完整非对称缓和曲线、圆曲线形式,再按文中的方法进行计算。
用线路统一坐标进行放样,测设灵活方便,不必在实地标定交点(JD )位置,这对于交点位于人无法到达的地方(如山峰、深谷、河流、建筑物内),是十分方便的。
应用中,以桩号L 为引数,建立包括中桩、边桩、控制点在内的坐标数据文件。
将坐标数据文件导入全站仪或GPS 接收机,应用坐标放样功能,便可实现中、边桩的同时放样。
特别是GPS 的RTK 技术出现后,无需点间通视,大大提高了坐标放样的工作效率,可基本达到中、边桩放样的自动化。
高等级公路中桩边桩坐标计算方法
一、平面坐标系间的坐标转换公式
如图9 ,设有平面坐标系xoy 和x'o'y' (左手系—— x 、x' 轴正向顺时针旋转90°为y 、y' 轴正向);x 轴与x' 轴间的夹角为θ(x 轴正向顺时针旋转至x' 轴正向,θ范围:0°— 360°)。
设o' 点在xoy 坐标系中的坐标为(xo',yo' ),则任一点P 在xoy 坐标系中的坐标(x,y )与其在x'o'y' 坐标系中的坐标(x',y' )的关系式为:
二、公路中桩边桩统一坐标的计算
(一)引言
传统的公路中桩测设,常以设计的交点(JD )为线路控制,用转点延长法放样直线段,用切线支距法或偏角法放样曲线段;边桩
测设则是根据横断面图上左、右边桩距中桩的距离(、),在实地沿横断面方向进行丈量。
随着高等级公路特别是高速公路建设的兴起,公路施工精度要求的提高以及全站仪、GPS 等先进仪器的出现,这种传统方法由于存在放样精度低、自动化程度低、现场测设不灵活(出现虚交,处理麻烦)等缺点,已越来越不能满足现代公路建设的需要,遵照《测绘法》的有关规定,大中型建设工程项目的坐标系统应与国家坐标系统一致或与国家坐标系统相联系,故公路工程一般用光电导线或GPS 测量方法建立线路统一坐标系,根据控制点坐标和中边桩坐标,用“极坐标法”测设出各中边桩。
如何根据设计的线路交点(JD )的坐标和曲线元素,计算出各中边桩在统一坐标系中的坐标,是本文要探讨的问题。