静电场高斯定理说明静电场是
- 格式:doc
- 大小:11.98 KB
- 文档页数:1
关于静电场的高斯定理和静电场的环路定理静电场的高斯定理和静电场的环路定理是库仑定律的推论,所以称之为定理。
由于库仑定律是静电场的基本规律,适用于静电场,所以库仑定律的推论也适用于静电场。
电场有许多种:静电场(由静止电荷激发)、恒定电场(由运动然而空间分布不随时间改变的电荷体系激发的电场)、位电场(可以在其中建立电位函数的电场,位电场的电场强度等于电位的负梯度,分为恒定的与时变的,静电场和恒定电场就属于恒定的位电场)、涡旋电场。
静电场的高斯定理的文字表述是:静电场中,电场强度穿出闭合曲面的通量等于该闭合曲面所包围的总电量除以真空电容率。
静电场的高斯定理的数学表述式是:in 0d i S qE S ε⋅=∑⎰ 。
英国著名物理学家麦克斯韦首先假设静电场的高斯定理的数学表示式in 0d i S q E S ε⋅=∑⎰ 适用于一切电场,也就是说,实际的电场强度(即总电场强度)穿出闭合曲面的通量等于闭合曲面内的总电量除以真空电容率。
这个假设后来被实验证实了。
正因为这个原因,数学表示式in 0d i S qE S ε⋅=∑⎰ 也叫做高斯定律。
由于德国数学家高斯根据库仑定律推出的这个静电场规律的数学表示式是普遍适用的,这让高斯在电磁学中享有很高的声誉。
in 0d i S q E S ε⋅=∑⎰ 有好几个称谓:高斯定理、高斯通量定理、电场的高斯定理、电场的高斯通量定理、高斯定律、高斯通量定律、电场的高斯定律、电场的高斯通量定律。
对于静电场,这个规律叫做静电场的高斯定理,或者静电场的高斯通量定理。
高斯在数学方面有一项重要成就,叫做高斯公式(也可以叫做高斯通量公式或者高斯散度公式)。
高斯公式的数学表示式是d d S Vf S f V ⋅=∇⋅⎰⎰ 。
其含义是:矢量场穿出闭合曲面的通量等于矢量场的散度在闭合曲面所包围的空间区域内的体积分。
高斯定理是电(磁)学规律,高斯公式是纯粹数学规律,两者截然不同。
但是把两者结合起来,就可以推出0E ρε∇⋅= 。
第一章测试1.下列几个说法中哪一个是正确的?A:在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同B:电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向C:D:电场强度正比于检验电荷受到的力,反比与检验电荷的电荷量答案:C2.设有一无限大均匀带正电荷的平面。
取x轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度随距离平面的位置坐标x变化的关系曲线为(规定场强方向沿x轴正向为正、反之为负):A:B:C:D:答案:D3.在无限大均匀带电平面M的附近, 有一面积为S的平面N.要使通过N的电通量最小, 应使A:N面与M面平行B:NN面与M面垂直C:NN面的法线与M面的法线成30°夹角D:NN面的法线与M面的法线成45°夹角答案:B4.在任何静电场中, 任一闭合曲面上各点的电场强度是由A:曲面内的电荷和曲面外的电荷共同提供B:曲面内的电荷提供C:曲面外的电荷提供D:电场强度的通量由曲面内的电荷和曲面外的电荷共同提供答案:A5.设无穷远处电势为零,则半径为R的均匀带电球体产生的电场的电势分布规律为(图中的φ0和b皆为常量):A:B:C:D:答案:C6.静电场的高斯定理表明静电场是A:无源场B:无旋场C:有旋场D:有源场答案:D7.静电场的环路定理表明静电场是A:有旋场B:无旋场C:无源场D:有源场答案:B8.为什么静电场中可以引入电势?A:因为静电场是有旋场B:因为静电场是保守场C:因为静电场是无源场D:因为静电场是有源场答案:B9.若干根根电场线同时穿过三个大小不等的面S1、S2和S3.如果S1>S2>S3, 则它们的通量关系是A:B:C:D:答案:C10.半径为R的均匀带电球面, 若其面电荷密度为 , 则在球面外距离球面R处的电势为(选择无限远处的电势为零)A:B:C:D:答案:B第二章测试1.导体处于静电平衡中,其满足的条件描述正确的是:A:导体内部的场强处处为0B:导体内靠近表面处场强方向和表面处处垂直C:导体表面处电场强度和表面处处平行D:导体内部的场强和电荷的分布有关答案:A2.关于静电平衡中的导体,下列描述正确的是:A:导体表面是等势面B:导体表面的电势和曲率半径成反比C:导体表面电荷处处为0D:导体内部的电荷均匀分布答案:A3.如下图(图中表示的电荷等不一定正确),描述正确的是:A:导体外表面电荷和导体腔内的电荷大小相等,类型相同B:导体腔内的电势和导体相等C:导体外表面没有电荷D:导体不再是等势体,外表面电势为0,内部电势不为零答案:C4.关于静电场中的导体,描述正确的是:A:在电场作用下,电子是固定不动的B:在电场作用下,将产生感应电荷C:处于静电屏蔽中,外电场对导体的影响仍然存在D:在电场作用下,自由电子将重新排布答案:BCD5.关于介质中的高斯定理,下列描述正确的是:A:引入电位移矢量没有任何意义B:引入电位移矢量后只需要计算自由电荷即可C:真空中的高斯定理依然可以使用D:真空中的高斯定理不再适用答案:BC6.在孤立带电的导体板之间插入介质,导致的变化描述正确的是:A:在导体板之间以及插入的导体内部,电位移矢量的大小改变了B:介质内部和表面都不存在电荷C:导体板上的电量没有变化D:导体的电容减小了答案:C7.根据下图,选择从左到右各个力线表示的物理量:A:E、P、DB:P、D、EC:D、P、ED:E、D、P答案:D8.如图,介质进入电容器中,其经典能变化的描述正确的是:A:静电能减小B:Q不变静电能守恒C:无法判断D:外界作用,静电能增大答案:A9.如图,电介质插入电容中,静电能的变化为:A:无法判断B:静电能增加C:静电能减小D:U不变,静电能不变答案:B10.关于电容器的并联和串联,下列描述正确的是:A:和电阻的并联和串联的计算方法相反B:和电阻的并联和串联的计算方法相同C:是单独的规律,并联的电容不变,串联的电容增加D:无法计算答案:A第三章测试1.以下关于电流和电流密度的说法,错误的是:A:电流密度为垂直通过单位截面积的电流B:电荷的定向移动形成电流C:电流是标量电流密度是矢量D:流过某截面的电流等于穿过该截面的电流密度的通量答案:A2.恒定电流线是闭合的。
静电场的高斯定理1.选择题1.如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP=OT ,那么()A 穿过S 面的电通量改变,O 点的场强大小不变; ()B 穿过S 面的电通量改变,O 点的场强大小改变; ()C 穿过S 面的电通量不变,O 点的场强大小改变; ()D 穿过S 面的电通量不变,O 点的场强大小不变。
〔 〕2.关于高斯定理的理解有下面几种说法,其中正确的是:()A 如果高斯面上E处处为零,则该面内必无电荷;()B 如果高斯面内无电荷,则高斯面上E处处为零;()C 如果高斯面上E处处不为零,则高斯面内必有电荷;()D 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零。
〔 〕3.如在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为()A 0/q ε ; ()B 0/2q ε; ()C 0/4q ε; ()D 0/6q ε。
〔 〕4.如图所示,闭合面S 内有一点电荷Q ,P 为S 面上一点,在S 面外A 点有一点电荷'Q ,若将电荷'Q 移至B 点,则;()A S 面的总通量改变,P 点场强不变;()B S 面的总通量不变,P 点场强改变; ()C S 面的总通量和P 点场强都不变; ()D S 面的总通量和P 点场强都改变。
〔 〕5.已知一高斯面所包围的体积内电荷代数和iq=∑()A()B()C()D〔 〕6.如图所示,一球对称性静电场的~E r 关系曲线,请指出该电场是由下列哪种带电体产生的(E 表示电场强度的大小,r 表示离对称中心的距离)()A 点电荷; ()B 半径为R 的均匀带电球体;()C 半径为R 的均匀带电球面;()D 内外半径分别为r 和R 的同心均匀带球壳。
〔 〕7.半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为:r()A()B ()C ()D〔 〕 8.如图所示,两个“无限长”的共轴圆柱面,半径分别为1R 和2R ,其上均匀带电,沿轴线方向单位长度上的带电量分别为1λ和2λ,则在两圆柱面之间、距离轴线为r 的P 点处的场强大小E 为:()A102r λπε; ()B 1202rλλπε+; ()C2022()R r λπε-; ()D 1012()r R λπε-。
静电场中的高斯定理:高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。
可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。
表达式为01()1/n i i S E ds q φε==∙=∑⎰⎰ (1)高斯定理是用来求场强E 分布, 定理中, S 是任意曲面, 由于数学水平的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。
典型情况有三种:1) 球对称性, 如点电荷, 均匀带电球面或球体等;2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。
根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。
选取的原则是:○1 待求场强的场点必须在高斯面上;○2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○3 与E 垂直的那部分高斯面上各点的场强应相等;○4 高斯面的形状应是最简单的几何面。
最后由高斯定理求出场强。
高斯定理说明的是通过闭合曲面的电通量与闭合曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。
但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。
下面举一些例子来说静电场中高定理的应用:例1:一半径为R 的带电球体,其电荷体密度分布为()Ar r R ρ=≤,0()r R ρ=>,A 为大于零的常量。
1、物体所受的合外力等于零,或者不受外力的作用,物体的角动量保持不变。
(×) (合外力矩为0时角动量守恒;合力为零时动量守恒)2、弹簧振子作简谐运动的总能量与振幅的二次方成正比。
(√)3、频率相同、相位差恒定的两列波叫做相干波。
(×)(波的相干条件是频率相同、振动方向相同、相位差相同)4、电场强度为零处,电势也为零。
(×)(均匀的球面内电场强度为0,但是电势处处相等)5、⎰=⋅0S d B S 不能说明闭合曲面上各点的磁感强度一定为零。
(√)(只能说明磁通量为零)1、质点作圆周运动时,其总加速度始终指向圆心。
( × )2、一个刚体所受合外力为零,其合力矩一定为零。
( × )3、波的频率与其波源振动的频率相同。
( √ )4、两条绝热线不能相交。
( √ )(绝热线斜率一定比等温线斜率大)5、由高斯定理可知高斯面上的电场是由高斯面内的所有电荷所激发。
( × )1、静电场高斯定理说明静电场是无源场。
( × )2、静电场是保守场,而感生电场不是保守场。
(√)3、载流导线在磁场中受力是由于导体中的电子受洛仑兹力作用的结果。
(√)4、物体的角动量保持不变,则物体一定不受外力矩作用。
( × )(只是合力局为零)5、在匀速圆周运动中,法向加速度只改变质点速度的方向。
(√)1、场强为零处,电势也为零。
( × )2、静电场和感生电场都是保守场。
( × )(静电场是保守场,感生电场不是)3、载流导线在磁场中受力是由于导体中的电子受洛仑兹力作用的结果。
(√)4、如果物体所受的合外力矩等于零,则物体的角动量保持不变。
(√)5、质点在作圆周运动时,其切向加速度为零。
( × )1、匀速率圆周运动的切向加速度一定等于零。
( √ )2、电场中的高斯面上各点的电场强度,只是由分布在高斯面内的电荷决定的。
( × )3、刚体对轴的转动惯量,取决于刚体的质量和质量分布,与轴的位置无关。
静电场中的高斯定理:高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。
可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。
表达式为01()1/ni i S E ds q φε==∙=∑⎰⎰ (1)高斯定理是用来求场强E 分布, 定理中, S 是任意曲面, 由于数学水平的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。
典型情况有三种:1) 球对称性, 如点电荷, 均匀带电球面或球体等;2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。
根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。
选取的原则是:○1 待求场强的场点必须在高斯面上;○2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○3 与E 垂直的那部分高斯面上各点的场强应相等;○4 高斯面的形状应是最简单的几何面。
最后由高斯定理求出场强。
高斯定理说明的是通过闭合曲面的电通量与闭合 曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。
但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。
下面举一些例子来说静电场中高定理的应用:例1:一半径为R 的带电球体,其电荷体密度分布为()Ar r R ρ=≤,0()r R ρ=>,A 为大于零的常量。
静电场高斯定理说明静电场是
静电场高斯定理是电场理论中的重要定理之一,它表明了电场的性质与周围环境中的电荷分布密切相关。
根据高斯定理,电场线从正电荷流向负电荷,电场线越密集,则电场强度越大。
因此,静电场高斯定理说明了静电场是由电荷所产生的。
在一个封闭的曲面内,静电场的通量等于该曲面内的电荷量除以真空介电常数ε0。
这意味着,若一个曲面内的电荷量增加,则经过该曲面的电场通量也会增加。
因此,静电场的强度与周围环境中的电荷分布密切相关。
总之,静电场高斯定理说明了静电场的本质,即由电荷所产生的电场。
这一理论奠定了电场的基础,并为人们理解和应用电场提供了重要的指导。
- 1 -。