静电场中的高斯定理
- 格式:doc
- 大小:99.57 KB
- 文档页数:2
关于静电场的高斯定理和静电场的环路定理静电场的高斯定理和静电场的环路定理是库仑定律的推论,所以称之为定理。
由于库仑定律是静电场的基本规律,适用于静电场,所以库仑定律的推论也适用于静电场。
电场有许多种:静电场(由静止电荷激发)、恒定电场(由运动然而空间分布不随时间改变的电荷体系激发的电场)、位电场(可以在其中建立电位函数的电场,位电场的电场强度等于电位的负梯度,分为恒定的与时变的,静电场和恒定电场就属于恒定的位电场)、涡旋电场。
静电场的高斯定理的文字表述是:静电场中,电场强度穿出闭合曲面的通量等于该闭合曲面所包围的总电量除以真空电容率。
静电场的高斯定理的数学表述式是:in 0d i S qE S ε⋅=∑⎰ 。
英国著名物理学家麦克斯韦首先假设静电场的高斯定理的数学表示式in 0d i S q E S ε⋅=∑⎰ 适用于一切电场,也就是说,实际的电场强度(即总电场强度)穿出闭合曲面的通量等于闭合曲面内的总电量除以真空电容率。
这个假设后来被实验证实了。
正因为这个原因,数学表示式in 0d i S qE S ε⋅=∑⎰ 也叫做高斯定律。
由于德国数学家高斯根据库仑定律推出的这个静电场规律的数学表示式是普遍适用的,这让高斯在电磁学中享有很高的声誉。
in 0d i S q E S ε⋅=∑⎰ 有好几个称谓:高斯定理、高斯通量定理、电场的高斯定理、电场的高斯通量定理、高斯定律、高斯通量定律、电场的高斯定律、电场的高斯通量定律。
对于静电场,这个规律叫做静电场的高斯定理,或者静电场的高斯通量定理。
高斯在数学方面有一项重要成就,叫做高斯公式(也可以叫做高斯通量公式或者高斯散度公式)。
高斯公式的数学表示式是d d S Vf S f V ⋅=∇⋅⎰⎰ 。
其含义是:矢量场穿出闭合曲面的通量等于矢量场的散度在闭合曲面所包围的空间区域内的体积分。
高斯定理是电(磁)学规律,高斯公式是纯粹数学规律,两者截然不同。
但是把两者结合起来,就可以推出0E ρε∇⋅= 。
§11-3 静电场的高斯定理一、 电场线电场线是为了描述电场所引进的辅助概念,它并不真实存在。
1、E用电场线描述规定:E 方向:电力线切线方向大小:E 的大小=该电力线密度=垂直通过单位面积的电力线条数=dsdN即 ds dNE(即:某点场强大小=过该点并垂直于E的面元上的电力线密度。
)2、静电场中电场线性质⑴不闭合、不中断、起自正电荷,止于负电荷。
⑵任意两条电场线不能相交,这是某一点只有一个场强方向的要求。
二、 电通量定义:通过电场中某一面的电力线数叫做通过该面的电场强度通量,用e 表示。
下面分几种情况讨论。
1、匀强电场⑴平面S 与E 垂直。
如图所示,由E的 大小描述可知:⑵平面S 与E 夹角为 ,如图所示,由E的大小描述知:S E ES ES ecos )(n S S式中n 为S的单位法线向量。
2、在任意电场中通过任意曲面S 的电通量如图所示,在S 上取面元dS ,dS 可看成平面,dS 上E 可视为均匀,设n为S d 单位法向向量,S d 与该处E 夹角E 为 ,则通过dS 电场强度通量为:S d E d e通过曲面S 的电场强度通量为:se e S d E d在任意电场中通过封闭曲面的电场强度通量e sE dS vv Ñ注意:通常取面元外法向为正。
三、高斯定理高斯定理是关于通过电场中任一闭合曲面电通量的定理,现在从一简单例子讲起。
1、如图所示,q 为正点电荷,S 为以q 为中心以任意r 为半径的球面,S 上任一点p 处E为:r e r q E 2042、通过闭合曲面S 的电场强度通量为:ssr se dS rq e S d rq S d E 202044(r、ds v同向)202044 qdS r q dS r q ss结论:e 与r 无关,仅与q 有关)(0const 2、点电荷电场中任意闭合曲面S 的电场强度通量⑴q 在S 内情形如图所示,在S 内做一个以q 为中心, 任意半径r 的闭合球面S 1,由1知,通过S 1 的电场强度通量为q。
大学物理高斯定理公式大学物理中的高斯定理公式是一种关于电场和电流分布的基本定律。
高斯定理可以用于描述物体电场和电流分布,同时可以用于计算一般电场和电流分布情况下的电容量和电侵蚀率。
这里介绍几种常用的高斯定理公式。
一、单点电荷的高斯定理公式通常情况,单一的常规的静电场的电荷分布是具有点特征的,此时只需要考虑一个点电荷的作用,可以根据高斯定理,给出点电荷产生的电场的表达式:$$E(r)=\frac{q}{4\pi \epsilon_0 r^2}$$其中,$E$ 是点电荷$q$所产生的电场,$\epsilon_0$是空气介电常数,$r$是测量点相较于点电荷的距离。
二、多点电荷组合的高斯定理公式当考虑多点电荷时,就没有简单地表达式了,首先根据高斯定理,给出多点电荷产生的电场的概念的表达式:$$E(r, t)=\sum\limits_{i=1}^n \frac{q_i}{4\pi \epsilon_0 r_i^2}$$其中,$E(r,t)$是测量点相较于多点电荷源的电场强度,$q_i$表示第i个点电荷,$\epsilon_0$是空气介电常数,$r_i$是测量点和第i个点电荷的距离,n表示点电荷的数量。
有时,我们可以使用梯度运算来分析多点电荷组合作用下的电场,即:$$\nabla E(r, t)=\sum\limits_{i=1}^n \frac{q_i \cdot \nabla r_i}{4\pi\epsilon_0 r_i^3}$$三、静电场介电体上的高斯定理公式静电场介电体的电场分布可以根据高斯定理给出:$$E(r, t)=\sum\limits_{i=1}^n \frac{q_i \cdot \nabla r_i}{4\pi \epsilon(r)r_i^2}$$其中,$E(r,t)$是测量点相较于多点电荷源的介电体静电场强度,$q_i$表示第i个点电荷,$\epsilon(r)$是介电体在多点电荷源处的介电常数,$r_i$是测量点和第i个点电荷的距离,n表示点电荷的数量。
静电场中的高斯定理:高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。
可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。
表达式为01()1/n i i S E ds q φε==∙=∑⎰⎰ (1)高斯定理是用来求场强E 分布, 定理中, S 是任意曲面, 由于数学水平的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。
典型情况有三种:1) 球对称性, 如点电荷, 均匀带电球面或球体等;2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。
根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。
选取的原则是:○1 待求场强的场点必须在高斯面上;○2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○3 与E 垂直的那部分高斯面上各点的场强应相等;○4 高斯面的形状应是最简单的几何面。
最后由高斯定理求出场强。
高斯定理说明的是通过闭合曲面的电通量与闭合曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。
但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。
下面举一些例子来说静电场中高定理的应用:例1:一半径为R 的带电球体,其电荷体密度分布为()Ar r R ρ=≤,0()r R ρ=>,A 为大于零的常量。
静电场中的高斯定理:高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。
可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。
表达式为01()1/ni i S E ds q φε==∙=∑⎰⎰ (1)高斯定理是用来求场强E 分布, 定理中, S 是任意曲面, 由于数学水平的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。
典型情况有三种:1) 球对称性, 如点电荷, 均匀带电球面或球体等;2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。
根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。
选取的原则是:○1 待求场强的场点必须在高斯面上;○2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○3 与E 垂直的那部分高斯面上各点的场强应相等;○4 高斯面的形状应是最简单的几何面。
最后由高斯定理求出场强。
高斯定理说明的是通过闭合曲面的电通量与闭合 曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。
但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。
下面举一些例子来说静电场中高定理的应用:例1:一半径为R 的带电球体,其电荷体密度分布为()Ar r R ρ=≤,0()r R ρ=>,A 为大于零的常量。
静电场的高斯定理和环路定理
静电场是指电荷分布静止不动的情况下所产生的电场。
在静电场中,高斯定理和环路定理是两个非常重要的定理。
高斯定理是描述电场通量的定理,它表明:在任何闭合曲面内,电场的通量等于该曲面内的电荷总量除以介质常数。
即:ΦE = ∫E · dS = Q/ε0
其中,ΦE表示电场的通量,E表示电场强度,dS表示曲面元素的面积,Q表示该曲面内的电荷总量,ε0表示真空中的介电常数。
环路定理则是描述电场中电势的变化的定理,它表明:沿着任意闭合回路的线积分等于该回路内的电荷的代数和除以电容。
即:∮Edl = 0
其中,∮Edl表示沿着回路的电场强度的线积分,E表示电场强度,dl表示回路的微元长度,如果回路内有电荷则其代数和为Q。
电容则是电荷和电势之间的比值。
高斯定理和环路定理是静电学中的基本定理,对于研究静电场的性质和计算电场强度、电势等都具有重要的意义。
- 1 -。
关于电场的高斯定理高斯定律(gauss' law),属物理定律。
在静电场中,穿过任一封闭曲面的电场强度通量只与封闭曲面内的电荷的代数和有关,且等于封闭曲面的电荷的代数和除以真空中的电容率。
该定律表明在闭合曲面内的电荷分布与产生的电场之间的关系。
静电场中通过任意闭合曲面(称高斯面)s 的电通量等于该闭合面内全部电荷的代数和除以真空中的电容率,与面外的电荷无关。
物理定律由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。
如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。
这个规律类似于电场中的高斯定理,因此也称为高斯定理。
与静电场中的高斯定理相比较,两者有著本质上的区别。
在静电场中,由于自然界中存有着单一制的电荷,所以电场线存有起点和终点,只要闭合面内有净余的也已(或负)电荷,沿着闭合面的电通量就不等于零,即为静电场就是有源场;而在磁场中,由于自然界中没单独的磁极存有,n极和s极就是无法拆分的,磁感线都就是无头无尾的滑动线,所以通过任何闭合面的磁通量必等于零。
特别要强调两点: 1.关于电场线的方向的规定:电场线上每一点的切线方向就是该点电场的方向。
2.关于电场线的疏密的规定:电场线在某处的疏密要反映电场强度的大小,即在电场中通过某一点的电场线的数密度与该点电场强度的大小呈正相关,即: e=dn/ds,其中ds是在电场中的某一点取一个通过该点的且与电场线垂直的微分面,dn就是穿过该面ds的电场线的根数。
高斯定理来源于库仑定律,依赖场强共振原理,只有当电场线密度等同于场强悍小时场线通量就可以与场强通量等同于,并统一遵守高斯定理。
高斯面上的实际场强就是其内外所有电荷产生的场强共振而变成的合场强。
但利用高斯面所求出的场强则仅仅就是分析高斯面上场强原产时所牵涉的电荷在高斯面上产生的合场强,而不涵盖未牵涉的电荷所产生的场强。
静电场和磁场的高斯定理
高斯定理是电学和磁学中的一个基本定理,分别适用于静电场和静磁场。
对于静电场:
高斯定理又称为高斯电场定理,它阐述了电场通过任意闭合曲面的总电通量与该曲面内包围的电荷量之间的关系。
具体表达式为:
∮E·dA = Q/ε₀
其中,∮E·dA表示电场矢量E沿闭合曲面的法向量dA 的积分(即电场通量),Q表示闭合曲面内的电荷量,ε₀表示真空介电常数。
这个定理说明了电场通量与闭合曲面内的电荷量成正比,且与真空介电常数的倒数成反比。
对于静磁场:
高斯定理同样适用于静磁场,也被称为高斯磁场定理。
它说明了磁场通过任意闭合曲面的总磁通量为零,即:
∮B·dA = 0
其中,∮B·dA表示磁场矢量B沿闭合曲面的法向量dA 的积分(即磁场通量)。
这个定理说明了静磁场不存在单极磁荷,磁场的起源总是由电流或磁偶极子引起。
静电场中的高斯定理:
高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。
可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。
表达式为
01()1/n
i i S E ds q φε==•=∑⎰⎰ (1)
高斯定理是用来求场强 E 分布, 定理中, S 是任意曲面, 由于数学水平的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。
典型情况有三种:
1) 球对称性, 如点电荷, 均匀带电球面或球体等;
2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面
3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。
根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。
选取的原则是:
○
1 待求场强的场点必须在高斯面上;○
2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○
3 与E 垂直的那部分高斯面上各点的场强应相等;○
4 高斯面的形状应是最简单的几何面。
最后由高斯定理求出场强。
高斯定理说明的是通过闭合曲面的电通量与闭合 曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。
但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。
下面举一些例子来说静电场中高定理的应用:
例1:一半径为R 的带电球体,其电荷体密度分布为()Ar r R ρ=≤,0()r R ρ=>,A 为大于零的常量。
试求球体内外的场强分布及其方向。
解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为 23d d 4d 4d q V Ar r r Ar r ρ==⋅π=π
在径为r 的球面内包含的总电荷为
430d 4d Ar r r A V q V r
ππρ==⋅=⎰⎰⎰⎰ ()r R ≤
以该球面为高斯面,按高斯定理有 0421/4εAr r E π=π⋅
得到 ()0214/εAr E =, (r ≤R )
方向沿径向向外
在球体外作一半径为r 的同心高斯球面,按高斯定理有
0422/4εAR r E π=π⋅
得到 ()20424/r AR E ε=,()r R > 方向沿径向向外
例题2:有两个同心的均匀带电球面,半径分别为1R 、
2R )(21R R <,若大球面的面电荷密度为σ,且大球面外的电场强度为零,求:(1)小球面上的面电荷密度;(2)大球面内各点的电场强度。
解: (1)设小球面上的电荷密度为σ',在大球面外作同心的球面为高斯面,
由高斯定理: 0'1220int 4'4d επσπσεR R q S E S ⋅+⋅==⋅⎰⎰ ∵大球面外0=E ∴ 2221440R R σπσπ'⋅+⋅= 解得: 221
()R R σσ'=- (2) 大球面内各点的场强两个均匀带电球面场强的迭加:内部场强为零,外部相当点电荷
在1r R <区域: 00021=+=+=E E E
在12R r R <<区域: 2112204'04R E E E r πσπε=+=+=2
20⎪⎭⎫ ⎝⎛-r R εσ 2 对高斯定理的几点说明
高斯定理是电磁学中的重要定理之一。
其数学表达式为
01
()1/n
i i S E ds q φε==•=∑⎰⎰ 它表示通过闭合曲面的电通量等于该闭合曲面内电荷代数和的0
1ε倍。