7-3 静电场的高斯定理
- 格式:ppt
- 大小:2.00 MB
- 文档页数:32
电场中的高斯定理高斯定律(gauss' law),属物理定律。
在静电场中,穿过任一封闭曲面的电场强度通量只与封闭曲面内的电荷的代数和有关,且等于封闭曲面的电荷的代数和除以真空中的电容率。
该定律表明在闭合曲面内的电荷分布与产生的电场之间的关系。
静电场中通过任意闭合曲面(称高斯面)s 的电通量等于该闭合面内全部电荷的代数和除以真空中的电容率,与面外的电荷无关。
物理定律由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。
如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。
这个规律类似于电场中的高斯定理,因此也称为高斯定理。
与静电场中的高斯定理相比较,两者有著本质上的区别。
在静电场中,由于自然界中存有着单一制的电荷,所以电场线存有起点和终点,只要闭合面内有净余的也已(或负)电荷,沿着闭合面的电通量就不等于零,即为静电场就是有源场;而在磁场中,由于自然界中没单独的磁极存有,n极和s极就是无法拆分的,磁感线都就是无头无尾的滑动线,所以通过任何闭合面的磁通量必等于零。
特别要强调两点: 1.关于电场线的方向的规定:电场线上每一点的切线方向就是该点电场的方向。
2.关于电场线的疏密的规定:电场线在某处的疏密要反映电场强度的大小,即在电场中通过某一点的电场线的数密度与该点电场强度的大小呈正相关,即: e=dn/ds,其中ds是在电场中的某一点取一个通过该点的且与电场线垂直的微分面,dn就是穿过该面ds的电场线的根数。
高斯定理来源于库仑定律,依赖场强共振原理,只有当电场线密度等同于场强悍小时场线通量就可以与场强通量等同于,并统一遵守高斯定理。
高斯面上的实际场强就是其内外所有电荷产生的场强共振而变成的合场强。
但利用高斯面所求出的场强则仅仅就是分析高斯面上场强原产时所牵涉的电荷在高斯面上产生的合场强,而不涵盖未牵涉的电荷所产生的场强。
静电场中的高斯定理:高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。
可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。
表达式为01()1/n i i S E ds q φε==∙=∑⎰⎰ (1)高斯定理是用来求场强E 分布, 定理中, S 是任意曲面, 由于数学水平的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。
典型情况有三种:1) 球对称性, 如点电荷, 均匀带电球面或球体等;2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。
根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。
选取的原则是:○1 待求场强的场点必须在高斯面上;○2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○3 与E 垂直的那部分高斯面上各点的场强应相等;○4 高斯面的形状应是最简单的几何面。
最后由高斯定理求出场强。
高斯定理说明的是通过闭合曲面的电通量与闭合曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。
但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。
下面举一些例子来说静电场中高定理的应用:例1:一半径为R 的带电球体,其电荷体密度分布为()Ar r R ρ=≤,0()r R ρ=>,A 为大于零的常量。
高斯定理的理解电子与信息学院 0 7 电联 6号 熊德辉 摘要:高斯定理在静电学具有重要的应用。
在大学物理里,仅表示为积分形式,应认识其物理意义 ,同时又必须从它的物理含义上认识它的数学应用 ,这对清楚、全面了解静电场是至关重要的.关键词:高斯定理;高斯面;电场线;对称分布;散度;电通量;电场强度。
一、高斯定理的理解高斯定理是静电学中的一个重要定理,它反映了静电场的一个基本性质 ,即静电场是有源场 ,其源即是电荷。
可表述为:在静电场中 ,通过任意闭合曲面的电通量 ,等于该闭合曲面所包围的电荷的代数和的ξ1倍 ,与闭合曲面外的电荷无关。
它的表达式为:ξint∑⎰=∙qdS E s是电磁学最基本的定理之一。
其中 ,E 表示在闭合曲面上任一 dS 面处的电场强度 ,而 E ·dS 则为通过面元dS 的电场强度通量 ,就表dS E s∙⎰示通过整个闭合曲面 S 的电场强度通量 ,⎰s表示沿闭合曲面 S 的积分 ,习惯上称 S 为高斯面, 高斯定理表明:静电场是有源的、发散的 ,源头在电荷所在处 ,由此确定的电场线起于正电荷 ,终于负电荷。
对高斯定理的理解和应用不正确 ,常常会出现一些问题。
如 ,高斯面上的 E 是否完全由高斯面内的电荷产生;如果 ∑=0q ,是否必有 E = 0 ;当E 处处为零时 ,是否高斯面内一定无电荷;高斯定理是否在任何情况下都成立;哪些问题用高斯定理解决会简便一些等等. 这就涉及是否对高斯定理理解正确 ,对其数学表达式的理解是否存在数学负迁移情况.其实 ,只要对高斯定理注意掌握几个要点, 就能对上面的问题有比较清醒的认识了.1 定理中的 E 是指空间某处的总电场强度空间中某处的电场强度为空间中所有电荷所激发的电场在该处场强的矢量和. 若任意作一个假想的闭合曲面(高斯面) 通过该处 ,用 E 内、 E 外 分别表示高斯面内、外的电荷在高斯面上产生的场 ,则在该处的总场强 E = E 内 + E 外.由高斯定理有:ξint∑⎰⎰⎰=∙+∙=∙qdS dS dS E sssE E外内而从电场线的角度看 ,电场线始于正电荷 ,终于负电荷 ,当电场中的闭合曲面内不含有电荷时 ,电场线仅穿过此闭合曲面 ,这些进入闭合曲面的电场线总条数与穿出闭合曲面的电场线总条数相等 ,故通过整个闭合曲面的电场强度通量为零. 所以 0=∙⎰dS sE 外故 ξint∑⎰⎰=∙=∙qdS dS E ssE 内即:高斯定理对高斯面内的电荷产生的场而言 ,也成立.2 注意ξ0int ∑⎰=∙qdS E s中 E 和 dS 的矢量性在对高斯定理的理解上常常出现不注意物理量的矢量性问题. 有些人认为当0int=∑q 时 ,由于dS ≠0 ,所以必有 E = 0.实际上 , 0int=∑q ,表明始于闭合曲面内正电荷的电场线与终于闭合曲面内负电荷的电场线数相等 ,则穿出闭合曲面的电场线数与进入闭合曲面的电场线数相等 ,即通过整个闭合面的电场强度通量为零.但这并不意味着闭合曲面上电场强度处处为零. 因为:(1) 高斯面上某处的场强是高斯面内、外电荷在该处产生的场强的矢量和 ,所以 ,即便高斯面内的0int=∑q ,也无法完全确定 E =0 ;(2) 由于 E 和dS 在式中是矢量的标积关系 ,因此存在二者的方向问题 ,如果 E ≠0 ,而它与dS 的方向垂直 ,仍有 E ·dS = 0. 故不能由 0int=∑q 来判断 E 是否为零。
目录1前言 (1)2静电场中的高斯定理的定义 (1)3高斯定理的推导过程 (2)3.1电场线 (2)3.2电场强度通量 (3)3.3高斯定理的推导 (4)4高斯定理的应用 (6)参考文献: (8)静电场的高斯定理X慧君(学号:20111104295)(物理与电子信息学院11级电子信息工程1班,某呼和浩特010022)指导教师:X淑琴摘要:本文意在论述静电场中的高斯定理的定义、推导过程以及其在静电场中的应用方法。
方法是通过讨论电通量与场源电荷之间的关系得出高斯定理,应用高斯定理求解几种情况下的场强大小及其分布情况,然后根据例题总结出高斯定理在静电场中应用的方法。
关键词:静电场;高斯定理;定义;推导过程;应用方法中图分类号:O44 文献标识码:A1前言电磁学是研究电磁相互作用和电磁运动基本规律的一门学科,是经典物理学的一个重要分支,也是近代物理学不可缺少的基础。
而静电场中的高斯定理就是电磁学的一部分,同时静电场中的高斯定理是电磁学中的重要定理之一。
以前我们学习了匀场电场中有关场强的解答方法,但如果是在场强分布不均匀的电场中,我们又该怎样解出场强来呢?或许你想到了运用高等数学里所学习的积分来解答,积分对于大多数人来讲它过于复杂了。
还有没有更加简单快速的方法呢?学习了静电场中的高斯定理之后,你会发现:原来一切都是那么简单。
是的,运用静电场中的高斯定理你无需在使用复杂的积分,你只需要做一个简单的高斯面就可以快速解答一切有关求场强的问题了。
无论它有多么复杂,只要你熟练掌握了静电场中高斯定理的应用方法。
2静电场中的高斯定理的定义静电场中的高斯定理是电磁学中的重要定理之一,表述为:在静电场中,通过任意,而与闭合曲面外闭合曲面S的电通量等于该面所包围的所有电荷电量的代数和除以的电荷无关;数学公式表示为⎰⎰∑=SqS dEε式中⎰⎰s表示沿一个闭合曲面S的积分,该闭合曲面S通常称为高斯面。
由上式可以看出闭合曲面的电通量只与闭合面内的电荷有关,闭合面外的电荷对闭合曲面的电通量没有贡献。
静电场的高斯定理内容
静电场的高斯定理是物理学家高斯发现的一种物理定律,它解释了电场的特殊状态。
它表明,在任何场的定义空间中,对于任何闭合曲面的一边,电场的积分值等于以曲面的另一边为主的带电体上电荷量的积分值。
这个定理在推导电场的特性时具有重要的意义,也可用来计算某些情况下电场的强度,从而研究电场的变化规律。
具体而言,静电场的高斯定理可表示为:
∮E·dS=ρ/ε
其中,E表示电场强度,dS表示曲面的元素,ρ表示曲面另一边为主的带电体上电荷量,ε表示空气的介电常数。
静电场的高斯定理还可以写成另一种形式:·E=ρ/ε
其中,表示梯度操作,也就是在进行静电场的空间分析或变分计算的时候,要用到的梯度操作。
高斯定理可以说是电势学的基石,它包含了电场和电荷之间的重要关系,为研究电荷的运动提供了重要的参考。
它可以用来计算复杂情况下的电场强度,进而推导与其相关的电势能量的变化情况,从而研究电场的运动规律。
华中师范大学武汉传媒学院毕业论文(设计)静电场中的高斯定理的应用院系:传媒工程系专业:电子信息工程班级:B1001班*****学号:***********指导教师:黄**2014年3月29日静电场中的高斯定理的应用Gauss theorem of electrostatic field摘要高斯定理是电磁学的一条重要定理,他不仅在静电场中有重要的应用,而且也是麦克斯韦电磁场理论中的一个重要方程。
本文比较详细的介绍了高斯定理在静电场中的应用,并提供了数学法,直接证明法等方法证明他,总结出应用高斯定理应注意的几个问题和高斯定理几种对称性求解场强的方法,最后推导出了介质中的高斯定理的求解方法,从这些问题中可以发现高斯定理在解决静电场问题的方便之处。
关键词:高斯定理静电场应用AbstractGauss theorem is an important theorem of electromagnetism, he not only has important application in the electrostatic field, and is an important equation of maxwell electromagnetic field theory. More detailed introduced in this paper the gauss theorem in the application of electrostatic field, and provides a mathematical method, the direct proof method and other methods to prove his, summed up the application of gaussian set several problems that should pay attention to several symmetry solving field intensity and gauss theorem, the method of the gauss theorem of solution is deduced the medium, from these problems can be found in the gauss theorem in the place where the convenient to solve the problem of electrostatic field.Keywords: Gauss theorem Electrostatic field Application目录摘要 (3)Abstract (4)绪论 (1)1 静电场中高斯定理的表述及验证 (2)1.1高斯定理的定义: (2)1.2高斯定理的验证: (2)1.2.1单个点电荷被包围在同心球面内 (2)1.2.2单个点电荷被包围在任意闭合曲面内 (2)1.2.3单个点电荷在任意闭合面外 (3)1.2.4闭合面内外均有点电荷的情况 (3)1.3从库伦定律推导高斯定理 (4)2 高斯定理常见三种对称性分析 (7)2.1 球对称性 (7)2.2 轴对称性 (8)2.3 面对称性 (9)3 介质中的高斯定理的研究 (12)3.1电介质中的高斯定理: (12)结束语 (13)5 收获与体会 (14)致谢 (15)6 主要参考文献 (16)绪论电磁学是研究电磁相互作用和电磁运动基本规律的一门学科,是经典物理学的一个重要分支,也是近代物理学不可缺少的基础。