(最终)2015年土石坝毕业设计
- 格式:doc
- 大小:2.17 MB
- 文档页数:92
1.综合说明1.1枢纽概况及工程目的某水库工程是河北省和水利部“八·五”重点工程建设项目之一。
该工程是以供水、灌溉、发电、养殖等综合利用为主的大型控制枢纽工程。
青龙河流域水量充沛,控制流域面积6340km2,,多年平均径流量9.6亿m3,是滦河流域较大的一条支流。
但由于降雨、径流的年际年内分配极不均匀,必须修建大型控制工程调节水量,丰富的水资源才能得以充分开发利用。
水库按满足秦皇岛市生活、工业用水和滦河中下游农业用水的需要设计,工程规模是:正常蓄水位141 m,调节库容7.09亿m3,水库库容系数0.77,水量利用系数为70%。
坝后式电站装机容量20Mw。
根据《水利水电枢纽工程等级划分及设计标准》SDJ12-78的规定,一期工程为二等工程,大坝为II级建筑物,正常应用洪水为100年一遇,非常运用洪水为1000年一遇。
辅助建筑物按Ⅲ级设计,临时建筑物按Ⅳ级设计。
1.2水库枢纽设计基础资料1.2.1地形、地质(1)地形:见1:2000坝址地形图。
(2)库区工程地质条件。
水库位于高山区,构造剥蚀地形。
青龙河侵蚀能力较强,沿河形成不对称河谷,由于构造运动影响,河流不断下切,形成岸边阶地、陡岸。
流域内地形北高南低,平均高程与500m,最高峰海拔1680m。
河道蜿蜒曲折,河谷宽度400~100m不等,河道比降1/400~1/600。
库区两岸基岩出露高程大部分在200米左右,库区左岸非可溶性岩层分布广泛,其中主要由绢云母、千枚岩、石英、砂质页岩组成。
透水性较小,也没有发现沟通库内外的大断层。
库区可溶性岩层分布于青龙河右岸,从隔水层分布、熔岩发育情况分析,水库蓄水后向邻近河流渗透的可能性很小。
经过对库区断层的分析,水库向外流域及下游渗漏的可能性很小。
库区外岩层抗风化作用较强,库岸基本上是稳定的。
(3)坝址区工程地质条件位于坝区中部背斜的西北,岩层倾向青龙河上游,两岸山体较厚。
河床宽约300米,河床地面高程85m,河床砂卵石覆盖层平均厚度5—7米,渗透系数K=1×10-2厘米/秒。
目录摘要 (1)Abstract (2)前言 (3)第1章设计的基本资料 (5)1.1概况 (5)1.2基本资料 (5)1.2.1地震烈度 (5)1.2.2水文气象条件 (5)1.2.3坝址地形、地质与河床覆盖条件 (6)1.2.4建筑材料概况 (7)1.2.5其他资料 (8)第2章工程等级及建筑物级别 (9)第3章坝型选择及枢纽布置 (10)3.1 坝址选择及坝型选择 (10)3.1.1 坝址选择 (10)3.1.2 坝型选择 (10)3.2 枢纽组成建筑物确定 (10)3.3 枢纽总体布置 (10)第4章大坝设计 (11)4.1 土石坝坝型选择 (11)4.2 坝的断面设计 (11)4.2.1 坝顶高程确定 (11)4.2.2 坝顶宽度确定 (14)4.2.3 坝坡及马道确定 (14)4.2.4 防渗体尺寸确定 (14)4.2.5 排水设备的形式及其基本尺寸的确定 (15)4.3 土料设计 (16)4.3.1 粘性土料设计 (16)4.3.2 石渣坝壳料设计(按非粘性土料设计) (17)4.4 土石坝的渗透计算 (18)4.4.1 计算方法及公式 (18)4.4.2 计算断面及计算情况的选择 (19)4.4.3 计算结果 (19)4.4.4 渗透稳定计算 (20)4.5 稳定分析计算 (20)4.5.1 计算方法与原理 (20)4.5.2 计算公式 (21)4.5.3 稳定成果分析 (21)4.6 地基处理 (22)4.6.1 坝基清理 (22)4.6.2 土石坝的防渗处理 (22)4.6.3 土石坝与坝基的连接 (22)4.6.4 土石坝与岸坡的连接 (22)4.7 土坝的细部结构 (23)4.7.1 坝的防渗体、排水设备 (23)4.7.2 反滤层设计 (23)4.7.3 护坡及坝坡设计 (24)4.7.4 坝顶布置 (25)第5章溢洪道设计 (26)5.1 溢洪道路线选择和平面位置的确定 (26)5.2 溢洪道基本数据 (26)5.3 工程布置 (26)5.3.1 引渠段 (26)5.3.2 控制段 (27)5.3.3 泄槽 (29)5.3.4 出口消能段 (35)5.4 衬砌及构造设计 (36)5.5 地基处理及防渗 (36)结论 (37)感想体会................................ 错误!未定义书签。
⼟⽯坝初步设计---毕业设计前⾔毕业设计是我们在校期间最后的、总结性的重要教学环节,其⽬的是:1.巩固、加深、扩⼤我们所学的基本理论和专业知识,并使之系统化;2.培养我们运⽤所学的理论知识解决实际技术问题功能⼒,初步掌握设计原则、⽅法和步骤;3.培养我们具有正确的设计思想,树⽴严肃认真、实事求是和刻苦钻研的⼯作作风;4.锻炼我们独⽴思考、独⽴⼯作的能⼒,并加强计算、绘图、编写说明书及使⽤规范、⼿册等技能训练。
本次毕业设计为⼟⽯坝设计,设计满⾜枢纽布置安全要求。
本设计结合国内外⼀些⼟⽯坝实例作出⽐较合理的选择,设计以减⼩⼯程量,布局经济合理为原则。
本设计共分六章。
第⼀章为本⼯程的⼀些概况,包括枢纽任务、流域概况、⽓候特性、⽔⽂特性、⼯程地质、建筑材料、经济资料等的介绍;第⼆章为洪⽔调节计算,主要内容为泄洪⽅式和拟定泄洪建筑物孔⼝尺⼨的选择,及防洪库容、上游设计和校核洪⽔位和相应的下泄流量的确定;第三章为坝型选择及枢纽布置,主要通过不同⽅案的初步技术经济⽐较,选定坝型,并确定⽔利枢纽的布置⽅案;第四章为⼟⽯坝的设计,主要通过分析⽐较,确定⼤坝基本剖⾯型式与轮廓尺⼨,通过渗流验算和静⼒稳定计算以论证选⽤坝坡的合理性;第五章为泄⽔建筑物的设计,主要为泄⽔⽅案、线路的选择和隧洞的⽔⼒计算;第六章为施⼯组织设计,也是本次设计的深⼊部分,主要进⾏施⼯导流和施⼯控制性进度的设计,⽽施⼯交通运输、施⼯总布置由于能⼒有限和时间关系并没有做进⼀步的设计。
由于没有参加过实际⼯程的施⼯组织设计,⼯作经验有限,查阅参考资料⼜有许多局限性,设计中定会存在⼀些缺点和错误,请⽼师批评指正。
摘要本⽔利枢纽⼯程由挡⽔建筑物、泄⽔建筑物和⽔电站建筑物等组成,同时具有防洪、发电、灌溉、渔业等综合作⽤。
本次设计主要内容如下:1.根据防洪要求,对⽔库进⾏洪⽔调节计算,确定坝顶⾼程及溢洪道尺⼨;2.对可能的⽅案进⾏⽐较,确定枢纽组成建筑物的型式、轮廓尺⼨及⽔利枢纽布置⽅案;3.通过详细设计和⽐较,确定⼤坝的基本剖⾯和轮廓尺⼨,拟定地基处理⽅案与坝⾝构造;4.坝型选定后,选择建筑物的型式及轮廓尺⼨,确定布置⽅案;拟定细部构造,进⾏⽔⼒、静⼒计算。
目录第一章调洪计算..................................................... - 2 - 第二章坝顶高程计算................................................. - 8 - 第三章土石料的设计............................................ - 10 -3.1粘性土料的设计........................................................................ - 10 -3.1.1计算公式......................................................................... - 10 -3.1.2 计算结果........................................................................ - 10 -3.1.3 土料的选用.................................................................. - 11 -3.2 砂砾料设计 (13)3.2.1 计算公式 (13)3.2.2 计算成果 (13)第四章渗流计算 (17)4.1计算方法 (17)4.2.计算断面与计算情况 (17)4.3 逸出点坡降计算: (21)第五章大坝稳定分析 (21)5.1 计算方法 (22)5.2源程序(VB) (23)5.3 工况选择与稳定计算成果 (27)第六章细部结构计算 (28)6.1 反滤层的设计计算: (28)6.1.1 防渗墙的反滤层: (28)6.1.2 护坡设计: (29)第七章隧洞水力计算 (30)7.1 设计条件 (30)7.2 闸门型式与尺寸 (31)7.3平洞段底坡 (31)7.4 隧洞水面曲线的计算: (31)第八章施工组织设计 (37)8.1 施工导流计算 (37)第一章调洪计算主要建筑物为2级,次要建筑物为3级,临时建筑物为4级。
前言这次我的设计任务是E江水利枢纽工程设计(土石坝),本设计采用斜心墙坝。
该斜心墙土石坝设计大致分为:洪水调节计算、坝型选择与枢纽布置、大坝设计、泄水建筑物的选择与设计等部分。
1工程提要E江水利枢纽系防洪、发电、灌溉、渔业等综合利用的水利工程,该水利枢纽工程由土石坝、泄洪隧洞、冲沙放空洞、引水隧洞、发电站等建筑物组成。
该工程建成以后,可减轻洪水对下游城镇、厂矿和农村的威胁,根据下游防洪要求,设计洪水时最大下泄流量限制为900sm/3,本次经调洪计算100年一遇设计洪水时,下泄洪峰流量为672.6sm/3。
原100年一遇设计洪峰流量为1680sm/3;其发电站装机为3×8000kw,共2.4 m/3,水库消减洪峰流量1007.4s×104kw;建成水库增加保灌面积10万亩,正常蓄水位时,水库面积为17.70km2,为发展养殖创造了有利条件。
综上该工程建成后发挥效益显著。
1.1工程等别及建筑物级别根据SDJ12-1978《水利水电枢纽工程等级划分设计标准(山区,丘陵区部分)》之规定,水利水电枢纽工程根据其工程规模﹑效益及在国民经济中的重要性划分为五类,综合考虑水库的总库容、防洪库容、灌溉面积、电站的装机容量等,工程规模由库容决定,由于该工程正常蓄水位为2821.4m,库容约为 3.85亿m3,估计校核情况下的库容不会超过10亿m3,故根据标准(SDJ12-1978),该工程等别为二等,工程规模属于大(2)型,主要建筑物为2级,次要建筑物为3级,临时性建筑物级别为4级。
1.2洪水调节计算该工程主要建筑物级别为2级,根据《防洪标准》(GB50201-94)规定2级建筑物土坝堆石坝的防洪标准采用100年一遇设计,2000年一遇校核,水电站厂房防洪标准采用50年一遇设计,500年一遇校核。
临时性建筑物防洪标准采用20年一遇标准。
根据资料统计分析得100年一遇设计洪峰流量为设Q =,/16803s m (p=1%),2000年一遇校核洪峰流量为校Q =2320m 3/s ,(%05.0 p )。
土石坝毕业设计开题报告(参考)[大全]第一篇:土石坝毕业设计开题报告(参考)[大全]开题报告研究目的和意义土石坝是修建历史最悠久、世界上建设最多而且也是建得最高的一种坝型。
公元前2900年,在埃及首都孟非司城(Memphis)附近尼罗河上修建的一座高15m,顶长240m的挡水坝是世界上第一坝,它就是土石坝。
我国已建的8.6万座水坝绝大多数是土石坝。
前苏联修建的罗贡土石坝坝高325m。
土石坝如此长久而广泛地被采用,与它对基础的广泛适应性、筑坝材料可当地采取、施工速度快、经济等主要优点有关。
选择土石坝坝型进行设计研究,目的是:①了解土石坝枢纽各建筑物组成、建筑物的工作特点以及在枢纽中的布置;②了解和掌握调洪演算的方法和水库各种特征水位的确定;③在对土石坝枢纽中各建筑物的设计中,了解各建筑物的选型比较方法以及所选定建筑物的设计难点和重点,并掌握相应的设计方法;④掌握计算机绘图和程序计算方法,培养设计报告撰写能力;⑤通过设计研究,培养文献资料查阅、发现问题、独立思考问题和解决问题的能力。
通过土石坝水利枢纽的设计研究,掌握一个水利枢纽的设计步骤程序和方法,学习和发展土石坝设计理论,促进土石坝建设。
2.阅读的主要文献、资料;国内外现状和发展趋势1)水利电力部,碾压式土石坝设计规范(SDJ218-84),水利电力出版社,1985。
2)华东水利学院主编,水工设计手册,土石坝分册和结构计算分册,水利电力出版社,1984。
3)水利电力部,水工建筑物抗震设计规范(DL 5073-1997),中国电力出版社,1997。
4)华东水利学院译,土石坝工程,水利电力出版社,1978。
5)武汉水利电力学院,水工建筑物基本部分,水利电力出版社,1990。
6)水利电力部,混凝土重力坝设计规范(SDJ21-78),水利电力出版社,1981。
7)中华人民共和国水利部,溢洪道设计规范(SL253-2000),中国水利水电出版社,2000。
第5章 溢洪道计算5.1. 计算原理泄流能力计算根据SL 253-2000《溢洪道设计规范》附录A 宽顶堰泄流能力的公式进行计算。
3/20s Q m εσ=(5.1)式中:Q—流量,m3/s ; B —总净宽,m ;m —流量系数m 按照《水力计算手册》第二版中实用堰流量取值,m =0.38。
0H —记入行近流速的堰上水头,m ;ε—闸墩侧收缩系数,可按照A.2.1中实用堰侧收缩系数取用,这里取1ε=;5.2. 溢洪道泄槽水力计算5.2.1. 溢洪道泄流能力计算(1) 校核工况堰顶上最大水头 max H =校核洪水位-堰顶高程=340.77-338.71=2.06m 由(《水力学》第二版)中可知常采用的设计水头dH =(0.75-0.95)mH ,取dH =0.80mH =1.648m上游堰高由溢洪道平剖图读得:1P =1.244m11.2440.755 1.331.648d P H ==<,从而为低堰, 行进流速:029.863.02(/)6 1.648d Q v m s bH ===⨯ 行进流速水头:220 3.020.465()229.81v m g ==⨯则200 1.6480.465 2.113()2d v H H m g=+=+= 由原资料已知,m=0.38,1ε=,1s σ=3/20s Q m εσ==3320.38116 2.11331.02(/)m s ⨯⨯⨯=(2) 设计工况堰顶上最大水头 max H =设计洪水位-堰顶高程=340.16-338.71=1.45m 由(《水力学》第二版)中可知常采用的设计水头dH =(0.75-0.95)mH ,取dH =0.80mH =1.16m上游堰高由溢洪道平剖图读得:1P =1.244m11.244 1.07 1.331.16d P H ==<,从而为低堰 行进流速:017.632.54(/)6 1.16d Q v m s bH ===⨯ 行进流速水头:220 2.540.33()229.81v m g ==⨯则200 1.160.33 1.49()2d v H H m g=+=+= 由原资料已知,m=0.38,1ε=,1s σ=3/20s Q m εσ==3320.38116 1.4918.36(/)m s ⨯⨯⨯=表5.1 溢洪道泄流能力计算成果由上表可知,溢洪道泄流能力满足要求。
目录摘要 0Abstract (1)前言 (2)第1章设计的基本资料 (4)1。
1概况 (4)1.2基本资料 (4)1.2。
1地震烈度 (4)1.2。
2水文气象条件 (4)1.2。
3坝址地形、地质与河床覆盖条件 (5)1。
2。
4建筑材料概况 (6)1。
2.5其他资料 (7)第2章工程等级及建筑物级别 (8)第3章坝型选择及枢纽布置 (9)3。
1 坝址选择及坝型选择 (9)3.1.1 坝址选择 (9)3。
1。
2 坝型选择 (9)3。
2 枢纽组成建筑物确定 (9)3。
3 枢纽总体布置 (9)第4章大坝设计 (10)4.1 土石坝坝型选择 (10)4。
2 坝的断面设计 (10)4。
2.1 坝顶高程确定 (10)4。
2.2 坝顶宽度确定 (13)4。
2.3 坝坡及马道确定 (13)4.2.4 防渗体尺寸确定 (13)4。
2.5 排水设备的形式及其基本尺寸的确定 (14)4。
3 土料设计 (15)4。
3.1 粘性土料设计 (15)4.3.2 石渣坝壳料设计(按非粘性土料设计) (16)4。
4 土石坝的渗透计算 (17)4。
4.1 计算方法及公式 (17)4.4。
2 计算断面及计算情况的选择 (18)4.4.3 计算结果 (18)4。
4。
4 渗透稳定计算 (19)4.5 稳定分析计算 (20)4。
5。
1 计算方法与原理 (20)4。
5。
2 计算公式 (20)4.5。
3 稳定成果分析 (21)4。
6 地基处理 (21)4.6。
1 坝基清理 (21)4.6。
2 土石坝的防渗处理 (21)4。
6。
3 土石坝与坝基的连接 (22)4.6.4 土石坝与岸坡的连接 (22)4.7 土坝的细部结构 (22)4。
7。
1 坝的防渗体、排水设备 (22)4.7.2 反滤层设计 (23)4。
7.3 护坡及坝坡设计 (23)4.7.4 坝顶布置 (25)第5章溢洪道设计 (26)5.1 溢洪道路线选择和平面位置的确定 (26)5。
土石坝_粘土心墙毕业设计目录1 基本资料 (4)1.1工程概况 (4)1.2水文气象 (4)1.3地形地质 (4)1.4茅坪溪防护大坝 (5)1.4.1 设计标准 (5)1.4.2 平面布置 (5)1.5其它设计资料 (5)1.1.1 1.5.1 工程特征水位 (5)1.5.2 地震烈度 (5)1.5.3 筑坝材料的技术指标 (5)1.6设计内容与要求 (6)1.6.1 设计目的 (6)1.6.2 设计内容 (7)2 坝址及坝型的选择 (7)2.1坝址的选择 (7)2.2土坝对地基的要求 (8)2.3坝型选择 (8)2.3.1 各种坝型的比较 (8)2.3.2土石坝类型的选择 (9)3 坝工设计 (10)3.1坝顶高程 (10)3.1.1 按正常情况下计算坝顶高程 (11)3.1.2 按非常情况计算坝顶高程 (13)3.1.3 考虑地震影响计算坝顶高程 (13)3.1.4 确定坝顶高程及坝高 (13)3.2坝顶宽度 (13)3.3坝坡 (14)3.5排水体设备 (15)4 渗流计算 (16)4.1设计说明 (16)4.1.1 土石坝渗流分析的任务 (16)4.1.2 渗流分析的工况 (16)4.1.3 渗流分析的方法 (16)4.2渗流计算 (16)4.2.1 基本假定 (16)4.2.2 渗流计算基本公式 (16)4.3渗流计算过程 (18)4.4渗流稳定结果分析 (21)4.4.1 正常蓄水位下渗流稳定分析 (21)4.4.2 校核洪水位下渗流稳定分析 (22)5 土石坝坝坡稳定分析及计算 (22)5.1设计说明 (22)5.1.1 设计任务 (22)5.1.2 计算工况 (22)5.1.3 计算断面 (23)5.1.4 控制标准 (23)5.2稳定计算 (23)5.2.1库水位最不利时的上游坝坡 (23)5.2.2 施工或竣工期的上下游坝坡稳定计算及稳定渗流期的计算 (28)6.土石坝的构造设计 (41)6.1坝顶 (41)6.2护坡与坝坡排水 (41)6.3坝体排水设备 (43)7. 沉降量计算 (44)7.1坝体的沉降量计算 (44)7.2坝基沉降量计算 (45)8.地基处理 (48)8.1坝基清理 (48)8.2坝的防渗处理 (48)8.3土石坝与坝基的连接 (48)9.土石坝土料的选择 (49)9.1坝壳的土石料选择要求 (49)9.2防渗体土石料的选择要求 (49)9.3对排水设施和护坡的结构布置 (49)9.4反滤层的结构布置 (50)10. 工程量计算 (50)10.1坝基开挖工程量计算 (50)10.2坝体工程量计算 (50)谢辞 (53)参考文献 (54)1 基本资料1.1工程概况茅坪溪防护工程的缘由:茅坪溪是长江上的小支流,其出口位于三峡大坝上游约1km 的右岸。
毕业设计E江水利枢纽工程——土石坝设计说明与计算书题目:E江水利枢纽工程设计专业:水利水电工程年级:2011级学生:温绍成学号:**********指导教师:***日期:2015年4月13日目录前言 (1)1工程提要 (1)1.1工程等别及建筑物级别 (1)1.2洪水调节计算 (1)1.3坝型选择与枢纽布置 (2)1.4大坝设计 (2)1.5泄水建筑物设计 (3)1.6施工组织设计 (3)2基本资料 (4)2.1水文 (4)2.2工程地质 (6)2.3建筑材料 (8)2.4经济资料 (11)3工程等别及建筑物级别 (12)4洪水调节计算 (13)4.1防洪标准 (13)4.2设计洪水 (13)4.3调洪演算 (14)5坝型选择与枢纽布置 (17)5.1坝址及坝型选择 (17)5.2枢纽布置 (18)6大坝设计 (20)6.1土石坝坝型的选型 (20)6.2大坝轮廓尺寸的拟定 (21)6.3土料设计 (27)6.4渗流计算 (30)6.5稳定计算 (34)6.6基础处理部分 (35)6.7细部构造设计 (36)7泄水建筑物设计 (39)7.1泄水方案选择 (39)7.2隧洞选择与布置 (39)7.3隧洞的体型设计 (39)7.4隧洞的水力计算 (41)7.5隧洞的细部构造 (45)7.6放空洞设计 (45)8施工组织设计 (1)8.1施工导流计划 (1)8.2施工控制性进度 (3)前言根据教学大纲要求,学生在毕业前必须完成毕业设计。
毕业设计是大学学习的重要环节,对培养工程技术人员独立承担专业工程技术任务重要。
通过毕业设计可以进一步培养和训练我们分析和解读工程实际问题及科学研究的能力。
通过毕业设计,我们能够系统巩固并综合运用基本理论和专业知识,熟悉和掌握有关的资料、规范、手册及图表,培养我们综合运用上述知识独立分析和解决工程设计问题的能力,培养我们对土石坝设计计算的基本技能,同时了解国内外该行业的发展水平。
这次我的设计任务是E江水利枢纽工程设计(土石坝),本设计采用斜心墙坝。
该斜心墙土石坝设计大致分为:洪水调节计算、坝型选择与枢纽布置、大坝设计、泄水建筑物的选择与设计等部分。
1 工程提要E 江水利枢纽系防洪、发电、灌溉、渔业等综合利用的水利工程,该水利枢纽工程由土石坝、泄洪隧洞、冲沙放空洞、引水隧洞、发电站等建筑物组成。
该工程建成以后,可减轻洪水对下游城镇、厂矿和农村的威胁,根据下游防洪要求,设计洪水时最大下泄流量限制为900s m /3,本次经调洪计算100年一遇设计洪水时,下泄洪峰流量为672.6s m /3。
原100年一遇设计洪峰流量为1680s m /3,水库消减洪峰流量1007.4s m /3;其发电站装机为3×8000kw ,共2.4×104kw ;建成水库增加保灌面积10万亩,正常蓄水位时,水库面积为17.70km 2,为发展养殖创造了有利条件。
综上该工程建成后发挥效益显著。
1.1 工程等别及建筑物级别根据SDJ12-1978《水利水电枢纽工程等级划分设计标准(山区,丘陵区部分)》之规定,水利水电枢纽工程根据其工程规模﹑效益及在国民经济中的重要性划分为五类,综合考虑水库的总库容、防洪库容、灌溉面积、电站的装机容量等,工程规模由库容决定,由于该工程正常蓄水位为2821.4m ,库容约为 3.85亿m 3,估计校核情况下的库容不会超过10亿m 3,故根据标准(SDJ12-1978),该工程等别为二等,工程规模属于大(2)型,主要建筑物为2级,次要建筑物为3级,临时性建筑物级别为4级。
1.2 洪水调节计算该工程主要建筑物级别为2级,根据《防洪标准》(GB50201-94)规定2级建筑物土坝堆石坝的防洪标准采用100年一遇设计,2000年一遇校核,水电站厂房防洪标准采用50年一遇设计,500年一遇校核。
临时性建筑物防洪标准采用20年一遇标准。
根据资料统计分析得100年一遇设计洪峰流量为设Q =,/16803s m (p=1%),2000年一遇校核洪峰流量为校Q =2320m 3/s ,(%05.0 p )。
根据选定的方案调洪演算的设计洪水位2822.60m,校核洪水位2823.58m,设计泄洪流量672.6m3/s,校核泄洪流量753.7m3/s。
1.3坝型选择与枢纽布置通过各种不同的坝型进行定性的分析比较,综合考虑地形条件、地质条件、建筑材料、施工条件、综合效益等因素,最终选择土石坝的方案。
根据工程功能以及满足正常运行管理要求,该枢纽由土石坝、泄洪隧洞、冲沙放空洞、水电站(包括:引水隧洞、调压井、压力管道、电站厂房、开关站)等建筑物组成。
本次根据工程经济性、正常运行安全稳定性以及地形地质条件等各方面因素要求,并且将冲沙放空洞和泄洪隧洞与施工导流隧洞相结合对枢纽建筑物进行了布置。
枢纽平面布置见图5.2。
1.4大坝设计根据方案比较分析,斜心墙坝综合了心墙坝与斜墙坝的优缺点,斜心墙有足够的斜度,能减弱坝壳对心墙的拱效应作用;斜心墙坝对下游支承棱体的沉陷不如斜墙那样敏感,斜心墙坝的应力状态较好,本次设计大坝坝型采用粘土斜心墙坝。
根据计算大坝坝顶高程由校核情况控制为2825.17m,取2825.2m。
最大坝高为75.2m,大于70m,属高坝,故综合各方面因素可取该土石坝坝顶宽度为10m。
根据规范规定与实际结合,上游坝坡上部取2.5,下部取3.0,下游自上而下均取2.50,下游在2800m、2775m高程处各变坡一次。
在坝坡改变处,尤其在下游坡,通常设置1.5~2m宽的马道(戗道)以使汇集坝面的雨水,防止冲刷坝坡,并同时兼作交通、观测、检修之用,综合上述等各方面因素其宽度取为2.0m。
本次设计,大坝坝脚排水体采用棱体排水措施,按规范棱体顶面高程高出下游最高水位1m为原则,校核洪水时下游水位可由坝址流量水位曲线查得为2755.22m,最后取棱体顶面高程为2756.3m,堆石棱体内坡取1:1.5,外坡取1:2.0,顶宽2.0m,下游水位以上用贴坡排水。
大坝坝体防渗采用粘土斜心墙,坝基采用混凝土防渗墙。
1.5泄水建筑物设计坝址地带河谷较窄,山坡陡峻,山脊高,经过比较枢纽布置于河弯地段。
由于两岸山坡陡峻,无天然垭口如采取明挖溢洪道的泄洪方案,开挖量大,造价较高,故采用了隧洞泄洪方案。
隧洞布置于岸(右岸),采取“龙抬头”无压泄洪的型式与施工导流洞结合。
为满足水库放空水位2770.0m的要求,还与导流洞结合设置了放空洞。
根据调洪演算和计算比选确定溢流孔口尺寸7m×15.5m洞身尺寸为7m 11.0m,根据以往经验溢流孔口后以1:1坡度连接,反弧段以60.0m半径圆弧相连接,见图7.1—隧洞纵坡面布置。
1.6施工组织设计本工程拟定2008年开工,从截流开始到大坝填筑完毕计4年,在现有施工能力及保证质量的前提下,尽可能缩短工期,提早发挥效益。
(1)截流和拦洪日期.针对该河流的水文特性,11月开始流量明显下降,此时水深只有1.0m左右,因此,设计截流日期定为2008年11月1日~15日。
实际施工中,根据当时的水文、气象条件及实际水情进行调整。
2009年5月洪水期开始,围堰开始拦洪,围堰上升速度应以抢修到拦洪水位以上为原则。
(2)封孔及发电日期,鉴于流量资料不足。
为安全起见在大坝上升至泄洪隧洞进口高程以后进行封孔。
斜心墙坝填筑要求粘土与砂砾同时上升。
施工进度由粘土上升速度控制。
按4m/月的速度上升,至泄洪洞高程(2810m)需15月,即到2010年7月。
因此定在2010年8月1日进行封孔蓄水。
水库蓄水过程一般按80%~90%的保证率的流量过程线来预测,初始发电水位为70%工作水深,即2808.5m。
根据计算从8月1日封孔蓄水,到9月底即可蓄到初始发电水位。
因此第一台机组发电日期定为2010年10月1日。
实际发电日期根据当时水文、气象条件及水情进行调整。
(3)大坝竣工日期。
按4m/月的速度上升,在2010年底实现大坝填筑完成。
2基本资料2.1水文2.1.1流域概况E江位于我国西南地区,流向自东向西北,全长约122km,流域面积2558km2,在坝址以上流域面积为780km2。
本流域大部分为山岭地带,山脉、盆地相互交错于其间,地形变化剧烈,流域内支流很多,但多为小的山区河流,地表大部分为松软沙岩、页岩、玄武岩及石灰岩的风化层,汛期河流含沙量较大,冲积层较厚,两岸有崩塌现象。
本流域内因山脉连绵,交通不便,故居民较少,全区农田面积仅占总面积的20%,林木面积约占全区的30%,其种类有松、杉等。
其余为荒山及草皮覆盖。
2.1.2气象降雨(1)气象本区域气候特征是冬干夏湿,每年11月至次年四月特别干燥,其相对湿度在51%-73%之间,夏季因降雨日数较多,相对湿度随之增大,一般变化范围为67%-86%。
该地区一般1-4月风力较大,实测最大风速为15m/s,风向为西北偏西,水库吹程为12km。
年平均气温约为12.8℃,最高气温为30.5℃,发生在7月份,最低气温-5.3℃,发生在1月份,见表2.1.1、2.1.2。
表2.1.1 月平均气温统计表(℃)表2.1.2 平均温度日数(天)(2) 降雨该地区最大年降水量可达1213mm ,最小为617mm ,多年平均降水量为905mm 。
表2.1.3 多年平均各月降雨日数统计表2.1.3 径流E 江径流的主要来源于降水,在此山区流域内无湖泊调节径流。
根据短期水文气象资料研究,一般是每年五月底至六月初河水开始上涨,汛期开始,至十月以后洪水下降,则枯水期开始,直至次年五月。
E 江洪水形状陡涨猛落,峰高而瘦,具有山区河流的特性,实测最大流量为700s m /3,而最小流量为0.5s m /3。
多年平均流量17s m /3。
经频率分析,求得不同频率的洪峰流量见表2.1.4、2.1.5。
表2.1.4 多年统计不同频率洪峰流量表2.1.5 各月不同频率洪峰流量(单位:s m /3)固体径流:E 江为山区性河流,含沙量大小均随降水强度及降水量的大小而变化,平均含沙量达0.5kg/m 3。
枯水期极小,河水清澈见底,初步估算30年后坝前淤积高程为2765m 。
2.2工程地质2.2.1水库地质库区内出露的地层有石灰岩、玄武岩、火山角砾岩与凝灰岩等。
经地质勘探认为库区渗漏问题不大,但水库蓄水后,两岸的坡积与残积等物质的坍岸是不可避免的,经过勘测,估计可能塌方量约为300万m3,在考虑水库淤积问题时可作为参考。
2.2.2坝址地质坝址位于E江中游地段的峡谷地带,河床比较平缓,坡降不太大,两岸高山耸立,构成高山深谷的地貌特征。
坝址区地层以玄武岩为主,间有少量火山角砾岩和凝灰岩穿构,对其岩性分述如下:(1)玄武岩一般为深灰色、灰色、有含泥量气孔,为绿泥石、石英等充填,成为杏仁状构造,并间或有方解石石脉,石英脉等穿其中,这些小脉都是后来沿裂隙充填进来的。