第11章 主成分和因子分析
- 格式:ppt
- 大小:657.50 KB
- 文档页数:65
第十一章 多元分析:主成分分析与因子分析引言主成分分析和因子分析在多元分析框架内是数据结构分析技术,与第六章的多元回归、第七章的多变量协整一起是多变量分析中广泛使用的技术。
它们不同于多元回归。
回归的目标是识别外生变量与内生变量的关系,而在主成分分析和因子分析情形下,仅确定内生变量间的结构关系。
它们也不像协整,变量间不需要平稳性。
在金融、社会科学或其它领域,通常需要识别多变量结构的特征,其有两个特征是被子广泛关心的:1. 多变量结构中的波动性。
2. 变量间的相关或共线性。
在结构的整体变化中,通常是一些变量起产生主要的影响,而其它变量仅有次要的或不显著的影响。
困难的是要了解哪些变量能被确定在这个结构中和它在结构中应怎样度量。
例如,如果两个变量是完全相关的,则不需要第二个变量,它不会带来进一步的信息。
这类似多元回归的共线问题。
在一般情况下,包含哪个变量,剔除哪个变量并不是很清楚的,我们需要有能够程序化的有效方法来识别带有最可用信息的变量或变量组合。
主成分分析(PCA )是分析多变量结构波动时有用的技术。
因子分析(F A )在分析多变量结构变量的相关时很有用。
两者都依赖于方差/协方差矩阵,因为这个矩阵在一定范围内包含了变量间有用的全部信息。
因此在一定范围内,两者是重复的或相互补充的。
在这章,我们将方差/协方差矩阵记为C 。
尽管PCA 和F A 都利用方差/协方差矩阵,但它们不同于第四章和第九章中的均值—方差分析。
均值—方差分析度量了一组变量的总体变异性,而没有特别指明一部分变量对总变异性的贡献。
PCA 识别和排序了部分变量在总变异性中的贡献,每个部分变量称为“主成分”。
它识别了部分变量间组成的协方差的强度,每个主成分对总的变异性的贡献,并根据部分变量组的方差进行排序。
使用PCA ,数据内的总体变异性由特征值之和(它等于C矩阵主对角线上元素之和,也称为迹)度量,成分(变量的线性组合)的选择是依次序减少特征值,直到满足总变异性的一个足够大的比例。
主成分分析和因子分析
习题答案
SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#
第11章主成分分析和因子分析
司盈利能力有关,因此可命名为“盈利能力”。
因子2 与X5(资产负债率)、X6(流动比率)X8(资本积累率)这3个变量的载荷系数较大,这三个变量主要涉及企业的偿债能力,因此可命为“偿债能力因子”。
因子3与X1(主营业务利润)、 X4(总资产周转率)、X7(主营业务收增长率)这三个变量的载荷系数较大,这三个变量分别涉及了盈利能力、资产管理水平、企业成能力等,因此,这个因子的命名比较困难。
各公所的因子综合得分和排名如下:
对下表中的50名学生成绩进行主成分分析,可以选择几个综合变量来代表这些学生的六门课程绩
学生代码数学物理化学语文历史英语
1716494526152
2789681808976
3695667759480
4779080686660
5846775607063
6626783718577。
数据分析中的因子分析和主成分分析在数据分析领域,因子分析和主成分分析是两种常用的多变量分析方法。
它们可以用来处理大量的数据,找出数据的内在规律,并将数据简化为更少的变量。
本文将介绍因子分析和主成分分析的定义、应用以及它们在数据分析中的区别和联系。
一、因子分析因子分析是一种用于研究多个变量之间的潜在因素结构及其影响的统计方法。
它通过将多个观测变量转化为少数几个无关的因子,来解释变量之间的相关性。
因子分析的基本思想是将多个相关观测变量归因于少数几个潜在因子,这些潜在因子不能被观测到,但可以通过观测变量的变化来间接地推断出来。
因子分析通常包括两个主要步骤:提取因子和旋转因子。
提取因子是指确定能够解释原始变量方差的主要共性因子,常用的方法有主成分分析法和最大似然估计法。
旋转因子是为了减少因子之间的相关性,使得因子更易于解释。
常用的旋转方法有正交旋转和斜交旋转。
因子分析的应用非常广泛,可以用于市场研究、社会科学调查、心理学、金融等领域。
例如,在市场研究中,因子分析可以用来确定消费者购买行为背后的潜在因素,从而更好地理解市场需求。
二、主成分分析主成分分析是一种通过线性变换将原始变量转化为一组线性无关的主成分的统计方法。
主成分是原始变量的线性组合,具有较大的方差,能够尽可能多地解释原始数据。
主成分分析的主要思想是将原始变量投影到一个新的坐标系中,使得新坐标系上的第一主成分具有最大方差,第二主成分具有次最大方差,以此类推。
通过选择解释原始数据方差较多的前几个主成分,我们可以实现数据的降维和主要信息提取。
主成分分析在数据降维、特征提取和数据可视化等领域有广泛的应用。
例如,在图像处理中,主成分分析可以用来压缩图像数据、提取重要特征,并且可以在保留图像主要信息的同时减少存储空间的需求。
三、因子分析和主成分分析的区别和联系因子分析和主成分分析在某些方面有相似之处,但也存在明显的区别。
首先,因子分析是用于研究多个观测变量之间的潜在因素结构,而主成分分析是通过线性变换将原始变量转化为一组线性无关的主成分。
主成分分析和因子分析法一、主成分分析概论主成分分析的工作对象是样本点×定量变量类型的数据表。
它的工作目标,就是要对这种多变量的平面数据表进行最佳综合简化。
也就是说,要在力保数据信息丢失最少的原则下,对高维变量空间进行降维处理。
很显然,识辨系统在一个低维空间要比一个高维空间容易得多。
英国统计学家斯格特(M.Scott )在1961年对157个英国城镇发展水平进行调查时,原始测量的变量有57个。
而通过主成分分析发现,只需5个新的综合变量(它们是原变量的线性组合),就可以95%的精度表示原数据的变异情况,这样,对问题的研究一下子从57维降到5维。
可以想象,在5维空间中对系统进行任何分析,都比在57维中更加快捷、有效。
另一项十分著名的工作是美国的统计学家斯通(Stone)在1947年关于国民经济的研究。
他曾利用美国1929~1938年各年的数据,得到了17个反映国民收入与支出的变量要素,例如雇主补贴、消费资料和生产资料、纯公共支出、净增库存、股息、利息和外贸平衡等等。
在进行主成分分析后,竟以97.4%的精度,用三个新变量就取代了原17个变量。
根据经济学知识,斯通给这三个新变量要别命名为总收入1F 、总收入变化率2F 和经济发展或衰退的趋势3F (是时间t 的线性项)。
更有意思的是,这三个变量其实都是可以直接测量的。
二、主成分分析的基本思想与理论1、主成分分析的基本思想在对某一事物进行实证研究中,为了更全面、准确地反映出事物的特征及其发展规律,人们往往要考虑与其有关系的多个指标,这些指标在多元统计中也称为变量。
这样就产生了如下问题:一方面人们为了避免遗漏重要的信息而考虑尽可能多的指标,而另一方面随着考虑指标的增多增加了问题的复杂性,同时也由于各指标均是对同一事物的反映,不可避免地造成信息的大量重叠,这种信息有时甚至会抹杀事物的真正特征与内在规律。
基于上述问题,人们就希望在定量研究中涉及的变量较少,而得到的信息量又较多。