主成分分析和因子分析.ppt
- 格式:ppt
- 大小:2.69 MB
- 文档页数:31
主成分分析与因⼦分析主成分分析,主成份是原始变量的线性组合,在考虑所有主成份的情况下主成份和原始变量间是可以逆转的。
即“简化变量”,将变量以不同的系数合起来,得到好⼏个复合变量,然后在从中挑⼏个能表⽰整体的复合变量就是主成份,然后计算得分。
因⼦分析,公共因⼦和原始变量的关系是不可逆转的,但是可以通过回归得到。
是将变量拆开,分成公共因⼦和特殊因⼦。
过程是:因⼦载荷计算,因⼦旋转,因⼦得分。
主成份分析主成份分析需要知道两变量之间的相关性,⽣成协⽅差举证和相关新矩阵,对应的⽣成的新向量矩阵Y还有特征值λi,对应是第I个新向量对总体信息的贡献率为λi/(λ1+λ2+...+λn),对应的还有⼀个累积贡献率。
确定主成份的个数的⽅法有:特征值⼤于1(要求原始数据的每⼀个变量⾄少能贡献1各单位的变异)、陡坡检验法(陡坡图中开始平坦的点之前的点的个数)、累积解释变异⽐例法(即(λ1+...+λi)/(λ1+λ2+...+λn)>70%)。
同时也可以知道主成分分析对应的⼏个难点①是使⽤协⽅差矩阵还是相关系数矩阵②如何确定主成份的个数。
当数据中不同变量的度量单位不同并且数值相差较⼤就⽤标准化后的相关系数矩阵,当数值相差不⼤并且指标的权重不⼀样时,考虑⽤协⽅差矩阵。
对于个数的确定就是我们⼀些边界问题是否1左右的也可以囊括进主成份中,是否难以确定开始变平坦的是那个点,是否70%不够。
等⼏个问题。
主成分分析可以⽤两个过程步完成PROC FACTORS 、PROC PRINCOMP。
后者能处理的数据量⼤⼀些,效率⾼⼀些,,前者输出的内容丰富些,还可以做旋转因⼦。
以下是主成分分析过程;proc princomp data=sashelp.cars out=car_component;var mpg_city mpg_highway weight wheelbase length;run;输出结果:先是输出统计结果,再是输出相关性矩阵,这⾥princomp步默认使⽤的是相关系数矩阵,实际应⽤过程中,可以通过cov选项来指定使⽤的矩阵。