铝合金车体MIG焊接工艺
- 格式:pdf
- 大小:1.36 MB
- 文档页数:5
地铁铝合金车体焊接工艺从生产环境、焊前准备、规范参数等方面介绍了上海明珠二线地铁铝合金车体焊接的工艺特点,指出了铝合金车体焊接要注意的一些问题。
上海明珠二号线地铁车体在焊接作业过程中出现了一些焊接质量方面的问题,在研究和解决这些问题的过程中,发现了铝合金车体焊接作业的一些特点。
针对这些特点采取了相应的改进措施。
1 铝合金车体焊接概述上海明珠二线地铁车体全部采用铝合金材料,实现了地铁车辆强度和轻量化的结合。
车体焊接采用的主要焊接工艺为手工MIG焊和自动MIG焊,其母材、焊丝、保护气体、焊接设备见表1。
母材和焊丝的主要化学成分见表2。
表1 铝合金车体MIG焊焊接材料表2 母材和焊丝的主要化学成分%不同牌号母材及其化学成分焊丝化学成分2 生产储存环境和辅助材料使用的要求2. 1 生产储存温度湿度的要求铝合金的生产和储存环境必须防尘、防水、干燥。
环境温度通常控制在5 ℃以上, 湿度控制在70 %以下。
应尽量保证焊接环境的湿度不能太高,湿度过高会使焊缝中气孔的产生几率明显增加,从而影响焊接质量。
空气的剧烈流动会引起气体保护不充分,从而产生焊接气孔,可设置挡风板以避免室内穿堂风的影响。
2. 2 焊丝及送气软管的使用要求对焊材的使用应该注意:铝焊丝要与钢焊材分开储存,使用期不超过1a 。
焊接完成后,要在焊机中取出焊丝进行密封处理,防止污染。
不同材质的送气软管抵抗湿气进入的能力不同,尤其在送气压力高时,送气软管的影响更明显。
送气软管最好使用特富龙软管(Teflon) 。
2. 3 工装的选用铝合金焊接最好选用点接触形式的工装,以减小工装与工件的接触面积。
如果工装对工件是面接触,就会很快带走工件的热量,加速了熔池的凝固,不利于焊缝气孔的排除。
工装液压系统的压力最好控制在9~9. 5 MPa 。
压力过小达不到预设反变形的目的,但是压力过大,又会使铝合金结构的拘束度增大。
由于铝合金的线胀系数大,高温塑性差,焊接时易产生较大的热应力,可能会使铝合金结构产生裂纹。
试论铝合金MIG焊接工艺研究及应用【摘要】文章对铝合金mig焊接工艺进行了研究【关键词】铝合金;mig序言高强铝合金具有很高的室温强度及良好的高温和超低温性能,广泛应用于航空、航天及其它运载工具的结构材料,如:运载火箭的液体燃料箱、超音速飞机和汽车的结构件以及轻型战车的装甲等。
目前常用于铝合金连接的主要焊接方法有:交流钨极氩弧焊(tig)和直流反极性熔化极气体保护焊(mig)。
tig焊由于采用交流电,钨极烧损严重,限制了所使用的焊接电流,而且此法熔深能力弱,因此只适用于薄件铝合金的焊接。
mig焊包括连续电流焊接和脉冲电流焊接。
mig焊时,焊丝做为阳极,可采用比tig焊更大的焊接电流,电弧功率大,焊接效率高,故特别适合于中厚板铝合金的焊接。
实验研究发现,在铝合金mig焊时,脉冲电流焊接优于连续电流焊接,它提高了铝合金焊缝金属的强度、塑性和疲劳寿命。
为进一步提高电弧的稳定性、改善焊缝成形和增加熔深以及厚板铝合金的高效焊接,近几年国外发展了单丝复合脉冲mig焊和双丝tandem mig焊方法,本文针对30mm厚的7a52中厚板高强铝合金,进行了单丝单脉冲、复合脉冲和双丝tandem mig焊工艺的研究,并应用于生产中。
1 tandem双丝焊和单丝复合脉冲mig焊原理tandem双丝焊是将两根焊丝按一定角度放在一个特别设计的焊枪里,两根焊丝分别由各自独立的电源供电。
除送丝速度可以不同外,其它参数,如:焊丝的材质、直径、是否加脉冲等都可彼此独立设定,从而保证了电弧工作在最佳状态。
与其它双丝焊技术相比,由于两根焊丝的电弧是在同一熔池中燃烧,提高了总的焊接电流,因此提高了熔敷效率和焊接速度。
同时由于两根焊丝交替送进同一熔池,对熔池具有搅拌作用,而降低了气孔敏感性,改善了焊缝质量。
1.1 同频率同相位的(适合焊接钢)1.2 同频率相位差180度(适合焊接铝)1.3 不同频率相位任意(适合焊接钢)单丝复合脉冲焊接工艺是采用一个低频的协调脉冲对另一个高频脉冲的峰值和时间进行调制,使脉冲的强度在强、弱之间低频周期性切换,得到周期性变化的强弱脉冲群。
第十一章铝及铝合金TIG 焊接设备和工艺第一节 TIG焊工艺的定义TIG焊接是一种电极不熔化的气体保护焊接,电极常用纯钨或含有钨的氧化物金属做电极材料,熔点很高。
该种焊接方法于1936年起源于美国,它可以焊接任何金属,焊接过程非常清洁,几乎没有飞溅,但缺点是焊接效率较慢,在铁道车辆行业,一般做小件焊接或修补使用。
TIG焊的工艺过程如图11-1如图所示。
图11-1 TIG焊工艺过程示意第二节 TIG焊电源种类一、交流电源交流手工钨极氩弧焊机具有较好的热效率,能提高钨极的载流能力,适用于焊接厚度较大的铝及铝合金,可以用高压脉冲发生器进行引弧和稳弧,利用电容器组清除直流分量。
在生产实践中,铝及铝合金TIG焊一般都采用交流电源,用纯氩气或含氦气11%或更多的氩氦混合气体作保护气体时,使用交流电源,表面氧化物可由电弧的作用去除。
因此不使用熔剂可以达到很好的熔融。
但是使用含氦量为90%或更高的氩氦混合气体时,电弧对氧化物的去除作用减少,这主要是由于氦气比氩气轻得多的缘故。
为了很好的熔化,通常要求焊前彻底清除氧化物。
氦和富氦混合气体,很少使用交流焊接,而一般采用直流正接电源。
氧化物的去除是阴极破碎的作用结果,在交流负半极的时候,由于高温电弧的作用,保护气体被电离成大量的正离子,质量较大的正离子受到阴极区电场的加速作用,高速冲击到熔池及其周围表面。
所释放出的能量把熔池及其周围金属表面上难熔的氧化铝薄膜击碎、分解。
为了保证在这半周内足够的阴极破碎作用,电源必须有足够高的开路电压,或在电流过零时,在电弧间隙外加高频高压使钨电极为正极。
在交流正半波时,虽无阴极破碎作用,但这时只有1/3的电弧热量集中在钨极上,钨极端部得以冷却,而约有2/3的电弧热量施加到焊件上,有利于增加焊件的熔深。
二、直流电源1. 直流正接型直流正接型电源只适用于钨极氦(富氦)弧焊的情形。
直流正接虽无阴极破碎作用,但当电弧相当短时,电子撞击也能起到一点清除氧化膜的作用,如果焊前氧化膜清除彻底,焊接过程中生成的氧化膜数量又有限,那么,直流正接氦弧焊可以顺利实现焊接铝及铝合金。
铝合金车体氩弧焊焊接工艺0 前言铝合金车体具有重量轻、耐腐蚀、外观平整度好和易于制造复杂美观曲面车体的优点,因而受到世界各城市交通公司和铁道运输部门的欢迎,在世界范围内,生产制造铝合金车体是铁路运输事业和城市轨道车辆发展的必然趋势。
1 铝合金的焊接特点铝合金材料具有活性强、热导率和比热容大(均约为碳素钢和低合金钢的两倍多)、线膨胀系数大、收缩率高等特点,决定了铝合金焊接有其自身的特点。
1)极易氧化。
铝与氧的亲和力极大,常温下极易氧化,在母材表面生成的氧化铝(Al2O3)熔点高、组织致密、非常稳定。
焊接时该氧化膜阻碍母材的熔化和熔合,易出现未焊透、未融合缺陷;氧化膜的比重大,不易浮出表面,易生成夹渣缺欠;表面氧化膜(特别是有MgO存在的不很致密的氧化膜)可吸附大量的水分而成为焊缝气孔形成的重要原因。
2)热导率和比热容大,导热快尽管铝合金的熔点远比钢低,但是在焊接过程中,大量的热量被迅速传导到基体金属内部,消耗于熔化金属熔池外,这种无用能量的消耗要比钢的焊接更为显著。
为了获得高质量的焊接接头,应当尽量采用能量集中、功率大的热源,有时也可采用预热等工艺措施。
3)线膨胀系数大,收缩率高铝合金的线膨胀系数约为钢的两倍,凝固时体积收缩率达6.5%--6.6%,焊接时焊件的变形和应力较大,熔池凝固时容易产生缩孔、缩松、热裂纹及较高的内应力。
生产中可采用调整焊丝成分、选择合理的工艺参数和焊接顺序、适宜的焊接工装等措施防止热裂纹的产生。
4)氢的溶解度存在突变铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。
在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成氢气孔。
氢是铝合金焊接时产生气孔的主要原因。
弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。
因此,对氢的来源要严格控制,以防止气孔的形成。
5) 光、热的反射能力较强铝合金对光、热的放射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断较难。
铝合金焊接铝及铝合金焊接的特点及焊接性常见铝及铝合金的分类铝为银白色轻金属,纯铝的熔点为660℃,密度2.7g/cm3。
工业用铝合金的熔点约为560℃。
按照GB/T3190-1996或GB/T16474-1996的规定,纯铝和铝合金牌号命名的基本原则是:可直接采用国际四位数字体系牌号;未命名为国际四位数字体系牌号的纯铝及其合金采用四位字符牌号。
城轨事业部目前常用的铝材主要有以下三种①5083-H111,5表示为Al-Mg系,H111加工硬化状态:最终退火后又进行了适量加工硬化。
主要用于折弯件用的板材。
②6005A-T6,6表示为Al-Mg-Si系,T6热处理状态:固溶处理后再人工时效的稳③6082-T6,绝大部分板材定状态。
除牵引梁型材为6082之外,其余所有的型材均为6005A。
铝合金焊接基础知识电流类型MIG焊接通常使用直流电源焊接,电极(焊丝)连接到电源的正极,工件连接到电源的负极焊接材料铝和铝合金焊接用焊材一般为实芯焊丝,焊材标准为EN ISO 18273。
城轨事业部常用的MIG焊丝材质为5083,常见直径为Ф1.2mm,底架手工MIG焊及自动焊接使用的则为Ф1.6mm。
通常规格为7Kg/盘。
保护气体DIN EN 439标准规定了MIG/MAG焊用保护气体。
该标准定义了所有弧焊和弧割用的保护气体。
城轨事业部常用焊接气体为99.9999%的高纯氩(Ar),只有在底架焊接时为增加熔深采用氩氦混合气体,成分为70%氩气+750ppm氮气+剩余氦气。
这是因为在氩气中添加氦气能改善电弧气氛的热传导性和保温性能,这两种影响产生了高能量的电弧和更好的电弧穿透性MIG焊接常用气体流量为18~20L/min焊缝坡口的形式铝及铝合金焊接时,坡口一般采用机械方法加工,常见的坡口形式如下衬垫MIG焊接时功率较大,熔透能力强,这样就造成焊缝金属在焊缝根部下漏,造成根部裂纹,根部成型差等缺陷。
所以铝合金焊接全焊透时常需要加焊接垫板,有利于缩小接头有关尺寸,操作条件较为宽松,对操作技能可以适当降低。
第十章铝合金车体自动MIG焊技术第一节铝合金车体自动焊技术在铁路车辆行业发展概况目前,全铝结构铝合金车辆已经广泛用于我国铁路车辆动车组制造业和城市轨道交通车辆制造业,在车辆制造过程中,由于结构大量采用型材拼接,接头长而规则,便于自动化作业的实现,因此在该行业大量使用各种自动焊技术。
在60年代,受焊缝跟踪技术的制约,自动焊大部分采用简易自动焊,常用的简易自动焊有机械中心导向自动焊、轨道小车自动焊和靠模自动焊。
简易自动焊虽然能够实现自动化作业,但由于二次线和走行监控必须人工辅助完成,焊接变形对轨迹的影响不能修正,因此自动化的效率和质量仍然不能保证要求。
70年代,机械传感器跟踪直线焊缝技术已经成熟,该种传感器直接驱动横向、高度方向电机进行位移修正,脱离了外加因素的监控和影响,自动化的效率和焊接质量获得大幅度提高,因此专机焊接设备加机械跟踪传感器焊接技术获得大面积的采用,直到今天,仍然有大量的该形式的设备在生产中使用。
90年代,新型焊缝传感器不断涌现,最普遍使用的是激光传感器,该传感器依靠激光反射图象进行焊缝跟踪计算,跟踪精度高,可以解决机械传感器长时间使用带来锁紧不牢靠和定位焊影响机械传感器走行等问题。
因此,激光跟踪焊接技术获得了更快的发展,尤其激光传感器控制技术可以和机械手控制系统接口,实现一个系统的统一控制,使得该技术应用领域获得了进一步的提高。
采用机械手焊接铝合金车体是在2002年获得迅速发展的,机械手由于标准化程度高,持枪牢固等原因,这些年被铁路行业大量使用,约占新投设备的80%以上。
随着机械手的大量使用,双丝焊送丝机构悬挂问题变得简易,双丝焊技术获得迅速推广。
近些年,伴随复合材料用于铝合金车体结构,激光焊、激光MIG复合焊也在一些发达国家获得使用,主要用于高速磁悬浮列车的生产。
在日本、德国、瑞典等发达国家,近些年大量使用搅拌摩擦焊技术焊接铝合金车体大部件和车体总组成,由于该技术环保无烟尘,推广使用速度非常快,是将来发展的方向,国内铁路行业也在进行该技术的试验,目前在车体关键部件车钩座板上已经试验完成,正在进行产品应用验证,不久该技术也将在国内轨道交通车辆制造业获得大面积使用。
MIG 焊接(Metal Inert Gas Arc Welding 惰性气体保护电弧焊)属于电弧焊中熔化极惰性气体保护焊的一种,它采用惰性气体产生的气帘隔绝空气(惰性气体见表1所列),以防止高温使母材氧化。
在汽车车身上的MIG 焊接通常是指铝合金的焊接,所以也可以称为MIG 铝焊。
随着铝焊机功能的完善,越来越多的汽车品牌认可采用铝焊接对车身外板进行焊接修复,注意不能采用MIG 铝焊对车身结构件进行焊接,对结构件只能采用粘接加铆接进行修复。
1 铝合金特性在汽车行业中,铝材应用已有多年历史。
其主要性能为低密度、高强度、耐腐蚀和具可回收性,且变形时有较强的能量吸收能力。
铝材主要应用于发动机舱盖、车门、翼子板、立柱外板等处,但也越来越多地应用于车身结构部件中,甚至出现了全铝车身。
铝合金与钢铁物理特性的对比见表2所列,铝合金的密度为钢铁的1/3,导热性是钢铁的4倍~5倍,导电性是钢铁的5倍~6倍,熔点比钢铁低800 ℃。
正是由于铝合金的物理性能与钢铁有如此大的差异,在焊接时就不能采用与钢铁相同的熔化极活性气体保护焊(MAG 焊),只能采用熔化极惰性气体保护焊(MIG 焊接),用这种方法更容易进行高质量的焊接。
另外铝合金在空气中极易与氧气发生反应生成氧化铝,氧化铝形成的时间非常短,大约半小时之内,在处理后的铝板表面就会形成一层致密的氧化铝薄膜,这层氧化铝可以阻止铝板进一步氧化,同时会使焊接产生缺陷,在焊接过程中要注意清洁氧化层和焊接的时效性。
2 铝合金的分类按照添加合金元素的不同,铝合金可以分为1000系列至9000系列不同的种类,应用于汽车车身上的主要是4000系列至7000系列,其特性见表3所列。
按照铝合金板件制作工艺的不同,铝合金分为铝板材、挤压铝型材、压铸铝三种。
挤压铝型材是将圆柱形铝加热到一定温度,在挤压机的作用下挤压成型的;压铸铝是将铝板材和其他金属材料混合放进熔炉,经熔炉融化后放入压铸机的模具中成型的,压铸铝制品形状可设计成各种造型,可用与制作车身上形状复杂的部件(如减震器支座),硬度强度较高。