铝合金车身焊接(现代焊接技术)讲解
- 格式:ppt
- 大小:9.10 MB
- 文档页数:30
浅析城轨车辆铝合金车体焊接工艺摘要:城轨车辆的车体是由铝合金材质焊接而成,本文对城轨车辆铝合金车体的焊接工艺、工装进行分析,探讨了铝合金车体焊接工艺的发展趋势。
关键词:城轨车辆;焊接;铝合金;分析为了保证城轨车辆的高速行驶,城轨车辆采用的是轻量化的设计,车身采用铝合金的结构,降低整辆车的重量,减少了对轮轨的冲击。
但是铝合金的膨胀系数是钢的2倍,凝固的时候体积收缩也很大,因此,在焊接的过程中很容易变形。
特别是对于薄壁型的铝合金材质,不光焊接变形量大,而且在焊接的时候还会产生气孔、裂纹等现象,因此要提高铝合金的焊接工艺水平,尽量减少焊接过程中出现的问题,提高车体焊接的质量,就需要用专用的工装来保证车体焊接成型后的尺寸,为制造出高质量的城轨车辆奠定基础。
1 城轨车辆铝合金车体焊接的特点1.1 焊接方法和速度的选择铝合金的焊接方法有多种,包括惰性气体的保护焊(mig)、钨极惰性气体的保护焊(tig)两种焊接方法。
在焊接的时候,对于较厚夹板的焊接,为了能够保证焊接的质量要使焊缝从分均匀地融合,而且使焊缝中的气体顺畅溢出,采用较慢的环节速度和较大的电流配合焊接;对于较薄板的焊接,为了避免焊缝太热,在焊接的过程中要采用较快的焊接速度和较小的电流配合,从而确保焊接的质量,尽量避免气孔的形成[1]。
1.2 气孔的形成铝合金表面氧化膜有很强的吸水性,当环境湿度很大时,吸收了很多水的氧化膜在电弧的作用下水分解出氢,而氢气在熔池中没有时间排除就形成了气孔[2]。
2 铝合金车体的焊接工艺2.1 铝合金车体的焊接工艺流程车体预组、焊接前尺寸的调整、焊接前的清理、自动焊接、焊接后的打磨。
组装过程中所有零部件的误差及变形全部汇集在一起,通过车体组焊来消化,如果要控制铝合金车体的焊接质量就要在焊接前定好尺寸,通过焊接前的尺寸调整对铝合金车体的变形进行预先估测,做好合理工艺放量。
加强焊接过程的控制,通过组焊工装及辅助撑拉杆减小车体在焊接时的变形程度,提高焊接质量[3]。
第五章铝及铝合金焊前清理、焊缝修理、焊后处理工艺第一节焊前清理铝及铝合金表面存在一层致密而坚硬的氧化膜,熔点高达3000度以上,导电性很差,因此,在焊接过程中,会产生电弧不稳和气孔,因此,铝合金工业结构焊接前,必须将其清除掉,清理采用如下工艺过程:1.除油、除污处理铝合金材料在加工、运输、存储过程中,不可避免地会粘上油污等脏物,这些有机物质在高温作用下也会产生气孔等缺陷,在焊接打磨过程中,同时会污染工具的洁净度使污染面进一步扩大,因此,铝合金表面在用工具打磨前,如果洁净度不够,首先要进行表面除油污的处理。
处理办法是将工业丙酮注入一点到矿泉水瓶中,在瓶盖上扎几个小孔,使丙酮能够成雾状喷到铝合金表面上,然后用工业擦拭纸或布擦拭表面就可清洁表面的油污。
用丙酮做清洁剂主要是利用丙酮的高挥发性和高溶解性,但过量使用会危害人体健康和影响环境安全。
图5-1是工业擦拭纸的示意,图5-2是丙酮如何使用的示意。
图5-1 工业擦拭纸的示意图5-2 丙酮如何使用的示意2.铝合金焊前打磨铝合金焊前打磨主要是为了清除铝合金焊接表面氧化膜,氧化膜致密而坚硬,采用普通钢丝刷很难将其清除,因此,刷子的钢丝一般采用0.3MM以上的不锈钢丝做刷子,过大、过小直径均不适合,钢丝直径太大,打磨过程受力大,不稳,过小,刷子寿命不好。
打磨工具主要有两种类型:风动打磨和手动打磨。
风动打磨主要有角向砂轮配杯型碗刷和纵向砂轮配柱状钢丝刷,图5-3是角向砂轮配合杯型碗刷工作的示意,图5-4是纵向砂轮配合柱状钢丝刷的工作示意。
图5-5是常用柱状刷示意,根据打磨量大小和位置,选择柱状刷厚度和直径大小是提高打磨效率和质量的关键环节,在施工中要格外注意,工具的正确选择,可以显著提高生产效率,降低成本。
图5-3角向砂轮配合杯型刷的工作示意图5-4 纵向砂轮配合柱状刷的工作示意图5-5 常用柱状刷示意从图5-3、图5-4示意可以看到,角向砂轮配杯型不锈钢碗刷轻巧灵活,工作效率慢,纵向砂轮配合柱状钢丝刷,打磨速度快,但工具比较重,工作负荷大。
第十一章铝及铝合金TIG 焊接设备和工艺第一节 TIG焊工艺的定义TIG焊接是一种电极不熔化的气体保护焊接,电极常用纯钨或含有钨的氧化物金属做电极材料,熔点很高。
该种焊接方法于1936年起源于美国,它可以焊接任何金属,焊接过程非常清洁,几乎没有飞溅,但缺点是焊接效率较慢,在铁道车辆行业,一般做小件焊接或修补使用。
TIG焊的工艺过程如图11-1如图所示。
图11-1 TIG焊工艺过程示意第二节 TIG焊电源种类一、交流电源交流手工钨极氩弧焊机具有较好的热效率,能提高钨极的载流能力,适用于焊接厚度较大的铝及铝合金,可以用高压脉冲发生器进行引弧和稳弧,利用电容器组清除直流分量。
在生产实践中,铝及铝合金TIG焊一般都采用交流电源,用纯氩气或含氦气11%或更多的氩氦混合气体作保护气体时,使用交流电源,表面氧化物可由电弧的作用去除。
因此不使用熔剂可以达到很好的熔融。
但是使用含氦量为90%或更高的氩氦混合气体时,电弧对氧化物的去除作用减少,这主要是由于氦气比氩气轻得多的缘故。
为了很好的熔化,通常要求焊前彻底清除氧化物。
氦和富氦混合气体,很少使用交流焊接,而一般采用直流正接电源。
氧化物的去除是阴极破碎的作用结果,在交流负半极的时候,由于高温电弧的作用,保护气体被电离成大量的正离子,质量较大的正离子受到阴极区电场的加速作用,高速冲击到熔池及其周围表面。
所释放出的能量把熔池及其周围金属表面上难熔的氧化铝薄膜击碎、分解。
为了保证在这半周内足够的阴极破碎作用,电源必须有足够高的开路电压,或在电流过零时,在电弧间隙外加高频高压使钨电极为正极。
在交流正半波时,虽无阴极破碎作用,但这时只有1/3的电弧热量集中在钨极上,钨极端部得以冷却,而约有2/3的电弧热量施加到焊件上,有利于增加焊件的熔深。
二、直流电源1. 直流正接型直流正接型电源只适用于钨极氦(富氦)弧焊的情形。
直流正接虽无阴极破碎作用,但当电弧相当短时,电子撞击也能起到一点清除氧化膜的作用,如果焊前氧化膜清除彻底,焊接过程中生成的氧化膜数量又有限,那么,直流正接氦弧焊可以顺利实现焊接铝及铝合金。
汽车铝合金焊接新技术摘要:铝合金具有密度低、比强度高、耐腐蚀等综合性能,使得铝合金成为航空、铁路运输、建筑等许多制造行业的一种重要金属材料。
并且,随着我国汽车产业的发展,无论是安全性能还是节能减排,可提高汽车整体强度,使得铝合金成为汽车轻量化的重要材料之一。
因此,铝合金焊接技术已成为汽车制造业的基本工艺之一,本文主要对汽车铝合金车身焊接新工艺和新方法进行了探讨和分析研究。
关键词:汽车;铝合金;焊接技术引言近年来,由于节能环保的要求日益严格,汽车轻量化便已成为世界汽车发展的必然趋势。
对于燃油车辆,车身质量每下降10%,燃料效率就可以提高6%-8%;对于纯电动车辆,车身质量减轻100公斤,汽车续航可提高10%。
车身质量约占汽车总质量的40%,车身轻量化最重要的是使用铝合金材料。
铝密度仅为钢密度的1/3,具有良好的塑性和可回收性,是汽车轻量化的理想材料之一。
铝合金车身比钢制车身具有更高的连接技术要求和更高的技术难度,而铝合金点焊(RSW)、自冲铆接(SPR)、自攻热铆接(FDS)、激光焊接(LW)等技术在连接过程中是铝合金车身常用的连接方法,与其他几种连接方法相比,铝点焊具有设备投资低、无需使用辅助材料、适配板的柔性厚度以及连接后板材表面没有较高的间隙等优点,正被越来越多的汽车厂家所使用。
1汽车制造中铝合金焊接技术概述一方面,由于全球能源紧张等因素,汽车燃料消费受到越来越多的关注,因此,汽车轻量化已成为大型汽车企业产品设计的重点。
作为轻型发展系统的一部分,轻型金属,如中高端钢结构、铝和铝合金结构、镁和镁合金结构,将逐步取代在轻型汽车车身系统中广泛使用传统钢结构,这是因为铝的重量比钢结构少60%,相较于传统的钢结构,车身实际上可以减少45%以上的总重量,而且铝和铝合金在承受同样的冲击强度时可以吸收更高的冲击能量。
另一方面,基于节能环保的发展理念,铝合金是符合节能降耗要求的更加环保的应用材料,铝合金零部件回收率较高。
铝合金车体氩弧焊焊接工艺0 前言铝合金车体具有重量轻、耐腐蚀、外观平整度好和易于制造复杂美观曲面车体的优点,因而受到世界各城市交通公司和铁道运输部门的欢迎,在世界范围内,生产制造铝合金车体是铁路运输事业和城市轨道车辆发展的必然趋势。
1 铝合金的焊接特点铝合金材料具有活性强、热导率和比热容大(均约为碳素钢和低合金钢的两倍多)、线膨胀系数大、收缩率高等特点,决定了铝合金焊接有其自身的特点。
1)极易氧化。
铝与氧的亲和力极大,常温下极易氧化,在母材表面生成的氧化铝(Al2O3)熔点高、组织致密、非常稳定。
焊接时该氧化膜阻碍母材的熔化和熔合,易出现未焊透、未融合缺陷;氧化膜的比重大,不易浮出表面,易生成夹渣缺欠;表面氧化膜(特别是有MgO存在的不很致密的氧化膜)可吸附大量的水分而成为焊缝气孔形成的重要原因。
2)热导率和比热容大,导热快尽管铝合金的熔点远比钢低,但是在焊接过程中,大量的热量被迅速传导到基体金属内部,消耗于熔化金属熔池外,这种无用能量的消耗要比钢的焊接更为显著。
为了获得高质量的焊接接头,应当尽量采用能量集中、功率大的热源,有时也可采用预热等工艺措施。
3)线膨胀系数大,收缩率高铝合金的线膨胀系数约为钢的两倍,凝固时体积收缩率达6.5%--6.6%,焊接时焊件的变形和应力较大,熔池凝固时容易产生缩孔、缩松、热裂纹及较高的内应力。
生产中可采用调整焊丝成分、选择合理的工艺参数和焊接顺序、适宜的焊接工装等措施防止热裂纹的产生。
4)氢的溶解度存在突变铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。
在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成氢气孔。
氢是铝合金焊接时产生气孔的主要原因。
弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。
因此,对氢的来源要严格控制,以防止气孔的形成。
5) 光、热的反射能力较强铝合金对光、热的放射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断较难。
铝合金车身的焊接和修复技巧一、前言汽车车身制造材料的变换,要考虑车身的安全性、经济性、舒适性等因素,并将车辆轻量化作为考虑首选因素之一,铝合金车身的制造应运而生,满足了车身的各种需求,目前这种铝合金部件一般应用在碰撞吸能区域除了能够承载正常的载荷外,在碰撞变形中还可以吸收大量的能量,保护后面的部件完整不会变形,随未得到普遍的发展,也是未来发展的趋势,车身损坏的维修和焊接技巧也是汽车钣金工基本技能之一。
二、铝合金车身的特点1.经济性:铝合金材料的应用可以使车辆减小 20 % ~30 % 质量,可以减少 10 % 的燃油消耗,这意味着每百公里节省 0.5 升燃油。
2.环保性:减小燃油的消耗,轻量化设计减少了 CO2 的排量,同时减少氮氧化物和硫化物的排放。
3.防腐蚀性:铝暴露在空气中很快能在表面形成一层致密的氧化物,这层氧化物是三氧化二铝,使金属铝和空气隔绝开来,保护氧气的进一步的腐蚀。
4.可加工性:铝材的一致性要比钢材好,它能够很好地通过冲压或挤压加工成形。
5.安全性:铝材具有高的能量吸收性能,是制造车身变形区的理想材料。
6.当然铝合金也存在一些缺点:在生产铝合金车身时,焊接工艺复杂,而且铝合金车身损坏时修复成本相比较高,由于铝材的熔点低、修复性差,钣金工需要专用的铝车身修复工具和工艺进行修复。
三、铝合金车身的焊接技巧铝合金车身在材料上和碳钢车身有所不同,考虑铝材的活性,在焊接方法上与钢制车身有较大的不同:1.焊接前的准备由于铝的熔点低、易变形,焊接要求电流低,所以必须采用专用的铝车身气体保护焊机,与钢制车身焊机相比,送丝管是塑料的,而钢制的送丝管是钢制的;铝丝直径一般为1m m ,相应送丝轮和导电嘴为 1.0m m ,而钢制焊丝一般为 0.6 或0.8m m 的;考虑铝材的活性,为了在焊接时保护板件不被氧化,保护气使用 100% Ar气,钢制车身使用 C25 气体;在焊接之前要清除焊接区域的氧化层,因为氧化层的存在会导致焊缝夹渣和裂纹,要用钢丝刷或钢丝球清洁去除杂质、油污和氧化物,二小时内未焊接,需重新清洁,清洁后最好一次焊接完毕。
铝合金车体焊接知识培训一、引言随着汽车制造技术的不断发展,铝合金车体在汽车制造中的应用越来越广泛。
相比于传统的钢铁车体,铝合金车体具有重量轻、抗腐蚀性好、冲击吸能性能好等优点,因此受到了汽车制造商和消费者的青睐。
然而,铝合金车体的焊接工艺相对复杂,需要具备专门的技能和经验。
为了提高车体焊接员工的技能,本次培训旨在对铝合金车体焊接知识进行深入的讲解和培训,帮助员工掌握铝合金车体焊接的基本技能和注意事项。
二、铝合金车体焊接的特点1. 铝合金的特性铝合金具有较高的导热性和热膨胀系数,这使得铝合金车体在焊接过程中容易受到热变形的影响。
另外,铝合金的氧化膜会对焊接质量产生不利影响,因此对氧化膜的处理是焊接铝合金的重要环节。
2. 焊接工艺铝合金车体一般采用槽焊和铆接的方式连接,焊接工艺需要选用合适的焊接材料和焊接方法,以保证焊接质量。
3. 焊接设备焊接铝合金需要使用专门的焊接设备,如氩弧焊、搅拌摩擦焊等,这些设备需要进行专门的维护和保养,以确保焊接质量。
三、铝合金车体焊接的注意事项1. 表面处理在进行铝合金焊接前,需要对焊接表面进行清洁处理,去除氧化膜和污垢,以保证焊接质量。
2. 保护气体在氩弧焊等焊接过程中,需要使用保护气体来保护焊接区域,防止氧化和污染,提高焊接质量。
3. 焊接参数焊接参数的选择是影响焊接质量的重要因素,包括焊接电流、焊接电压、焊接速度等参数,需要根据具体情况进行合理的选择。
4. 焊接技术焊接技术包括焊接姿势、焊接速度、焊接方式等,需要员工熟练掌握各种焊接技术,并在实际操作中加以运用。
四、培训内容1. 铝合金车体的特性和应用本部分主要介绍铝合金车体的特性和应用,包括铝合金的特性、铝合金车体的优势、铝合金车体的结构和组成等内容,以增强员工对铝合金车体的理解和认识。
2. 铝合金车体焊接的原理和工艺本部分主要介绍铝合金车体焊接的原理和工艺,包括焊接原理、氩弧焊、搅拌摩擦焊等焊接方法,以及焊接工艺的流程和要点。
引言概述:铝合金焊接技术在现代工业中扮演着重要的角色,它广泛应用于机械制造、航空航天、汽车制造等领域。
本文将探讨铝合金焊接技术的相关内容,包括焊接方法、焊接参数的选择、焊接缺陷的分析与预防等。
正文内容:一、焊接方法1.1电弧焊接1.1.1氩弧焊1.1.2氩水弧焊1.1.3氩氯弧焊1.1.4脉冲氩弧焊1.2焊接参数的选择1.2.1电流和电压的选择1.2.2焊接速度的选择1.2.3气体流量的选择1.2.4极性的选择1.3焊接材料的准备1.3.1清洁表面1.3.2去除氧化层1.3.3添加焊剂一、焊接缺陷的分析与预防2.1焊接裂纹2.1.1原因分析2.1.2预防措施2.2气孔缺陷2.2.1原因分析2.2.2预防措施2.3焊缝不良2.3.1原因分析2.3.2预防措施三、焊接接头设计原则3.1强度设计原则3.1.1考虑荷载3.1.2选择合适的焊接方法3.2防止应力集中3.2.1减小焊接接头尺寸3.2.2添加过渡部分3.3塑性设计原则3.3.1合理确定焊接接头形状3.3.2控制焊接接头变形四、焊接设备和工具选择4.1焊接机型的选择4.2气体保护设备的选择4.3焊接工具的选择五、未来发展趋势5.1激光焊接技术5.2自动化焊接技术5.3金属间化合物焊接技术总结:铝合金焊接技术作为一项重要的技术,在现代工业中有着广泛的应用。
本文对铝合金焊接技术的焊接方法、焊接参数的选择、焊接缺陷的分析与预防、焊接接头设计原则以及焊接设备和工具选择进行了详细的阐述,并提出了未来的发展趋势。
通过深入了解和掌握这些内容,铝合金焊接技术可以得到更好地应用和发展。
引言概述:铝合金具有重量轻、强度高、耐腐蚀性好等优点,被广泛应用于航空航天、汽车制造、建筑工程等领域。
而铝合金的焊接技术则成为该材料加工中的重要环节。
本文将探讨铝合金焊接技术的关键点,包括选择合适的焊接方法、材料准备、焊接参数控制、焊后处理等方面,以帮助读者更好地理解和应用此技术。