(1)根据散点图,可以看出两个变量是否呈线性关系.
∧
∧
∧
(2)线性回归方程 Y= + bX 中的只能为正实数.
∧
∧
( √ )
( × )
(3)回归直线 Y= + X 一定过实际观测值(xi,yi)的中心点(, ).
( √ )
(4)任意一组成对数据(xi,yi)都能用直线拟合.
( × )
合作探究 释疑解惑
∧
= − =4-0.7×9=-2.3,
故Y关于X的线性回归方程为Y=-2.3+0.7X.
(2)由Y=-2.3+0.7X知,当X=9时,Y=-2.3+0.7×9=4,故预测当学生的记忆力为
9时,判断力为4.
1.本例条件不变,如果某学生的判断力为4,请预测该学生的记忆力是多少.
解:由Y=-2.3+0.7X知,当Y=4时,由4=-2.3+0.7X,解得X=9.
探究一
直线拟合的判断
【例1】观察两个变量得如表7-1-2所示数据:
表7-1-2
x
-1
-2
-3
-4
-5
5
4
3
2
1
y
-9
-7
-5
-3
-1
1
5
3
7
9
画出散点图,判断它们是否能用直线拟合.
分析:可设x为自变量,y为因变量,作出散点图直接判断.
解:由数据可得相应的散点图如答图7-1-2:
答图7-1-2
由散点图可知,所有点不在一条直线附近,故不能用直线拟合.
X
0
1
Y
1
3
∧
C.(2,5) D.(2.5,5)