26.2特殊二次函数的图像
- 格式:ppt
- 大小:783.00 KB
- 文档页数:14
沪教版数学九年级上学期一课一练、单元测试卷和参考答案目录第二十四章相似三角形24.1放缩与相似形(1) 3 24.2 比例线段(1) 6 24.3三角形一边的平行线第一课时(1) 10 24.3三角形一边的平行线第二课时(1) 14 24.3三角形一边的平行线第三课时(1) 19 24.3三角形一边的平行线第四课时(1) 22 24.4相似三角形的判定第一课时(1) 25 24.4相似三角形的判定第二课时(1) 29 24.4相似三角形的判定第三课时(1) 33 24.4相似三角形的判定第四课时(1) 37 24.5相似三角形的性质第一课时(1) 43 24.5相似三角形的性质第二课时(1) 47 24.5相似三角形的性质第三课时(1) 52 24.6实数与向量相乘第一课时(1) 57 24.7向量的线性运算第一课时(1) 62 九年级(上)数学第二十四章相似三角形单元测试卷一 67 第二十五章锐角三角比25.1锐角三角比的意义(1) 72 25.2求锐角的三角比的值(1) 75 25.3 解直角三角形(1) 7925.4 解直角三角形的应用(1) 84 九年级(上)数学第二十五章锐角的三角比单元测试卷一 90 第二十六章二次函数26.1 二次函数的概念(1) 9426.2 特殊二次函数的图像第一课时(1) 98 26.2 特殊二次函数的图像第二课时(1) 102 26.2 特殊二次函数的图像第三课时(1) 106 26.3二次函数y=ax2+bx+c的图像第一课时(1) 111 26.3二次函数y=ax2+bx+c的图像第二课时(1) 116 26.3二次函数y=ax2+bx+c的图像第三课时(1) 121 九年级(上)数学第二十六章二次函数单元测试卷一 126 参考答案 132数学九年级上第二十四章相似三角形24.1放缩与相似形(1)一、选择题1下列各组图形中一定是相似三角形的是()A. 两个等腰三角形B. 两个直角三角形C. 一个角为30 的等腰三角形D. 两个等边三角形2下列各组图形中一定是相似多边形的是()A. 两个平行四边形B. 两个正方形C. 两个矩形D. 两个菱形3某两地的实际距离为3000米,画在地图上的距离是15厘米,则在地图上的距离与实际的距离之比是()A 1:200B 1:2000C 1:20 000D 1:200 0004. 下列不一定是相似形的是()A. 边数相同的正多边形B. 两个等腰直角三角形C. 两个圆D. 两个等腰三角形5. 下列给出的图形中,是相似形的是()A. 三角板的、外三角形B. 两孪生兄弟的照片C. 行书中的“中”楷书中的“中”D. 同一棵树上摘下的两片树叶6. 下列各组图形中,一定是相似多边形的是()A. 两个直角三角形B. 两个平行四边形C. 两个矩形D. 两个等边三角形7下列图形中,相似的有()①放大镜下的图片与原来图片;②幻灯的底片与投影在屏幕上的图像③天空中两朵白云的照片④用同一底片洗出的两大小不同的照片A. 4组B. 3组C. 2组D. 1组8. 对一个图形进行放缩时,下列说确的是()A. 图形中线段的长度与角的大小都保持不变B. 图形中线段的长度与角的大小都会改变C. 图形中线段的长度保持不变,角的大小可以改变D. 图形中线段的长度可以改变,角的大小都保持不变二、填空题9. ABC ∆与'''A B C ∆相似,则它们的对应角,对应边。
第二节 二次函数的图像§26.2特殊的二次函数图像教学目标(1)知道二次函数2y ax =的图像是抛物线,会用描点法画出图像。
(2)经历观察、分析和回归抛物线2y ax =的特征的过程,掌握二次函数2y ax =的直观性质。
(3)经历建立二次函数22()y ax c y a x m =+=+、的图像与2y ax =的图像之间联系的过程,知道由抛物线2y ax =得到抛物线22()y ax c y a x m =+=+、的平移方法;掌握二次函数2y ax c =+、 2()y a x m =+的直观性质,体会图形运动的运用。
(4)在运用图形研究二次函数直观性质的过程中,领会数形结合的思想方法,提高观察、分析、归纳和概括的能力。
教学重点研究特殊形式的二次函数2y ax =、2y ax c =+和2()y a x m =+的图像,并归纳出图像的特征.知识概要1.二次函数2y x =的图像是一条曲线,分别向左上方和右上方无限伸展,它属于一类特殊的曲线,这类曲线称为抛物线。
二次函数2y x =的图像就称为抛物线2y x =。
2.抛物线2y x =的开口方向向上;它是轴对称图形,对称轴是y 轴,即直线0x =。
抛物线2y x =与y 轴的交点是原点O ;除这个交点外,抛物线上的所有点都在x 轴上方,这个交点是抛物线的最低点。
抛物线与它的对称轴的交点叫做抛物线的顶点。
抛物线2y x =的顶点是原点(0,0)O 。
3.分别在2y x =-与2y x =的图像上且横坐标相同的任意两点,它们的纵坐标互为相反数,可知两个图像关于x 轴对称。
可利用它们的对称性,由其中一个函数的图像画另一个函数的图像。
4.一般地,二次函数2y ax =(其中a 是常数,且0a ≠)的图像是抛物线,称为抛物线2y ax =。
这时,2y ax =是这条抛物线的表达式。
抛物线2y ax =(其中a 是常数,且0a ≠)的对称轴是y 轴,即直线0x =;顶点是原点,抛物线的开口方向由a 所取值的符合决定,当0a >时,它的开口向上,顶点是抛物线的最低点;当0a <时,它的开口向下,顶点是抛物线的最高点。
26.3 二次函数2y ax bx c =++的图像(1)一、填空题:1.二次函数4)2(22-+-=x y 的图像的开口 ,对称轴是直线 ,顶 点坐标是 .2.已知抛物线3)1(52+-=x y ,则这条抛物线的顶点坐标是 ,开口 ,对称轴是直线 ,顶点是抛物线的最 点.3.将二次函数2)1(22--=x y 的图像向上平移5个单位,得到的函数解析式是 .4.抛物线2)5(212-+-=x y 可以通过将抛物线221x y -=向 平移 个单位,再向 平移 个单位得到.5.二次函数522-=x y 的图像的对称轴是 ,当它的图像向右平移3个单位时,此时函数的解析式是 。
6.如果抛物线和抛物线23y x =-的形状相同,当它的顶点是(1,-2)时,它的函数解析式是 。
二、选择题:7. 若抛物线y =a (x +m )2+k 的顶点在第二象限,则点(m ,k )在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 把二次函数y =3x 2的图像向左平移2个单位,再向上平移1个单位,所得到的图像对应的二次函数关系式是( )A. y =3(x -2)2+1B. y =3(x +2)2-1C. y =3(x -2)2-1D. y =3(x +2)2+1 三、简答题:9. 指出下列函数的开口方向,对称轴和顶点坐标.(1)y =34(x -2)2+3 (2)y =-2(x +1)2+3(3)y =5-(x -1)2 (4)y =2(x +1)2-210. 已知函数y=(m-3)xm2-7-3是二次函数.(1)求m的值;(2)先求该函数的解析式,并指出该抛物线的开口方向,对称轴和顶点坐标.11.将抛物线C1∶y=(x-1)2+3先向左平移1个单位,再向下平移3个单位,得到抛物线C2,C1与C2的交点为A,C1、C2的顶点分别为点B和点C,求△ABC的面积.26.2 二次函数2y ax bx c =++的图像(2)一、填空题:1. 一个二次函数的图像顶点坐标为(2,1),形状与抛物线y =-2x 2相同,开口一致,这个函数解析式为 .2. 如果抛物线y =mx 2+m +2顶点是坐标原点,那么m = ,且抛物线的开口________,顶点坐标为____________.3. 将抛物线y =23(x -2)2+1先向下平移3个单位,再向左平移4个单位,那么平移后的顶点坐标是______________.4. 抛物线y =2x 2-5x -3与y 轴交点坐标是__________.5. 抛物线y =(m -3)(x +m )2+m +2的对称轴是直线x =2,那么抛物线的解析式是__________.6.将抛物线y =2(x +1)2+3沿x 轴翻折,所得到的抛物线是__________. 二、选择题:7. 二次函数y =-3(x -2)2+6图像的开口方向、对称轴分别为( ) A. 开口向上,对称轴是直线x =-2 B. 开口向上,对称轴是直线x =2 C. 开口向下,对称轴是直线x =-2 D. 开口向下,对称轴是直线x =28.将抛物线231x y =先向上平移2个单位,再向右平移3个单位,得到的抛物线是( )A. 2)3(312++=x y B. 2)3(312--=x yC. 2)3(312-+=x yD. 2)3(312+-=x y三、简答题:9. 已知抛物线1)2(2++-=x y(1)指出它的开口方向,对称轴和顶点坐标;(2)在平面直角坐标系中画出这条抛物线解:(1)开口 ,对称轴是直线 ,顶点坐标是10. 将抛物线22x y -=平移,使顶点移到点N(-3,2)求所得新抛物线的表达式.11. 在同一直角坐标系内画出函数y =(x -1)2-2和y =(x +1)2+1的图像,并说明抛物线y =(x -1)2-2是如何由抛物线y =(x +1)2+1怎样移动得到的?四、拓展题:12. 已知:二次函数y =-(x -h )2+k 的图像的顶点P 在x 轴上,且它的图像经过点A (3,-1),与y 轴相交于点B ,一次函数y =ax +b 的图像经过点P 和点A ,并与y 轴的正半轴相交.求: (1)k 的值;(2)这个一次函数的解析式; (3)∠PBA 的正弦值.26.3 二次函数c bx ax y ++=2的图像(3)一、填空题:1. 当抛物线y =(m +1)x 2+3x +m 2-1的图像经过原点时,m 的值为__________.2. 抛物线y =x 2+x -2的顶点坐标是__________.3. 用配方法将下列二次函数解析式改写成y =a (x +m )2+k 的形式:(1)y =x 2-4x =______________.(2)y =x 2-4x +2=______________.(3)y =-13x 2-2x -5=______________.(4)y =12x 2+2x -2=______________.4. 二次函数y =(x -2)(x -3)图像的顶点坐标是__________.5. 抛物线y =2x 2-4x -2的对称轴是__________. 二、选择题:6. 把二次函数y =x 2-2x -1配方成为y =a (x +m )2+k 的形式为( )A. y =(x -1)2B. y =(x -1)2-2C. y =(x +1)2+1D. y =(x +1)2-27. 二次函数y =-x 2-3x +m 的图像顶点在x 轴上,则m 的取值为( )A. 94B. -94C. 0D. -32 8. 二次函数y =-x 2+2x +6取最大值时,自变量x 的值是( ) A. 2 B. -2 C. 1 D. -1 三、简答题:9. 用配方法把下列函数解析式改写成k m x a y ++=2)(的形式 (1)522+-=x x y (2)6422--=x x y(3)246x x y -+= (4)52312---=x x y10. 指出下列二次函数图像的开口方向,对称轴,顶点坐标(1)132--=x x y (2))32)(2(+-=x x y11. 已知抛物线m x x y +--=22的顶点在直线121-=x y 上,求m 的值。