7正交试验设计
- 格式:doc
- 大小:167.02 KB
- 文档页数:5
第7章-正交试验设计的极差分析第7章正交试验设计的极差分析正交试验设计和分析⽅法⼤致分为⼆种:⼀种是极差分析法(⼜称直观分析法),另⼀种是⽅差分析法(⼜称统计分析法)。
本章介绍极差分析法,它简单易懂,实⽤性强,在⼯农业⽣产中⼴泛应⽤。
7.1 单指标正交试验设计及其极差分析极差分析法简称R 法。
它包括计算和判断两个步骤,其内容如图7-1所⽰。
图7-1 R 法⽰意图图中,Kj m为第j列因素m ⽔平所对应的试验指标和,K jm 为Kjm 的平均值。
由K jm 的⼤⼩可以判断j因素的优⽔平和各因素的⽔平组合,即最优组合。
R j 为第j 列因素的极差,即第j 列因素各⽔平下平均指标值的最⼤值与最⼩值之差:R j =max(jm j j K K K ,,,21 )-min(jm j j K K K ,,,21 )R j 反映了第j列因素的⽔平变动时,试验指标的变动幅度。
R j 越⼤,说明该因素对试验指标的影响越⼤,因此也就越重要。
于是依据R j的⼤⼩,就可以判断因素的主次。
极差分析法的计算与判断,可直接在试验结果分析表上进⾏,现以例6-2来说明单指标正交试验结果的极差分析⽅法。
⼀、确定因素的优⽔平和最优⽔平组合例6-2 为提⾼⼭楂原料的利⽤率,某研究组研究了酶法液化⼯艺制造⼭楂精汁。
拟通过正交试验寻找酶法液化⼯艺的最佳⼯艺条件。
在例6-2中,不考虑因素间的交互作⽤(因例6-2是四因素三⽔平试验,故选⽤L9(34)正交表),表头设计如表6-5所⽰,试验⽅案则⽰于表6-6中。
试验结果的极差分析过程,如表7-1所⽰.表6-4 因素⽔平表表6-6 试验⽅案及结果试验指标为液化率,⽤y i 表⽰,列于表6-6和表7-1的最后⼀列。
表7-1 试验⽅案及结果分析计算⽰例:因素A 的第1⽔平A1所对应的试验指标之和及其平均值分别为:K A 1=y1+y 2+y3=0+17+24=41,=1A K 31K A1=13.7同理,对因素A的第2⽔平A2和第3⽔平A 3,有KA2=y4+y5+y 6=12+47+28=87,=2A K 31K A2=29 K A 3=y 7+y 8+y 9=1+18+42=61,=3A K 31K A3=20.3由表7-1或表6-6可以看出,考察因素A 进⾏的三组试验中(A1,A 2,A3),B 、C、D 各⽔平都只出现了⼀次,且由于B 、C 、D间⽆交互作⽤,所以B 、C 、D 因素的各⽔平的不同组合对试验指标⽆影响,因此,对A 1、A2和A 3来说,三组试验的试验条件是完全⼀样的。
正交试验设计方法讲义及举例正交试验设计方法是一种多因素试验设计方法,它能够有效地减少试验所需的样本数量,提高试验结果的精确性和可靠性。
正交试验设计方法是在已知因素水平的情况下选择对试验结果影响最大的因素进行研究的一种方法。
以下是正交试验设计方法的讲义及举例:一、正交试验设计方法的原理及步骤:1.原理:正交试验设计方法通过选择适当的正交表,将多个因素的不同水平组合进行排列,使各因素的变化对试验结果影响均匀化,从而获得准确可靠的试验结果。
2.步骤:a.确定试验因素及其水平:根据试验目的确定需要研究的因素及其水平。
b.选择正交表:根据试验因素的个数和水平确定适用的正交表,正交表能够保证试验结果的均匀性和可靠性。
c.设计试验方案:根据选择的正交表,将试验因素的水平进行组合,获得试验方案。
d.进行试验:按照试验方案进行实际试验。
e.分析试验结果:对试验结果进行统计分析,获得对试验因素的影响程度及其交互作用等信息。
f.微调试验方案:根据试验结果微调试验方案,迭代优化试验过程。
二、正交试验设计方法的优点:1.降低样本数量:正交试验设计方法能够通过对试验水平的排列组合,使试验因素的水平均匀分布,从而减少试验所需的样本数量。
2.提高试验效率:正交试验设计方法能够在有限样本量下获得更多的试验信息,提高试验效率。
3.确保结果可靠:正交试验设计方法通过保证试验因素的均匀分布,减少人为因素的干扰,从而保证试验结果的可靠性和准确性。
4.揭示因素交互作用:正交试验设计方法能够揭示因素之间的交互作用,进一步优化设计过程。
三、正交试验设计方法的举例:例如,公司要研究一种新的洗发水对头发柔顺度的影响,试验主要包括3个因素:洗发水品牌(A、B、C)、洗发水用量(X、Y、Z)和洗发水停留时间(T1、T2、T3)。
根据正交试验设计方法,按照以下步骤进行设计:1.选择正交表:根据3个因素和各因素的水平,选择适用的正交表,如L9正交表。
2.设计试验方案:根据L9正交表,将3个因素的水平进行组合,得到9个试验方案,每个方案分别测试一种组合情况。
第7章正交试验设计的极差分析正交试验设计和分析方法大致分为二种:一种是极差分析法(又称直观分析法),另一种是方差分析法(又称统计分析法)。
本章介绍极差分析法,它简单易懂,实用性强,在工农业生产中广泛应用。
7.1单指标正交试验设计及其极差分析极差分析法简称R法。
它包括计算和判断两个步骤,其内容如图7-1所示。
图7-1 R法示意图图中,K m为第j列因素m水平所对应的试验指标和,K jm为K m的平均值。
由K m 的大小可以判断j因素的优水平和各因素的水平组合,即最优组合。
R为第j 列因素的极差,即第j列因素各水平下平均指标值的最大值与最小值之差:R二max(心,耳,,爲)-min(心,兀,,爲)R反映了第j列因素的水平变动时,试验指标的变动幅度。
R越大,说明该因素对试验指标的影响越大,因此也就越重要。
于是依据R j的大小,就可以判断因素的主次。
极差分析法的计算与判断,可直接在试验结果分析表上进行,现以例6 - 2来说明单指标正交试验结果的极差分析方法。
一、确定因素的优水平和最优水平组合例6-2为提高山楂原料的利用率,某研究组研究了酶法液化工艺制造山楂精汁。
拟通过正交试验寻找酶法液化工艺的最佳工艺条件。
在例6 -2中,不考虑因素间的交互作用(因例6 - 2是四因素三水平试验,故选用L9(34)正交表),表头设计如表6 - 5所示,试验方案则示于表6 - 6中。
试验结果的极差分析过程,如表7 - 1所示.表6-4 因素水平表表6-6 试验方案及结果试验指标为液化率,用y表示,列于表6 - 6和表7 - 1的最后一一表7-1试验方案及结果分析计算示例:因素A的第1水平A i所对应的试验指标之和及其平均值分别为:1K\i=y i+y2+y3=0+17+24=41, K AI = — K Ai=13.73同理,对因素A的第2水平A和第3水平A,有1K A2=y4+y5+y6=12+47+28=87 K A2=-K A2=2931K A3=y7+y8+y9=1 + 18+42=61 , K A3K A3=20.33由表7 - 1或表6 - 6可以看出,考察因素A进行的三组试验中(A,A2,A3), B、C D各水平都只出现了一次,且由于B C、D间无交互作用,所以B、C D因素的各水平的不同组合对试验指标无影响,因此,对A、A和A来说,三组试验的试验条件是完全一样的。
正交试验设计方法详细步骤正交试验设计方法(Orthogonal experimental design)是一种常用的实验设计方法。
它通过对各因素进行全面的、系统的、经济的检测和试验,确定各因素对结果的影响程度,并找出最优的因素组合,以达到降低产品变异性、提高产品质量和生产效率的目的。
本文将详细介绍正交试验设计方法的步骤。
一、确定试验因素和水平在进行正交试验设计之前,首先需要确定试验因素及其各水平。
试验因素是影响实验结果的各个变量,例如温度、压力、时间等。
每个试验因素可以有多个水平,比如低水平和高水平。
在确定试验因素和水平时,需要考虑实际情况和试验的目的。
二、确定正交表确定试验因素和水平后,需要选择合适的正交表来设计试验。
正交表是用于安排试验的一种工具,可以保证各个试验因素在设计中被充分考虑。
常用的正交表有L9、L12、L16等。
选择正交表时需要考虑试验因素的数量和水平个数,以及实验所能容忍的误差。
三、设计试验方案设计试验方案时,需要根据所选正交表,将试验因素和水平组合起来,形成实验方案。
确保每个水平都得到了充分的考虑和试验。
在设计试验方案时,需注意避免水平间的过大差异,以防止试验结果受到干预。
四、进行实验根据设计好的试验方案,开始进行实验。
在实验过程中,需要准确记录每个因素水平对应的结果数据,以便后续分析和处理。
五、数据分析和处理实验数据收集完毕后,需要对数据进行分析和处理。
常用的数据分析方法包括方差分析、回归分析等。
通过数据分析,可以得到各个因素对结果的影响程度,找出主要影响因素,并确定最优的因素组合。
六、优化因素组合根据数据分析结果,可以进一步优化试验因素的组合。
通过确定最优的因素组合,可以提高产品的质量和效率,降低产品的变异性。
七、验证实验结果在优化因素组合之后,需要进行验证实验,以验证优化结果的有效性和可行性。
验证实验的目的是确保所得到的最优组合在不同条件下仍然有效。
八、总结和应用最后,根据实验结果和验证结果,总结正交试验设计的步骤和方法,并将其应用到实际生产和工程中。
4因素7水平正交试验设计1. 简介4因素7水平正交试验设计是一种统计方法,用于确定多个因素对试验结果的影响。
通过正交设计,我们可以在较少的试验次数下获得全面的数据,从而有效地进行因素分析和优化。
2. 正交设计原理正交设计的核心原理是通过减少试验次数,同时保证各个因素之间的独立性,来获取全面的数据。
正交设计通过选择合适的水平组合,使得各个因素对试验结果的影响都能得到准确的评估。
3. 4因素7水平正交试验设计的步骤3.1 确定试验因素:首先确定需要研究的因素,并确定每个因素的水平数。
3.2 构建正交表格:根据试验因素和水平数,构建正交表格,保证各个因素之间的独立性。
3.3 进行试验数据采集:根据正交表格的设计,进行试验数据的采集。
每个试验对应一组水平组合。
3.4 分析试验结果:通过分析试验结果,评估各个因素对试验结果的影响,并确定最优的水平组合。
4. 应用范围和优势4因素7水平正交试验设计可广泛应用于工程、科学和营销等各个领域。
它的主要优势包括:- 较少的试验次数:相比于传统试验设计,正交设计能够在较少的试验次数下得到全面的数据,节省时间和资源。
- 独立性保证:正交设计能够保证各个因素之间的独立性,准确评估每个因素对试验结果的影响。
- 可解释性强:通过正交设计,我们可以清晰地了解每个因素的作用,从而做出准确的决策和优化。
- 可迭代性强:正交设计可根据试验结果进行迭代,不断优化水平组合,实现更好的试验效果。
5. 总结4因素7水平正交试验设计是一种有效的统计方法,能够在较少的试验次数下获得全面的数据,并评估各个因素对试验结果的影响。
通过正交设计,我们可以做出准确的决策和优化,应用范围广泛,具有较强的可解释性和可迭代性。
正交实验设计当析因设计要求的实验次数太多时,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验。
因此就出现了分式析因设计(fractional factorial designs),但是对于试验设计知识较少的实际工作者来说,选择适当的分式析因设计还是比较困难的。
正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。
是一种高效率、快速、经济的实验设计方法。
日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。
例如作一个三因素三水平的实验,按全面实验要求,须进行33=27种组合的实验,且尚未考虑每一组合的重复数。
若按L9(3)3正交表按排实验,只需作9次,按L18(3)7正交表进行18次实验,显然大大减少了工作量。
因而正交实验设计在很多领域的研究中已经得到广泛应用。
1.正交表正交表是一整套规则的设计表格,用。
L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。
例如L9(34),(表11),它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。
一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(4×24) (表12),此表的5列中,有1列为4水平,4列为2水平。
根据正交表的数据结构看出,正交表是一个n行c列的表,其中第j列由数码1,2,… S j组成,这些数码均各出现N/S次,例如表11中,第二列的数码个数为3,S=3 ,即由1、2、3组成,各数码均出现次。
正交表具有以下两项性质:(1)每一列中,不同的数字出现的次数相等。
例如在两水平正交表中,任何一列都有数码“1”与“2”,且任何一列中它们出现的次数是相等的;如在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的出现数均相等。
正交试验设计的基本程序和步骤1、前言正交试验设计(Orthogonal experimental design,OED)是一种重要的统计学方法,它可以有效地降低试验次数和成本,并且在较短时间内获得较为全面的试验结果。
在实际的工程应用中,正交试验设计被广泛地应用于产品设计、工艺优化、性能分析等方面。
在本文中,将分析正交试验设计的基本程序和步骤,以便读者更好地了解和应用它。
2、正交试验设计的基本概念和目的正交试验设计是一种实验设计方法,它的核心思想是在尽量少的试验次数内,获得尽量全面的试验结果。
正交试验设计的目的是确定试验因素对试验结果的影响关系,以便在最短的时间内找到最优的试验方案。
在正交试验设计中,试验因素是指影响试验结果的因素,它包括五个要素,即A(B)、B(C)、C(A)、D(E)、E(D),其中ABC是三因素正交设计,DE是两因素正交设计。
试验因素水平是指了试验因素的取值,例如低水平(-1)和高水平(1)。
3、正交试验设计的基本步骤(1)确定试验因素和水平在正交试验设计中,首先需要明确试验的主要因素,以及试验因素的水平。
在实际的试验中,因素的数量和水平的设置应该根据具体试验问题来确定,同时,要注意试验因素个数的控制,以避免试验运行过多。
(2)构建试验方案矩阵试验方案矩阵是正交设计的核心,它是一种特殊的矩阵,将试验因素和水平按照一定的规则排列组合。
在构建试验方案矩阵时,需要考虑多个因素对试验结果的影响,以避免试验设计的偏差。
(3)实施试验方案并收集数据在实际的试验中,需要根据试验方案进行试验并收集数据。
在试验过程中要注意严格的试验控制和数据收集,以避免实验结果的不准确性。
(4)数据分析数据分析是正交试验设计的关键步骤,通过数据分析可以确定试验因素的影响关系,并找到最优的试验方案。
数据分析的过程一般包括方差分析、回归分析等统计学方法。
(5)确定优化方案根据数据分析结果,确定试验因素的优化方案,找到最优的试验方案。
正交试验设计及分析(多实现途径)引言概述:正交试验设计是一种重要的统计方法,用于确定实验中不同因素对结果的影响。
它可以帮助研究者系统地设计实验,降低实验数量和成本,并提供可靠的分析结果。
本文将介绍正交试验设计的概念、原理,以及多种实现途径,以便读者根据自身需求选择合适的方法进行实验。
正文内容:1.正交试验设计的概念和原理:1.1定义:正交试验设计是一种通过系统地变动因素水平来确定因素对结果的影响的方法。
它将多个因素分解为一些离散的水平,以便在有限实验中进行测试。
1.2原理:正交试验设计基于正交矩阵的原理,该矩阵具有特定的数学性质,可以保证不同因素之间的相互独立性,从而减少实验数量。
2.正交试验设计的多实现途径:2.1Taguchi方法:Taguchi方法是一种常用的正交试验设计方法,它通过选择最优的因素水平组合来优化结果的表现。
它能够在较少的实验次数下找到最佳的因素配置。
2.2BoxBehnken设计:BoxBehnken设计是一种常用的三水平正交试验设计方法,适用于3个或更多个因素的试验。
它通过正交矩阵将因素水平组合成三水平,并通过优化方法确定最佳结果。
2.3中心组合设计:中心组合设计是一种将中心点设置为固定因素水平的正交试验设计方法。
该设计方法可以估计因素对结果的线性和二次的影响,适用于连续和离散因素。
2.4贝叶斯优化设计:贝叶斯优化设计是一种基于贝叶斯统计模型的正交试验设计方法。
它能够在先验知识不完全或验证数据有限的情况下,利用概率推论来确定最佳因素配置。
3.正交试验设计的分析方法:3.1方差分析:方差分析是一种常用的正交试验设计分析方法,用于确定各个因素之间的显著性差异。
它通过计算方差的比值来判断因素对结果的影响程度。
3.2回归分析:回归分析是一种统计方法,用于描述和预测因变量与一个或多个自变量之间的关系。
在正交试验设计中,回归分析可以用来确定因素对结果的线性和非线性影响。
3.3主效应图:主效应图是一种简明直观的分析方法,通过图形展示各个因素对结果的平均水平差异。
第7章-正交试验设计的极差分析汇总第7章正交试验设计的极差分析正交试验设计和分析方法大致分为二种:一种是极差分析法(又称直观分析法),另一种是方差分析法(又称统计分析法)。
本章介绍极差分析法,它简单易懂,实用性强,在工农业生产中广泛应用。
7.1单指标正交试验设计及其极差分析极差分析法简称R法。
它包括计算和判断两个步骤,其内容如图7-1所示。
图中,K m为第j列因素m水平所对应的试验指标和,K jm为K m的平均值。
由K m的大小可以判断j因素的优水平和各因素的水平组合,即最优组合。
R为第j列因素的极差,即第j列因素各水平下平均指标值的最大值与最小值之差:R j=max(K~i,K~2, ,K jm)-min(心,兀,,K~)R反映了第j列因素的水平变动时,试验指标的变动幅度。
R 越大,说明该因素对试验指标的影响越大,因此也就越重要。
于是依据R j的大小,就可以判断因素的主次极差分析法的计算与判断,可直接在试验结果分析表上进行,现以例6 - 2来说明单指标正交试验结果的极差分析方法。
一、确定因素的优水平和最优水平组合例6-2为提高山楂原料的利用率,某研究组研究了酶法液化工艺制造山楂精汁。
拟通过正交试验寻找酶法液化工艺的最佳工艺条件。
在例6 -2中,不考虑因素间的交互作用(因例6 - 2是四因素三水平试验,故选用L9(34)正交表),表头设计如表6 - 5所示,试验方案则示于表6 - 6中。
试验结果的极差分析过程,如表7 - 1所示.表6-4 因素水平表表6-6 试验方案及结果试验指标为液化率,用y i表示,列于表6 - 6和表7 - 1的最后一一计算示例:因素A的第1水平A i所对应的试验指标之和及其平均值分别为:K AI二y i+y2+y3=0+17+24=41, K A1同理,对因素A的第2水平A和第3水平A,有-K AI=13.7 31K A2=y4+y5+y6=12+47+28=87 K A2 K A2=2931K A3=y7+y8+y9=1 + 18+42=61 , K A3K A3=20.33由表7 - 1或表6 - 6可以看出,考察因素A进行的三组试验中(A,A2,A3),B、C D各水平都只出现了一次,且由于B、C D间无交互作用,所以B、C D因素的各水平的不同组合对试验指标无影响,因此,对A、A2和A s来说,三组试验的试验条件是完全一样的。
正交试验设计
1正交试验的引入
在实际的生产实践当中,由于需要考虑的因素(对结果产生影响的变量)通常比较多,同时,每个因素的水平个数(每个变量的可取值个数)也不止一两个。
如果对每个因素的每个水平交互搭配全部进行试验,例如:对于5因素4水平的
实验,全部次数为:541024
,需要用相当长的时间进行统计分析计算,同时耗费了大量的人力物力。
而如果采用正交试验设计,试验的次数将大大减少,同时对统计结果的分析也变得简单。
正交试验设计是利用正交表科学的安排与分析多因素试验的方法,是最常用的试验设计之一。
2正交表的分类及优势
正交表分为:等水平正交表和混合水平正交表。
等水平代表各因素所取的水平数相同,混合水平表示各因素的水平数不一定相同。
正交表的优点:(1)能够在所有方案中均匀的选出具有代表性的方案;
(2)通过对少数试验的分析,可以推得较优的方案,并且较优方案往往不包含在少数进行试验了的方案中。
(3)通过对结果分析,可以得到更多有用的信息。
包括各因素的重要性等。
3正交试验设计的步骤
总的来说包括两部分:一是试验设计,二是数据处理。
归纳为:
(1)明确试验目的,确定评价指标;
(2)挑选因素,确定水平;
(3)选正交表,进行表头设计:一般要求为因素数≤正交表列数
(4)明确试验方案,进行试验得到结果;
(5)对结果进行统计分析:采用直观分析法或方差分析法,得到因素的主词以及优方案等信息;
(6)进行验证试验,做进一步的分析。
4有交互作用的正交试验设计
在许多试验中,不仅要考虑各个因素对试验指标起作用,还有考虑因素间的交互作用对试验解结果的影响。
在这种正交试验的设计当中,要把交互作用也作为因素考虑进去。
可以查对应的正交表来进行表头设计。
5举例
下面通过举例来说明如何设计正交表以及对用不同的方法对试验结果进行分析。
例1(三水平三因素正交表设计以及直观分析法)以下试验考虑的两个指标全部是越大越好,试验因素和水平如下表,试推出两项指标都高的试验方案。
解:可选用正交表49(3)L 来安排试验
级差R 0.59 0.55 0.59 1.86
因素主次 CAB 优方案
131C A B
符号说明:
i K :表示人一类上水平号为i 是所对应的试验结果之和;
级差R :表示在任一列上K 的最大值与最小值之差;级差越大,说明对结果影响越大,那么这个因素越重要。
在此题的求解中,首先要把不同的指标进行无量纲化处理,这里转化为它们的隶属度,计算方法如下:
指标值-指标最小值
指标隶属度=
指标最大值-指标最小值
在此题中,取代度和脂化率的权重分别取0.4和0.6,对各指标的加权和作为综合分数。
对结果进行直观分析,可以得到最优方案为:131C A B 。
同时对结果进行一次验证试验,从而确定真正最好的试验方案。
方差分析法的基本步骤与格式如下:
(1) 计算离差平方和(包括总离差平方和T SS ,各因素的离差平方和j SS ,
试验误差的离差平方和e SS ,交互作用的离差平方和A B SS ⨯)
(2) 计算自由度:
总平方和的总自由度:
df 1n 1T =-=-总试验次数
各因素离差平方和对应的自由度:
df 1r 1j =-=-因素水平数
两因素交互作用的自由度等于两因素自由度之积。
误差自由度:e df df =∑空列
(3) 计算平均离差平方和(均方) SS MS df
=
(4) 计算F 值
将各因素或交互作用的均方除以误差的均方,得到F 值,例如:
A
A e
MS F MS =
(5) 显著性检验 例2(二水平正交试验的方差分析)某厂采用化学吸收法用填料塔吸收废气中的2SO ,通过正交试验进行探索,因素与水平如下表:
需要考虑交互作用,A B B C ⨯⨯。
将A ,B ,C 放入正交表78(2)L 的1,2,4列,即通过已知,试对方差进行分析。
2
2
11
,,n
n
i i
i i T T y Q y P n =====∑∑
(2)计算离差平方和:
总离差平方和:448.875T SS Q P =-= 由公式:2121
()j SS K K n
=
-解的结果如上表所示。
误差平方和:5727.25e SS SS SS =+= (3)计算自由度
df n 1=7T =- df r 1=1=df j =-交互
e d
f df 2==∑空列
(4)计算均方
由于各因素和交互作用的自由度为1,所以均方与各自离差平方和相同。
A j MS SS =
误差的均方为e
e e
SS MS df =
=13.625 如果某个因素的均方小于误差的均方,那就称此因素为次要因素,归为误差项,重新计算新的误差:
新误差平方和:36.5e e A C SS SS SS SS ∆=++= 新误差自由度:4e e A C df df df df ∆=++= 新误差均方:e e e SS MS df ∆∆∆
==9.125
(5)计算F 值
14.92e
B
B MS F MS ∆
=
=
18.75e A B
A B MS F MS ⨯⨯∆
=
= 11.52e
B C
B C MS F MS ⨯⨯∆
=
= (6) F 检验
查表有:0.050.01(1,4)7.71,(1,4)21.20F F ==,可见,对于给定水平0.05α=,因素B 及AB 交互项,BC 交互项对试验结果又显著影响。
(7)优方案的确定
交互作用对试验指标有显著影响,所以因素A ,B ,C 优水平的确定要依据A ,
由于指标为低优指标,所以确定A ,B 的搭配为:12A B 同理,可以确定B ,C 的搭配为:22B C 。
所以最优方案为:122A B C ,即碱浓度为5%,操作温度为20度,填料选择为乙。