北京龙文环球教育科技有限公司扬州分公司八年级数学上册《一次函数》教学案 北师大版
- 格式:doc
- 大小:510.00 KB
- 文档页数:7
北师版初二上册第四章一次函数的图象教案教学目的知识与技艺:1.经过详细操作,感受正比例函数的图象是一条直线.2.学会选择特殊的点,正确地画出正比例函数的图象.3.了解正比例函数图象的性质.进程与方法:阅历正比例函数图象画法的探求进程,体会数形结合的数学思想,开展笼统概括才干.情感态度与价值观:体会数学与人类社会的亲密联络,增强学好数学的决计.教学重难点【重点】了解正比例函数的图象是一条直线并会画正比例函数的图象.【难点】画正比例函数的图象选点的技巧,正比例函数图象的性质.教学预备【教员预备】教材例1投影图片.【先生预备】直尺.教学进程一、导入新课导入一:A,B两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如下图,你知道A,B两人所跑的路程s(米)与时间t(秒)之间属于哪种函数关系吗?经过这节课的学习,同窗们一定会有所了解.导入二:如下图的图象描画了某一天小亮从家骑车去书店购书,然后又骑车回家的状况,你能说出小亮在路上的情形吗?二、新知构建〔1〕、函数图象的概念把一个函数自变量的每一个值与对应的函数值区分作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,一切这些点组成的图形叫做该函数的图象.[设计意图]依据本节课的特点,要研讨一次函数的图象及其性质,必需首先让先生知道什么是函数的图象.〔2〕、画正比例函数的图象思绪一:(教材例1)画出正比例函数y=2x的图象.解:列表:x…-2 -1 0 1 2 …y…-4 -2 0 2 4 …描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次衔接起来,失掉y=2x的图象(如下图),它是一条直线.思绪二:某地1千瓦时电费为0.8元,表示电费y(元)与所用电量x(千瓦时)之间的函数关系式是,你能画出这个函数的图象吗?〔解析〕(1)确定自变量的取值范围.依据题意可知y=0.8x,这是个实践效果,自变量的取值要使实践效果有意义,所以x≥0.(2)列表.取自变量x的一些值,算出相应的函数值,列成表格如下:x0 1 2 3 4 5 …y0 0.8 1.6 2.4 3.2 4 …(3)描点.树立平面直角坐标系,以x的取值为横坐标,相应的函数值为纵坐标,描出点O,A,B,C,D,E,…,如下图.(4)连线.观察描出的这几个点,它们的位置关系是怎样的?先生观察这些点会失掉这些点在一条直线上,由于自变量的取值范围是x≥0,因此我们猜想这个函数的图象是以原点为端点的一条射线,数学上曾经证明这个猜想是正确的,于是这个函数的图象如以下图所示.【归结】相似地,数学上曾经证明:正比例函数y=kx(k为常数,k ≠0)的图象是一条直线,由于两点确定一条直线,因此画正比例函数的图象,只需描出图象上的两个点,然后过这两点作一条直线就行了,我们经常把这条直线叫做〝直线y=kx〞.留意:由于两点可以确定一条直线,因此,画正比例函数的图象时只需过原点(0,0)和点(1,k)画一条直线即可.〔3〕、正比例函数的性质先生画出图象后,引导先生剖析:正比例函数y=kx(k≠0)的图象是一条经过的直线,我们称它为直线y=kx.当k>0时,经过第象限,从左往右升,即y随x增大而;当k<0时,经过第象限,从左往右降,即y随x增大而.[知识拓展]函数的图象可以是直线,也可以是曲线,描点时,所描出的点越多,图象越准确,有时不能把一切的点都描出,就用平滑的曲线衔接描出的点,从而失掉函数的近似图象.函数的图象是由函数的表达式决议的,因此函数的表达式与图象之间有一种对应关系.三、课堂总结1.正比例函数y=kx(k≠0)的图象是经过原点的一条直线.通常画正比例函数y=kx(k≠0)的图象时,只取一点(1,k),然后过原点和这一点画直线即可.2.正比例函数y=kx(k≠0)的性质.k的取值k<0 k>0图象图象特征过点(0,0)和(1,k)的直线变化规律y随x的增大而减小y随x的增大而增大四、课堂练习1.正比例函数的图象是一条过的直线.答案:原点2.正比例函数y=kx(k为常数,k≠0).当k>0时,直线过第象限,从左向右,y随x的增大而;当k<0时,直线过第象限,从左向右,y随x的增大而.答案:一、三上升增大二、四下降减小3.如下图,射线l甲,l乙区分表示甲、乙两名运发动在自行车竞赛中所行路程s(米)与时间t(分)的函数图象.那么他们行进的速度关系是 ()A.甲、乙同速B.甲比乙快C.乙比甲快D.无法确定解析:由于s=vt,所以同一时辰,s越大,v越大,图象表现为越峻峭.应选B.4.关于函数y=-x,以下说法中正确的选项是()A.函数图象经过点(1,5)B.函数图象经过第一、三象限C.y随x的增大而减小D.不论x取何值,总有y<0解析:函数y=-x,由于自变量的系数小于0,所以它的图象经过第二、四象限,y随x的增大而减小.应选C.5.画出函数y=-2x的图象.解:如下图.五、板书设计4.3一次函数的图象1.函数图象的概念.2.画正比例函数的图象.3.正比例函数的性质.六、布置作业〔1〕、教材作业【必做题】教材习题4.3第1,2题.【选做题】教材习题4.3第5题.〔2〕、课后作业【基础稳固】1.假定正比例函数y=kx的图象经过第一、三象限,那么k的取值范围是()A.k>0B.k<0C.k≥0D.k≤02.以下各点在正比例函数y=2x的图象上的是()A.(2,1)B.(1,2)C.(-1,2)D.(1,-2)3.关于函数y=k2x(k是常数,k≠0)的图象,以下说法不正确的选项是( )A.是一条直线B.过点C.经过第一、三象限或第二、四象限D.y随着x的增大而增大4.正比例函数y=(2m+2)x中,y随x的增大而减小,那么m的取值范围()A.m>-1B.m<-1C.m=-1D.m<15.物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒)的关系如下图,那么下滑2秒时物体的速度为.6.写出同时具有以下两个条件的一次函数表达式:(写出一个即可).(1)y随着x的增大而减小; (2)图象经过点(0,0).7.写出一个y随x的增大而增大的正比例函数的解析式:. 【才干提升】8.画出函数y=3x的图象.【拓展探求】9.甲车从A地动身匀速驶往B地,同时乙车从B地动身匀速驶往A地.以下图表示甲、乙两车在全程行驶的进程中,离各自动身地的路程y(千米)与动身时间x(时)的函数图象.(1)求A,B两地距离及甲车的速度;(2)当乙车距A地的距离为A,B两地距离的时,甲车刚好行驶80千米,求此时乙车抵达A地还需行驶多长时间.【答案与解析】1.A(解析:由正比例函数图象的性质可知k>0时,函数y=kx的图象经过第一、三象限.)2.B3.C (解析:k2>0(k是常数,k≠0),那么直线y=k2x(k是常数,k≠0)经过第一、三象限,y随着x的增大而增大,不经过第二、四象限,所以C 是错误的.)4.B(解析:正比例函数y=(2m+2)x中,y随x的增大而减小,那么2m+2<0,所以m<-1.)5.4米/秒(解析:由图象可看出v是t的正比例函数,当t等于2时,对应的v的值是4.)6.y=-3x(解析:由条件(1)y随着x的增大而减小;(2)图象经过点(0,0)可知此函数是正比例函数,并且自变量的系数k小于0.答案不独一.)7.y=6x(解析:y随x的增大而增大的正比例函数,只需满足k大于0即可,答案不独一.)8.解析:画正比例函数的图象的方法是先确定函数图象经过的两点的坐标,如(0,0),(1,3),然后过这两点作直线.解:如下图.9.解析:(1)由图象提供的信息可以得出A,B两地间的距离,再依据速度=路程÷时间就可以求出速度.(2)由(1)知甲车的速度,求出甲车行驶的时间,就是乙车行驶的时间,再应用乙车行驶的路程除以时间就可以求出乙车的速度,进而求出乙车抵达A地的时间.解:(1)由图象得A,B两地的距离为180千米,甲车的速度为180÷3=60(千米/时). (2)乙车的速度是:180×=90(千米/时),那么乙车抵达A地还需行驶的时间为:180×÷90=(小时).。
北师大版数学八年级上册2《一次函数》教案1一. 教材分析《一次函数》是北师大版数学八年级上册第2单元的内容。
本节课主要让学生了解一次函数的定义、性质及图像,能够运用一次函数解决实际问题。
教材通过丰富的实例,引导学生探究一次函数的规律,培养学生的抽象思维能力和解决问题的能力。
二. 学情分析学生在七年级时已经学习了平面直角坐标系,对坐标系的认识较为基础。
但他们对一次函数的定义、性质及应用可能还不够清晰。
因此,在教学过程中,教师需要关注学生的认知基础,通过生动的实例和丰富的活动,激发学生的学习兴趣,引导学生主动探究一次函数的规律。
三. 教学目标1.了解一次函数的定义、性质及图像,能运用一次函数解决实际问题。
2.培养学生的抽象思维能力和解决问题的能力。
3.激发学生的学习兴趣,培养他们合作、交流的良好学习习惯。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数图像的特点及其应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生认识一次函数。
2.探究教学法:学生分组讨论,探究一次函数的性质。
3.直观教学法:利用多媒体展示一次函数图像,帮助学生理解一次函数的性质。
4.实践教学法:让学生运用一次函数解决实际问题,巩固所学知识。
六. 教学准备1.多媒体教学设备。
2.一次性函数的实例材料。
3.坐标纸、直尺、铅笔等学习用品。
七. 教学过程导入(5分钟)教师通过展示一些生活中的实例,如身高与年龄的关系、商品价格与销售数量的关系等,引导学生认识一次函数。
让学生思考:这些实例中存在什么规律?怎样用数学语言来描述这些规律?呈现(10分钟)教师给出一次函数的一般形式:y = kx + b(k≠0,k、b为常数),并解释一次函数的各个组成部分。
然后,通过具体的一次函数实例,让学生观察函数图像,分析一次函数的性质。
操练(10分钟)学生分组讨论,每组选择一个实例,探究一次函数的性质。
教师巡回指导,解答学生的疑问。
巩固(10分钟)教师出示一些练习题,让学生独立完成。
第六章 一次函数2.一次函数一、学生起点分析在七年级下期学生已经探索了变量之间关系,在此根底上,本章前一节继续通过对变量关系的考察,让学生初步体会函数的概念,能判断两变量之间的关系是否可看作函数。
本节课进一步研究其中最简单的一种函数——一次函数.由于有前面内容的铺垫,学生已经会建立变量之间的关系,可能有局部学生表述上还不太标准,在教学中,教师要注意纠正学生的一些错误习惯,如将解析式写成1,1x y x y +=-=-等,培养学生良好的书写习惯.二、教学任务分析一次函数 是义务教育课程标准北师大版实验教科书 八年级 (上) 第六章 一次函数 的第二节.本节内容安排了1个课时:让学生理解一次函数和正比例函数的概念,能根据信息写出简单的一次函数表达式,并初步形成利用函数的观点认识现实世界的意识和能力.与原传统教材相比,新教材更注重借助生活中的实际背景,让学生经历一般规律的探究过程来理解一次函数和正比例函数的概念;同时,新教材调整了知识的安排顺序,原来教材正比例函数在一次函数前面,而新教材是将正比例函数作为一次函数特殊情况给出来的.三、教学目标分析1.教学目标●知识与技能目标(1)理解一次函数和正比例函数的概念;(2)能根据所给条件写出简单的一次函数表达式.●过程与方法目标(1)经历一般规律的探索过程,开展学生的抽象思维能力;(2)经历从实际问题中得到函数关系式这一过程,开展学生的数学应用能力.●情感与态度目标(2)在探索过程中体验成功的喜悦,树立学习的自信心.2.教学重点理解一次函数和正比例函数的概念.3.教学难点能根据所给条件写出简单的一次函数表达式,开展学生的抽象思维能力.四、教法、学法1.教学方法:“探究——归纳----稳固---反响〞本节课的教学对象是初二学生,他们的参与意识较强,思维活泼,对研究常量的计算问题已掌握了一定的方法,但对函数、变量的变化规律的学习刚刚开始,抽象概括概念的能力尚显缺乏,为此,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,通过以旧引新,顺势教学过程;(3)借助探索,通过思维深入,领悟教学过程.2.课前准备教具: 教材、电脑(含PowerPoint)、多媒体课件.学具: 教材、笔记本、课堂练习本、文具.五、教学过程设计本节课设计了七个环节: 第一环节:复习引入;第二环节:新课讲述;第三环节:稳固练习;第四环节:知识提高;第五环节:反响练习;第六环节:课堂小结;第七环节:布置作业.第一环节:复习引入内容:复习上节课学习的函数,教师提出问题:(1)什么是函数(2)函数有哪些表示方式(3)在现实生活中有许多问题都可以归结为函数问题,大家能不能举一些例子呢意图:为了激发学生的求知欲望,吸引同学们的注意力,这里采用了“复习旧知识,诱导新内容〞的引入方法.问题(1)(2)复习上节课的内容,问题(3)是让学生把所学知识运用于实际生活,提高学生的运用意识.效果:假设课堂气氛比较沉闷,也可由教师先举例,让学生来列函数表达式,激发学生的学习激情,再让学生举例:(如可补充如下习题)①假设某学生骑自行车的速度为10km/h,那么他骑自行车用的时间t(h)和所走过的路程s之间的关系是什么②上网费用是2元/小时,那么上网t(小时),费用y(元)的关系式是什么第二环节:新课讲述内容:例1 某弹簧的自然长度为3cm,在弹簧限度内,所挂物体的质量x每增加1kg,弹簧长度y 增加0.5cm.(1)计算所挂物体的质量分别为1kg、2kg、3kg、4kg、5kg时的弹簧长度,并填入下表:x/kg] 0 1 2 3 4 5 y/cm(2)你能写出x与y之间的关系式吗y x.答案 (1) 3、3.5、4、4.5、5、5.5 ;(2) 30.5例2 某辆汽车油箱有汽油100L,汽车每行驶50km耗油9L.(1)完成下表:汽车行驶路程x/km 0 50 100 150 200 300油箱剩余汽油量y/L(2)你能写出x与y之间的关系式吗(3)汽车行驶的路程x可以无限增大吗有没有一个取值范围剩余油量y呢答案 (1) 100、91、82、73、64、46;y x;(2) x与y之间的关系式为1000.18(3) 汽车行驶路程x不可能无限增大,因为汽油只有100L,每行驶50km耗油9L,行驶560km后,油箱就没有油了,所以x不会超过560km.y代表油箱剩余油量,所以y应该小于100但不能小于零.一般地,假设两个变量x,y间的关系式可以表示成y kx b(,k b为常数,k≠0)的形b时,那么y是x的式,那么称y是x的一次函数(x是自变量,y为因变量).特别地,当0正比例函数.意图:从生动有趣的问题情景(弹簧的长度、汽车油箱中的余油量)出发,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念.效果:从两个具体问题的函数表达式出发,互相讨论,教师在教学上恰当地设疑立障,引导学生大胆猜想,勇于探索,鼓励学生积极思维,总结出一次函数的定义,提高学生的分析问题、解决问题、总结归纳的能力.主要从函数解析式这一角度去研究一次函数,这是学生第一次正式接触函数的表达式,教学中可根据学生状况多加一些例子,让学生逐步学会从函数表达式去认识函数,进一步掌握一次函数的定义. 第三环节:稳固练习内容:1.在函数(1)3yx ,(2)5y x ,(3)4y x ,(4)223y x x , (5)2y x (6)12y x 中是一次函数的是,是正比例函数的是. 2.假设函数(63)44ym x n 是一次函数,那么,m n 应满足的条件是;假设是正比例函数,那么,m n 应满足的条件是.3.当k =时,函数28(3)5k y k x 是关于x 的一次函数.意图:对本节知识进行稳固练习.效果:学生根本能交好的独立完成练习题,收到了较好的教学效果.在第3题中,学生易忘记3k≠0的条件,而错误的将答案写成±3.第四环节:知识提高内容:例 3 写出以下各题中x 与y 之间的关系式,并判断:y 是否为x 的一次函数 是否为正比例函数(2)圆的面积y (厘米2)与它的半径x (厘米)之间的关系; (3)一棵树现在高50厘米,每个月长高2厘米,x 个月后这棵树的高度为y (厘米),那么y 与x 的关系.答案: (1)由路程=速度×时间,得60yx ,y 是x 的一次函数,也是x 的正比例函数; (2)由圆的面积公式,得2y x ,y 不是x 的一次函数,也不是x 的正比例函数;(3)这棵树每月长高2厘米,x 个月长高了2x 厘米,因而5020yx ,y 是x的一次函数,但不是x 的正比例函数. 例4 某地区 的月租费为25元,在此根底上,可免费打50次市话(每次3分钟),超过50次后,每次0.2元.(1)写出每月 费y (元)与通话次数x (x >50)的函数关系式; (2)求出月通话150次的 费;(3)如果某月通话费为53.6元,求该月通话的次数.分析:解决此类问题首先要理解题意,然后找出相等关系.此题相等关系为:每月通话费=月租费+超过50次后 费.答案: (1)根据题意得: 25(50)y x ×0.2,即0.215y x ; (2)当150x 时,0.2y ×1501545;(3)因为53.6>25,可知通话次数大于50次,即当53.6y时,求x 的值.53.60.215x ,解得193x .效果: 根据条件写出简单的一次函数的表达式,教学时,学生会出现一定的差异,此时,要给予学生足够的思考时间,必要的时候可组织学生交流讨论,而不能是简单的“告诉〞.另外,在教学上还必须注意培养学生的书面表达能力,这些都是逻辑思维训练的一局部.在例4中的(1)中,易错解为250.2y x .应让学生仔细审题,找准等量关系;(2)、(3)两问是给定自变量的值,求函数数值,这类问题的实质就是解方程.第五环节:反响练习内容:1.以下语句中,具有正比例函数关系的是( )(A) 长方形花坛的面积不变,长y 与宽x 之间的关系;(B) 正方形的周长不变,边长x 与面积S 之间的关系;(C) 三角形的一条边不变,这条边上的高h 与面积S 之间的关系;(D) 圆的面积为S ,半径为r ,S 与r 之间的关系.2.我国现行个人工资、薪金所得税征收方法规定:月收入低于1600元的局部不收税;月收入超过1600元但低于2100元的局部征收5%的所得税……如果某人月收入1960元.他应缴纳个人工资、薪金所得税为〔19601600〕×5%=18〔元〕.〔1〕当月收入大于1600元而又小于2100元时,写出应缴纳所得税y 〔元〕与月收入x 〔元〕之间的关系式.〔2〕某人月收入为1760元,他应该缴纳所得税多少元〔3〕如果某人本月缴所得税19.2元,那么此人本月工资、薪金是多少以元意图:对本节知识进行稳固练习.效果:学生根本能较好地独立完成练习题,收到了较好的教学效果.在第2题,学生容易遗忘几何的相关内容,在此教师可作适当的提醒,让学生更顺利地完成习题.第六环节: 课堂小结内容:这节课我们学习了一类很有用的函数——一次函数,只要解析式可以表示成y kx b〔,k b为常数,k≠0〕的形式的函数那么称为一次函数.正比例函数是一次函数b时的特殊情形.〔方式:师生互相交流总结.〕当0目的:鼓励学生结合本节课的学习内容,谈谈自己的收获和感想,进一步稳固本节课的知识.第七环节:布置作业1.根据下表写出,x y之间的一个关系式.x[来源:10123中.考.资.源.网]y2. 某电信公司的A类收费标准如下:不管通话时间多长,每部每月必须缴月租费50元,另外,每通话1分钟交费0.4元.〔1〕写出每月应缴费用y〔元〕与通话时间x〔分〕之间的关系式;〔2〕某用户这个月通话时间为152分,他应缴费多少元〔3〕如果该用户本月预交了200元的话费,那么该用户本月可通话多长时间3.某电信公司的B类收费标准如下:没有月租费,但每通话1分钟收费0.6元.按照此类收费标准,分别完成第2题中的各小题.4.根据上面第2,3题中的条件,完成以下各题:〔1〕假设每月平均通话时间为300分,你选择哪类收费方式〔2〕每月通话多长时间时,按A,B两类收费标准缴费,所交话费相等六、教学设计反思函数是初中阶段数学学习的一个重要内容,学生又是第一次接触函数,充分考虑学生的接受能力,本节从生动有趣的问题情景出发,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念.又通过具有丰富的现实背景的例题,进一步理解一次函数和正比例函数的概念,为下一步学习一次函数图象奠定根底,并形成用函数观点认识现实世界的能力与意识.附:板书设计一次函数情境引入例1——————课堂练习:例2——————〔1〕——————一次函数、正比例函数的概念及〔2〕——————其关系:———————————————例3 ——————————〔3〕——————例4 ——————————〔2〕————————————————课后作业:保存性板书暂时性板书。
北师版初二上册第四章3教学目的知识与技艺:1.了解直线y=kx+b与直线y=kx之间的位置关系.2.会选择两个适宜的点画出一次函数的图象.3.掌握一次函数的性质.进程与方法:1.经过研讨一次函数的图象,阅历知识的归结、探求进程.2.经过一次函数的图象归结函数的性质,体验数形结合、从特殊到普通的数学思想.情感态度与价值观:1.经过画函数的图象,并借助图象研讨函数的性质,体验数与形的内在联络,感受函数图象的繁复美.2.在探求函数的图象和性质的活动中,经过一系列的富有探求性的效果,浸透与人协作交流的看法和探求肉体.教学重难点【重点】一次函数的图象和性质.【难点】由一次函数的图象归结得出一次函数的性质及对性质的了解.教学预备【教员预备】教材例2投影图片.【先生预备】温习正比例函数的性质.教学进程一、导入新课导入一:以下哪个是函数y=2x-1的图象呢?导入二:①y=2x+1;②y=2x+2;③y=2x+3.以上三个函数的图象有什么位置关系呢?导入三:正比例函数是特殊的一次函数,正比例函数的图象是一条直线,那么一次函数的图象也是一条直线吗?从表达式上看,正比例函数与一次函数相差什么?假设表达在图象上又会有怎样的关系呢?[设计意图]表达特殊与普通的关系并引发猜想,浸透数形结合思想.二、新知构建[过渡语]正比例函数y=-2x的图象是过原点的一条直线,那么一次函数y=-2x+1的图象又是怎样的呢?下面我们研讨一次函数y=kx+b的图象.(教材例2)画出一次函数y=-2x+1的图象.解:列表.x…-2 -1 0 1 2 …y… 5 3 1 -1 -3 …描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次衔接起来,失掉y=-2x+1的图象(如下图),它是一条直线.【思索】(1)直线y=-2x和直线y=-2x+1是什么位置关系?(2)画正比例函数图象和画一次函数图象有什么共同之处?(3)依据下面的函数图象,怎样比拟复杂地画出一次函数y=-2x+3的图象?【总结】一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只需确定两个点,再过这两点画直线就可以了.一次函数y=kx+b 的图象也称为直线y=kx+b.【做一做】在同不时角坐标系内区分画出一次函数y=2x+3,y=-x,y=-x+3和y=5x-2的图象.【议一议】(1)上述四个函数中,随着x值的增大,y的值区分如何变化?相应图象上点的变化趋向如何?(2)直线y=-x与y=-x+3的位置关系如何?你能经过适当的移动将直线y=-x变为直线y=-x+3吗?普通地,直线y=kx+b与y=kx又有怎样的位置关系呢?(3)直线y=2x+3与直线y=-x+3有什么共同点?普通地,你能从函数y=kx+b的图象上直接看出b的数值吗?【提示与解答】(1)函数y=2x+3和y=5x-2都是y随x的增大而增大,相应图象上点的位置逐渐降低.函数y=-x和y=-x+3都是y随x 的增大而减小,相应图象上点的位置逐渐降低.(2)直线y=-x与直线y=-x+3相互平行,将直线y=-x向上平移3个单位长度就变为直线y=-x+3了.当k≠0,b≠0或k=0,b≠0时,直线y=kx+b与y=kx平行;当k≠0,b=0或k=0,b=0时,直线y=kx+b与y=kx 重合.(3)直线y= 2x+3和直线y=-x+3与y轴相交于同一点(0,3).直线y=kx+b与y轴交点的纵坐标就是b的值,普通能从函数y=kx+b的图象上直接看出b的数值.【总结】一次函数y=kx+b的图象经过点(0,b).当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.[知识拓展]1.直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)的位置关系:①直线y=kx+b平行于直线y=kx;②当b>0时,把直线y=kx向上平移b个单位长度,可得直线y=kx+b;③当b<0时,把直线y=kx向下平移|b|个单位长度,可得直线y=kx+b.2.一次函数y1=k1x+b1与y2=k2x+b2中:假定k1=-k2,b1=b2,那么两直线关于y轴对称;假定k1=-k2,b1=-b2,那么两直线关于x轴对称;假定k1=k2,b1≠b2,那么两直线平行.三、课堂总结一次函数y=kx+b的图象经过点(0,b),当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.四、课堂练习1.函数y=3x+1的图象与x轴的交点坐标为,与y轴的交点坐标为.解析:3x+1=0→3x=-1→x=-;当x=0时,y=1.答案:(0,1)2.在同不时角坐标系中,描画出了以下函数:①y=-x+1;②y=x+1;③y=-x-1;④y=-2(x+1)的图象,那么以下说法正确的选项是()A.过点(-1,0)的是①③B.交点在y轴上的是②④C.相互平行的是①③D.关于x轴对称的是①②解析:当k值相等,b值不等时,两直线平行.应选C.3.在同不时角坐标系中画出以下函数的图象.(1)y=2x+1;(2)y=-2x+1.解:如下图.4.一次函数y=(4m+1)x-(m+1).(1)m为何值时,y随x的增大而减小?(2)m为何值时,直线与y轴的交点在x轴下方?解:(1)∵y随x的增大而减小,∴4m+1<0,解得m<-.∴当m<-时,y随x的增大而减小.(2)y=(4m+1)x-(m+1)与y轴的交点坐标为(0,-m-1),∵直线与y轴的交点在x轴下方,∴-(m+1)<0,解得m>-1.又∵4m+1≠0,∴m≠-,∴当m>-1且m≠-时,直线与y轴的交点在x轴下方.五、板书设计4.3.2一次函数的图象1.例2.2.做一做,议一议.六、布置作业〔1〕、教材作业【必做题】教材习题4.4第1,2题.【选做题】教材习题4.4第4题.〔2〕、课后作业【基础稳固】1.将直线y=x+4向下平移2个单位长度,失掉直线的表达式为()A.y=x+6B.y=x+2C.y=2x+4D.y=-2x+42.点(-4,y1),(2,y2)都在直线y=-x+2上,那么y1,y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比拟3.直线y=3x+k-3与y轴交点在x轴上方,那么k的取值范围是()A.k≠3B.k≠-3C.k<3D.k>34.一次函数y=mx+n的图象经过第二、三、四象限,那么以下结论正确的选项是 ()A.m<0,n<0B.m<0,n>0C.m>0,n>0D.m>0,n<05.一次函数y=kx-k,假定y随x的增大而减小,那么该函数的图象经过 ()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限6.函数y=x+4的图象与x轴的交点坐标为,与y轴的交点坐标为.7.在同不时角坐标系中区分作出以下一次函数的图象.(1)y=2x+6; (2)y=-x.8.作出函数y=-x-2的图象,并求图象与x轴、y轴的交点坐标.【才干提升】9.依据作函数图象的普通步骤,作出函数y=x+1的图象,并依据图象回答:(1)x为何值时,y的值为0?(2)y为何值时,x的值为0?(3)x为何值时,y>0?10.如下图,点P(x,y)是第一象限内一个动点,且在直线y=-2x+8上,直线与x轴交于点A.(1)当点P的横坐标为3时,ΔAPO的面积为多少?(2)设ΔAPO的面积为S,用含x的式子表示S,并写出x的取值范围.【拓展探求】11.阅读下面的资料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线给出它们平行的定义:设一次函数y=k1x+b1(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,假定k1=k2,且b1≠b2,我们就称直线l1与直线l2相互平行.解答下面的效果:(1)求过点P(1,4)且与直线y=-2x-1平行的直线l的函数关系式;(2)设(1)中直线l区分与y轴、x轴交于点A,B,假设直线m:y=kx+t(t>0)与直线l平行且交x轴于点C,求出ΔABC的面积S关于t的函数表达式.【答案与解析】1.B (解析:将直线y=x+4向下平移2个单位长度,那么得直线y=x+2.)2.A(解析:由直线解析式可知y随x的增大而减小,故y1>y2.)3.D(解析:直线y=3x+k-3与y轴交点在x轴上方,那么k-3>0,所以k>3.)4.A(解析:一次函数y=mx+n的图象经过第二、三、四象限,画出它的大致图象如下图,由一次函数图象的性质可以判别m<0,n<0.)5.B(解析:k和-k互为相反数,假定y随x的增大而减小,那么k<0,所以直线y=kx-k的大致图象如下图.应选B.)6.(-6,0)(0,4)(解析:图象与x轴的交点的纵坐标为0,当y=0时,x=-6,所以此图象与x轴的交点坐标是(-6,0);图象与y轴交点的横坐标为0,当x=0时,y=4,所以此图象与y轴的交点坐标是(0,4).)7.解析:由于一次函数的图象是一条直线,故画函数图象的时分先确定函数图象经过的两个点的坐标,然后过这两个点作直线即可.解:如下图.8.解:图象如下图.与x轴交点的坐标是(-4,0),与y轴交点的坐标是(0,-2).9.解析:由于一次函数图象是一条直线,所以采用两点法作图象.结合一次函数的图象及性质停止解答.解:列表:x0 -1y=x+1 1 0描点、连线,如下图.(1)当x=-1时,y=0. (2)当y=1时,x=0. (3)当x>-1时,y>0.10.解:(1)令y=0,那么-2x+8=0,解得x=4,所以OA=4,由于点P(x,y)是第一象限内一个动点,且在直线y=-2x+8上,所以当x=3时,y= (-2)×3+8=2,所以SΔAPO=×4×2=4. (2)由于点P (x,-2x+8),所以S=OA×(-2x+8)=×4×(-2x+8)=-4x+16(0<x<4).ΔAPO11.解:(1)设直线l的关系式为y=-2x+b,由于当x=1时,y=4,所以4=-2+b,所以b=6,所以直线l的函数关系式为y=-2x+6. (2)由题意,得B(3,0),A(0,6),C.由于t>0,所以>0,所以C点在x轴的正半轴上.当C点在B点左侧时,此时0<t<6,S=×6=9-;当C点在B点右侧时,此时t>6,S=×6=-9.所以ΔABC的面积S关于t的函数表达式为S=。
第四章一次函数1 函数教师备课素材示例●情景导入师:生活中充满着变化的量,你了解这些变量之间的关系吗?如弹簧的长度与所挂物体的质量,路程与所用的时间……了解这些关系,可以帮助我们更好地认识世界.函数是刻画变量之间关系的常用模型,今天我们先来学习第一课《函数》.师:你坐过摩天轮吗?想一想,如果你坐在摩天轮上,随着时间的变化,你离开地面的高度是如何变化的?在摩天轮的转动过程中,共有两个量在变化,即旋转时间t(min)与摩天轮上一点的高度h(m).图中反映了摩天轮上一点的高度h(m)与旋转时间t(min)之间的关系.你能根据图象填写下表吗?对于给定的时间t,相应的高度h学生的学习兴趣,同时点明本章所要解决的主要问题.建议:学生先独立思考,教师再提问学生.●复习导入活动内容:一辆汽车以60km/h的速度匀速行驶,行驶的里程为skm,设行驶时间为th.在以上过程中,有没有变化的量?有没有始终不变的量?变化的量是__时间和里程__,不变的量是__速度__.课件展示:在一个变化过程中可以取不同数值的量叫做__变量__;如果一个量随着另外一个量的变化而变化,那么把这个量叫做__因变量__,另一个量叫做__自变量__;在一个变化过程中数值可以保持不变的量叫做__常量__.函数是刻画变量之间关系的常用模型,了解变量之间的关系可以帮助我们更好地认识世界,服务于我们的生活.因此,让我们一起走进函数天地吧!【教学与建议】教学:以填空的形式引导学生回顾知识,为后面的学习做好铺垫.建议:可采用抢答的方式进行,再让学生举例来说明这几个概念的联系.根据自变量与因变量是一一对应的,能判断两个变量间的函数关系.【例1】(1)下列表示y是x的函数的图象是(C)A B C D(2)在下列图象中,不能表示y是x的函数是(D)A B C D确定自变量的取值范围时,若代数式是根式形式,则需要注意根号下为非负数,若自变量在分母的位置,则要注意分母不为0.【例2】(1)在函数y=x-3中,自变量x的取值范围是(B)A.x≤-3B.x≥3C.x<0D.x>-3(2)函数y=x-2x-5的自变量x的取值范围是__x≥2且x≠5__.解答列关系式和求函数自变量的取值范围等问题时,首先要读懂题意,找出等量关系,然后列出关系式即可.【例3】(1)一位老师带领x名学生到动物园参观,已知成人票每张20元,学生票每张8元.设门票的总费用为y元,则y与x之间的关系式为(A)A.y=8x+20B.y=8xC.y=8+20xD.y=20,气温下降6℃,已知某登山大本营所在位置的气温是2℃,登山队员从大本营出发登山,当海拔升高xkm 时,所在位置的气温是y ℃,那么y 关于x 的函数表达式是__y =-6x +2__.解答程序问题,首先要根据各个关系式所对应的自变量的取值范围确定其关系式.【例4】已知变量x ,y 之间的关系可以用如图所示的程序表示:则y 与x 之间函数关系式为__y =12x 3-12x__. 高效课堂 教学设计1.初步掌握函数的概念,能判断两个变量间的关系是否可以看成函数.2.根据两个变量之间的关系式,给定其中一个量,会求出另一个量的值.3.了解函数的三种表示方法.▲重点理解函数的概念,会判断两个变量间的关系是不是函数关系.▲难点能把实际问题抽象概括为函数问题.◆活动1 创设情境 导入新课(课件)一辆汽车以60km/h 的速度行驶,行驶的里程为skm ,设行驶时间为th.学生讨论回答:变化的量是时间和里程,不变的量是速度.在上面的过程中,汽车可以开1小时、2小时、3小时…相应的里程是60km 、2×60km 、3×60km …因此,随着时间的变化,里程数相应的发生了变化.这个问题反映了匀速行驶的汽车所行驶的里程随时间变化的过程,在现实生活中,有许多类似的问题,今天我们一起来探究这个问题.◆活动2 实践探究 交流新知【探究1】图象法如图反映了摩天轮上一点的高度h(m)与旋转时间t(min)之间的关系.(1)图中的变量有__2__个,自变量是__旋转时间t__,因变量是__摩天轮上一点的高度h__;(2)(3)__确定__;(4)自变量的取值范围是__0≤t≤12__.【探究2】列表法罐头盒等圆柱形的物体常常如下图那样堆放,随着层数的增加,物体的总数是如何变化的?问题1问题2问题3:对于给定的每一个层数n,物体的总数y唯一确定吗?【探究3】关系式法一定质量的气体在体积不变时,假若温度降低到-273℃,则气体的压强为零.因此,物理学把-273℃作为热力学温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有如下数量关系:T=t+273(T≥0).(1)在这个过程中有__变__量和__常__量;(2)在上述量中,__t,T__是变量,__273__是常量;(3)当t分别为-43℃,-27℃,0℃,18℃时,相应的热力学温度T是__230__℃__,__246__℃__,__273__℃__,__291__℃__;(4)给定一个大于-273℃的t值,你都能求出相应的T值吗?【归纳】一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x 的函数(function),其中x是自变量.理解函数概念应把握三点:(1)有两个变量;(2)一个变量的值随着另一个变量的值的变化而变化;(3)自变量每确定一个值,另一个变量就有唯一确定的值与之对应.前面的“探究1”中是用__图象法__表示,“探究2”中是用__列表法__表示,“探究3”中是用__关系式法__表示.【归纳】表示函数的方法一般有:(1)图象法;(2)列表法;(3)关系式法.函数值:对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a时的函数值.◆活动3 开放训练应用举例【例1】教材P77习题4.1T1【方法指导】运用函数知识.解:(1)反映了抛射水平距离s与高度h之间的关系;(2)略;(3)确定;(4)高度h可以看成距离s的函数.【例2】某蓄水池蓄水120m3,出水管每小时放水10m3.(1)(2)t之间有怎样的关系?Q能看成t的函数吗?(3)当放水时间为3h时,池内剩水量为多少?经过多少小时,池内水刚好放完?【方法指导】将实际问题抽象成函数问题.解:(1)感受变量之间的关系,出水管每小时放水10m3,则2小时可放水20m3,3小时可放水30m3,t小时可放水10tm3,因此池内剩水量为(120-10t)m3.表格填写如下:100 80 60 40 20 0(2)池内剩水量=蓄水池原有的水量-放水量,因此,Q=120-10t,Q能看成t的函数;(3)当t=3时,Q=120-10×3=90(m3);令Q=0,得120-10t=0,解得t=12.◆活动4 随堂练习1.下列图象不能反映y是x的函数的是(C)A B C D2.长方体的底面积为3cm2,高x(cm)可变化,则其体积V=3x.关系式中有__2__个变量,当3.我们可以把__体积V__看成是__高x__的函数.3.一蓄满水的水池正在放水,剩余水量y与时间t的关系式为y=500-40t.其中自变量是__t__,__y__是__t__的函数.学生活动:这节课你的收获是什么?还有哪些困惑?教学说明:让学生畅所欲言,谈谈自己的切身感受与实际收获.作业:课本P77随堂练习,P78习题4.1中的T2.本节课通过大量的函数关系的展示,让学生经历函数概念的抽象概括过程,初步掌握函数概念.通过函数概念,初步形成利用函数的观点认识现实世界的意识和能力.体会函数的模型思想,让学生主动地参与观察、操作、交流、归纳等探索活动,促进其对数学知识的理解,形成有效的学习模式.。
北师版初二上册第四章一次函数的应用教案教学目的知识与技艺:了解两个条件确定一个一次函数,一个条件确定一个正比例函数.进程与方法:能由两个条件求出一次函数的表达式,由一个条件求出正比例函数的表达式,并处置有关实践效果.情感态度与价值观:进一步培育先生的协作看法和自主探求的精神,体会在处置效果的进程中与他人协作的重要性.教学重难点【重点】依据所给的信息确定一次函数的表达式.【难点】用一次函数处置有关实践效果.教学预备【教员预备】教材图4 - 6投影图片.【先生预备】温习一次函数图象及其性质.教学进程一、导入新课导入一:小红同窗受«乌鸦喝水»故事的启示,应用量筒和体积相反的小球停止了如下操作.你能依据以上信息求出放入小球后量筒中水面的高度与小球个数之间的关系吗?学了本节内容后,你就能明白其中的秘密.导入二:什么叫一次函数?一次函数y=kx+b(k,b为常数,且k≠0)中,k,b对函数图象有什么影响?一次函数在理想生活中有十分重要的作用,怎样树立一次函数关系式,并用来处置实践效果呢?明天我们来学习用待定系数法确定一次函数表达式.二、新知构建[过渡语]一次函数的关系式y=kx+b(k≠0)中,假设知道k与b的值,函数表达式就确定了,那么由怎样的条件才干求出k和b的值,从而确定一次函数的表达式呢?〔1〕、确定一次函数的表达式出示教材图4 - 6及效果.某物体沿一个斜坡下滑,它的速度v(m/s)与其下滑时间t(s)的关系如下图.(1)写出v与t之间的关系式;(2)下滑3 s时物体的速度是多少?【剖析】要求v与t之间的关系式,首先应观察图象,确定它是正比例函数的图象,还是一次函数图象,然后设出函数关系式,再把的坐标代入关系式,求出待定系数即可.〔2〕、例题解说(教材例1)在弹性限制内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数.某弹簧不挂物体时长14.5 cm;当所挂物体的质量为3 kg时,弹簧长16 cm.写出y与x之间的关系式,并求当所挂物体的质量为4 kg时弹簧的长度.〔解析〕由于一次函数的图象是一条直线,两点确定一条直线,所以需求两个条件,而正比例函数的图象是经过原点的一条直线,所以只需求确定另外一点坐标就可以确定这条直线的关系式.解:设y=kx+b(k≠0),依据题意,得14.5=b,①16=3k+b.②将①代入②,得k=0.5.所以在弹性限制内,y=0.5x+14.5.当x=4时,y=0.5×4+14.5=16.5.即物体的质量为4 kg时,弹簧长度为16.5 cm.[知识拓展]应用待定系数法确定一次函数的关系式,其步骤为:一设:依据题意,先设出函数关系式为y=kx+b(k≠0);二代:确定两对对应值或图象上两个点的坐标,区分代入函数关系式,失掉关于k,b 的两个方程;三解:求出k,b的值(暂时可以经过等量代换的方式去求两个未知数);四定:最后确定函数关系式.三、课堂总结确定一次函数表达式的方法:由效果的实践意义直接确定出函数表达式的普通方式:假定为正比例函数,那么设其表达式为y=kx(k≠0),代入一个除原点以外的点的坐标,求出k的值,即可确定函数表达式;假定为普通的一次函数,那么设其表达式为y=kx+b(k≠0),代入两个点的坐标,求出k,b的值,从而确定一次函数的表达式.四、课堂练习1.一次函数y=kx-4的图象经过点P(2,-1),那么函数的解析式为.答案:y=x-42.一次函数y=x+b的图象经过点A(1,2),那么函数的表达式为.答案:y=x+13.要确定正比例函数y=kx的解析式,只需除原点外个点的坐标,而确定y=kx+b的解析式,那么至少需求个点的坐标.答案:1 24.如下图,直线l是一次函数y=kx+b的图象.(1)图象经过点 (0,)和点(4,);(2)函数的解析式是;(3)当x=10时,y=.答案:(1)30(2)y=-x+3(3)-4五、板书设计4.4.1一次函数的运用1.确定一次函数的表达式.2.例题解说.六、布置作业〔1〕、教材作业【必做题】教材习题4.5第1,2题.【选做题】教材习题4.5第4题.〔2〕、课后作业【基础稳固】1.一根蜡烛长20厘米,扑灭后每小时熄灭5厘米,熄灭剩下的长度y厘米与熄灭时间x小时的函数关系用图象表示为以下图中的()2.一次函数y=kx+b的图象如下图,那么k,b的值区分是()A.k=-,b=1B.k=-2,b=1C.k=,b=1D.k=2 ,b=13.一个正比例函数的图象经过点(2,-3),那么其表达式是()A.y=-xB.y=xC.y=2xD.y=-3x4.直线l经过点(0,3)和点(3,0),求直线l的解析式.【才干提升】5.如下图,直线y=kx+b交坐标轴于A (-3,0),B(0,5)两点,那么不等式-kx-b<0的解集为()A.x>-3B.x<-3C.x>3D.x<36.直线y=kx+b经过点(k,3)和(1,k),那么k的值为 ()A. B.± C. D.±7.直线y=kx+b与直线y=2x平行,且它与直线y=5x+4的交点在y轴上,那么其函数表达式是()A.y=4x+2B.y=2x+5C.y=2x+4D.y=5x+28.一次函数y=kx+b的图象经过(0, 2),(1,3)两点,假定一次函数y=kx+b的图象与x轴的交点为A(a,0),那么a=.9.一次函数y=kx-4,当x=2时,y=-3.(1)求一次函数的解析式;(2)将该函数图象向上平移6个单位长度,求平移后的图象与x轴的交点坐标.【拓展探求】10.一个正比例函数和一个一次函数的图象交于点P(-2,2),且一次函数的图象与y轴相交于点Q(0,4).(1)求这两个函数的表达式;(2)在同一坐标系内区分画出这两个函数的图象;(3)求出ΔPOQ的面积.【答案与解析】1.B(解析:蜡烛剩下的长度随时间增大而延长,依据实践意义可知选B.)2.B(解析:由于一次函数y=kx+b的图象经过y轴上纵坐标为1的点,所以b=1,即y=kx+1.又由于图象经过点,所以k+1=0,解得k=-2.所以k=-2,b=1.)3.A4.解:直线l的解析式为y=-x+3.5.A6.B(解析:先将(1,k)代入y=kx+b,得b=0,再将(k,3)代入y=kx+b,可得k的值.)7.C(解析:由于直线y=kx+b与直线y=2x平行,所以k=2,又由于与y 轴的交点坐标为(0,4),所以b=4,所以这条直线的函数表达式为y=2x+4.应选C.)8.-2(解析:由题意得b=2,k+b=3,解得b=2,k=1,那么y=x+2,当y=0时,x=-2,即a=-2.)9.解:(1)将x=2,y=-3代人y=kx-4,得-3=2k-4,∴k=,∴一次函数的解析式为y=x-4. (2)将y=x-4的图象向上平移6个单位长度得y=x+2的图象,当y=0时,x=-4.∴平移后的图象与x轴的交点坐标为(-4,0).10.解:(1)设正比例函数表达式为y=k1x,一次函数表达式为y=k2x+4,将(-2,2)区分代入可得2=-2k1,2=-2k2+4,解得k1=-1,k2=1,∴函数表达式区分为y=-x及y=x+4. (2)依据过点(-2,2),(0,4)可画出一次函数图象,依据过点(0,0),(-2,2)可画出正比例函数图象,画图略.(3)ΔPOQ的面积=×2×4=4.。
《一次函数》教学设计【教学目标】(1)理解一次函数和正比例函数的概念,以及它们之间的关系;(2)能根据所给条件写出简单的一次函数表达式.(3)经历一般规律的探索过程,发展学生的抽象思维能力;(4)通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力.(5)通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维.【教学重点】(1)一次函数、正比例函数的概念及关系.(2)会根据已知信息写出一次函数的表达式. 【教学难点】(1)根据实际情景写出一次函数的表达式;(2)应用一次函数知识解决实际问题.教学过程:(一)做一做1、某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克弹簧长度y增加0.5厘米.(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:x/千克0 1 2 3 4 5y/厘米(2)你能写出x与y之间的关系式吗?(二)想一想1.上面的两个关系式中,y是否为x的函数?它们有何共同特点?2.什么是一次函数?什么是正比例函数?二者有怎样的关系?设计意图:1.激发学生的学习兴趣,调动学生的学习热情和学习积极性。
2.通过自主探究,培养学生自主学习能力。
引导学生主动地从事观察、操作、交流、归纳等探索活动,从而使学生形成自己对数学学习的理解和有效的学习模式,进一步丰富学生数学学习的成功经验。
(三)应用新知,解决问题例1写出下列各题中x与y之间的关系式,并判断y是否为x一次函数?是否为正比例函数?(1)汽车以60千米/时的速度行使,行使路程y(千米)与行使时间x(时)之间的关系;(2)圆的面积y(cm2)与它的半径x(cm)之间的关系;(3)等腰三角形的周长是18,若腰长为y,底边长为x,试写出y与x之间的关系,并指出自变量的取值范围.例2 我国现行个人工资薪金税征收办法规定:月收入低于800元但低于1300元的部分征收5%的所得税……如某人某月收入1160元,他应缴个人工资薪金所得税为(1160-800)×5%=18(元)(1)当月收入大于800元而又小于1300元时,写出应缴所得税y(元)与月收入x(元)之间的关系式.(2)某人某月收入为960元,他应缴所得税多少元?(3)如果某人本月缴所得税19.2元,那么此人本月工资薪金是多少元?例题3:巩固新知,变式训练十堰旅游资源丰富,“道教圣地武当山”、“中国水都丹江口”和“中国卡车之都”是该市的三张名片。
第四章一次函数1 函数1.认识变量、常量,并学会用含一个变量的代数式表示另一个变量.逐步感知变量之间的关系.2.了解函数的三种表达方式.3.经历观察、分析、思考等数学活动,发展合情推理,有条理、清晰地阐述自己的观点.4.让学生积极参与数学活动,对数学产生好奇心和求知欲,形成实事求是的态度以及独立思考的习惯.【教学重点】认识变量、常量,用式子表示变量间的关系.【教学难点】用含有一个变量的式子表示另一个变量.一、创设情境,导入新课教材第75页内容.【教学说明】用学习身边熟悉的娱乐活动引入,提出问题引发思考,激发了学生强烈的求知欲望.二、思考探究,获取新知函数的概念.做一做并思考:教材第76页“做一做”.【教学说明】学生通过观察、思考、探究的形式,体会当一个变量变化,另一个量也随之发生变化的过程,为下面理解函数的概念做了充分准备.【归纳结论】在上面的案例中,都有两个变量,给定其中某一个变量的值,相应地就确定了另一个变量的值.一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量.函数的表示方法一般有:列表法、关系式法和图象法.讨论:上述问题中,自变量能取哪些值?【教学说明】不同的学生可能答案不一样.但是这是一个实际问题,自变量要符合本题的实际意义,不能认为是任意实数.【归纳结论】对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a的函数值.三、运用新知,深化理解1.现将500本笔记本捐助给贫困学生,每人5本,写出余下的笔记本数y(本)和学生数x(名)之间的关系式为,自变量x的取值范围是.2.某型号的汽车在路面上的制动距离s=v2/256,其中变量是()A.s,vB.s,v2C.sD.v3.写出下列问题中满足的关系式,并指出各个关系式中哪些是常量,哪些是变量?(1)用总长为6m的篱笆围成长方形场地,求长方形的面积S与另一边长x 之间的关系式;(2)用总长为l的篱笆围成长方形场地,长方形的面积为60m2,求l与x之间的关系式.【教学说明】让学生独立做,加强对函数及有关概念的理解,教师通过学生反馈的信息了解他们掌握知识的情况,及时处理学生中的疑难问题并加强训练.【答案】1.y=500-5x,0≤x≤100且x为整数;2.A3.(1)S=x(3-x)=3x-x2,其中3是常量,x、S是变量;(2)l=2(60/x+x),其中60、2是常量,l、x是变量.四、师生互动,课堂小结1.师生共同回顾函数、变量、常量、函数值等概念.2.通过本节课的学习,谈谈你有什么收获?还有哪些不足?请与同学交流.【教学说明】教师引导学生回顾本课有关知识点,学生大胆发言,对知识进行归纳整理,有助于消化理解.1.布置作业:习题4.1第1、2题.2.完成练习册中本课时相应练习.函数是学生接触的最新鲜的事物,不容易理解.在教学的过程中,要通过案例不断让学生去体会函数的意义,便于今后的实际运用.2 一次函数与正比例函数1.掌握一次函数与正比例函数的一般形式并学会判断.2.知道一次函数与正比例函数之间的关系,能利用一次函数和正比例函数解决实际问题.3.通过实例让学生经历思考,分析问题中量与量之间的关系,提高学生的归纳概括能力和辨别能力.4.利用学生独立思考、合作探究的学习形式培养学生科学的思维方法和良好的学习习惯.【教学重点】一次函数与正比例函数的概念【教学难点】利用一次函数与正比例函数的关系式解决实际问题.一、创设情境,导入新课教材第79页“做一做”上方的内容.【教学说明】从跟物理学有关的问题入手,体现了各学科之间是相互联系相互渗透的.同时也让学生认识到数学与现实生活是密不可分的,人们的需要产生了数学,调动他们学习数学的积极性.二、思考探索,获取新知1.一次函数和正比例函数的概念.做一做并思考:教材第79页“做一做”.【教学说明】由这些简单的实例让学生分析问题中各个量之间的关系,从现实生活中抽象出数学模型,找到建立数学关系的方法,也为导出一次函数与正比例函数的概念做好铺垫.你能利用我们刚学的知识解决下面的问题吗?请看:教材第79~80页例1【教学说明】通过对具体实例的分析,既消化了学生对一次函数和正比例函数的理解,又能为今后运用他们解决稍复杂的实际问题打下基础,同时也加强了它们之间的联系和区别.2.一次函数的实际应用.教材第80页例2.【教学说明】教师可以引导学生完成,让学生学习已知自变量的值求对应的函数值和已知函数值求自变量的值的方法.体现了一次函数与一元一次方程的密切联系,为后面的学习奠定了基础.三、运用新知,深化理解1.下列函数中,是一次函数但不是正比例函数的是()2.函数y=(2m-1)x n+3+(m-5)是一次函数的条件是()A.m≠12且n≠-3B.n=-2C.m≠12且n=-2D.m≠12且m≠5,n=-23.若每上6个台阶就升高1m,则上升高度h(m)与上的台阶数m之间的函数关系式为.h是m的函数.4.滑车以每分1.5米的速度匀速从轨道的一端滑向另一端,已知轨道的长为50米.(1)求滑车滑行轨道剩下的路程S(米)和滑行时间t(分)之间的关系式.(2)如果滑行时间为12分钟,求剩下的路程.(3)若剩下的路程为20米,那么它滑行的时间为多少分钟?【教学说明】让学生独立完成,加深对一次函数和正比例函数的理解,同时也对所学的知识也是个检验,教师及时纠正并有针对性地加强训练.【答案】1.C. 2.C. 3.h=m/6(m),一次(或正比例).4.解:(1)S=50-1.5t;(2)32(米);(3)20(分).四、师生互动,课堂小结1.师生共同回顾一次函数与正比例函数的一般形式.2.本节课学了哪些内容?你认为最重要的是什么?还有什么疑问?请与大家交流.【教学说明】让学生参与小结并允许学生发表各自的见解,增加了学生的积极性和主动性,培养他们对所学知识的回顾思考的习惯;同时也强调了本节课的重点,巩固了学习内容.1.布置作业:习题4.2第1、2、3题2.完成练习册中本课时相应练习..通过学生反馈的情况来看,绝大部分学生掌握得较好,但对于正比例函数是特殊的一次函数这种情况容易忽略.同时还有极少部分同学运用一次函数的一般形式解决实际问题不是相当熟练.在今后的教学中要花一定的时间不断完善提高.3 一次函数的图象第1课时正比例函数的图象和性质1.会利用描点法或两点法画出正比例函数的图象.2.掌握正比例函数的性质.3.通过对应描点来研究正比例函数的图象,经历知识的归纳、探究过程和利用正比例函数的图象归纳函数性质,体验数形结合的方法.4.通过画函数的图象,并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美.【教学重点】正比例函数的图象和性质.【教学难点】由正比例函数的图象归纳得出正比例函数的性质及对性质的理解.一、创设情境,导入新课把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象(graph).前面第1节就是摩天轮上一点的高度h(m)与旋转时间t(min)之间函数关系的图象.正比例函数y=kx的图象是怎样的呢?它具有哪些性质呢?下面,我们一起去研究吧!【教学说明】给出函数图象的定义,学生一目了然,结合实例便于学生理解它的含义,为下面学习画函数图象指明了方向.二、思考探究,获取新知1.正比例函数图象的画法:思考:(1)你准备来用什么方法画出正比例函数y=2x的图象?(2)画出函数图象的一般步骤有哪些?【教学说明】让学生经历列表、描点、连线等画函数图象的具体过程,既可以加深对图象意义的认识,了解图像上点的横、纵坐标与自变量值、函数值之间的对应关系,又为学习如何画函数图象及对用描点法画函数图象的一般步骤进行归纳做了准备.【归纳结论】画函数图象的一般步骤:列表、描点、连线.做一做:(1)画出正比例函数y=-3x的图象.(2)在所画的图象上任意取几个点,找出它们的横坐标和纵坐标,并验证他们是否都满足关系式y=-3x.讨论:①满足关系式y=-3x的x,y所对应的点(x,y)都在正比例函数y=-3x 的图象上吗?②正比例函数y=-3x的图象上的点(x,y)都满足关系式y=-3x吗?③正比例函数y=kx的图象有何特点?你是怎样理解的?【教学说明】加强学生用描点法画正比例函数图象的方法,体会函数图象上的点都满足函数关系式,并通过观察得出正比例函数图象的特点.【归纳结论】正比例函数y=kx的图象是一条经过原点(0,0)的直线.因此,画正比例函数图象时,只需要再确定一个点,过这点和原点画直线就可以了.2.正比例函数图象的性质做一做:在同一直角坐标系内画出正比例函数y=x,y=3x,y=-12x和y=-4x的图象.思考:上述四个函数中,随着x值的增大,y的值分别如何变化?【教学说明】利用正比例函数的图象学生很直观地归纳出正比例函数的增减性.注意不要受算术中正比例概念的影响,片面地认为正比例函数总是随着自变量的增加而增加,它的增或减是由k的正或负决定的.【归纳结论】在正比例函数y=kx中,当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.讨论:(1)正比例函数y=x和y=3x中,随着x值的增大,y的值都增加了,其中哪一个增加得更快?你能解释其中的道理吗?(2)类似地,正比例函数y=-12x 和y=-4x 中,随着x 值的增大,y 的值都减小了,其中哪一个减小得更快?你是如何判断的?【教学说明】通过图象让学生进一步体会正比例函数增减的快慢是由|k |决定的,加深了对正比例函数图象性质的理解.三、运用新知,深化理解1.若函数y=232()m m x -- 是正比例函数,则m= .2.若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是 .3.已知点P (1,m )在正比例函数y=4x 的图象上,那么点P 的坐标是( ).A.(1,4)B.(-1,-4)C (1,-4)D.(-1,4)4.已知正比例函数y=kx (k ≠0)的图象经过第二、四象限,则( )A.y 随x 的增大而增大B.y 随x 的增大而减小C.当x <0时,y 随x 的增大而增大;当x >0时,y 随x 的增大而减小.D.无论x 如何变化,y 不变.5.小刚以2千米/时的速度匀速从甲地行走到乙地,甲乙两地的距离为12千米.(1)求小刚行走的路程s (千米)与时间t (小时)之间的关系式以及自变量t 的取值范围.(2)画出图象.(3)根据图象说明当t 增大时,s 增大还是减小?【教学说明】教师让学生自主完成,加强对正比例函数图象和性质的理解和反馈学生对知识的掌握情况,便于及时矫正强化.【答案】1.-2;2.m >12;3.A ;4.B5.解:(1)s与t的关系式为s=2t,自变量t的取值范围是0≤t≤6.(2)是以O(0,0)和(6,12)为端点的一条线段.(3)由图象可知当t增大时,s也增大.四、师生互动,课堂小结1.师生共同回顾正比例函数图象的画法以及它的性质.2.本节课你掌握了哪些知识?还有哪些疑问?请与大家交流.【教学说明】引导学生回顾本课所学知识,对知识进行归纳整理,找出不足便于教师及时调整,做到当堂消化.1.教材习题4.3第1、2、3、4题.2.完成练习册中本课时相应练习..本节课通过实际操作了解正比例函数图象的画法及利用图象说明其性质,并掌握图象特征与关系式的联系规律,经过思考讨论知道了正比例函数不同表现形式的转化方法和图象的简单画法,为后面学习一次函数奠定了基础.第2课时一次函数的图象和性质1.理解直线y=kx+b与直线y=kx之间的位置关系.2.会利用两个合适的点画出一次函数的图象.3.掌握一次函数的性质.4.通过一次函数图象和性质的研究,体会数形结合法在问题解决中的作用,并能运用性质、图象及数形结合法解决相关函数问题.5.在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.【教学重点】一次函数的图象和性质.【教学难点】由一次函数的图象归纳得出一次函数的性质及对性质的理解.一、创设情境,导入新课我们知道正比例函数y=-2x的图象是过原点的一条直线,那么一次函数y=-2x+1的图象又是怎样的呢?它们之间有什么位置关系?下面一起研究一次函数y=kx+b的图象.【教学说明】利用所学知识“最近发展区”——正比例函数的图象及性质,为类比、探究一次函数的图象及其性质作好铺垫.二、思考探究,获取新知1.一次函数的图象.(1)你能用描点法画出一次函数y=-2x+1的图象吗?(2)通过上面画一次函数的图象想一想一次函数y=kx+b的图象有什么特点,对此你是怎样理解的?【教学说明】在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出一次函数的图象,可以说是得心应手,减轻了学生心理上的压力.【归纳结论】一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只要确定两个点画直线就可以了.一次函数y=kx+b的图象也称为直线y=kx+b.2.一次函数的性质.做一做:在同一直角坐标系内分别画出一次函数y=2x+3,y=-x,y=-x+3和y=5x-2的图象.讨论:(1)上述四个函数中,随着x值的增大,y的值分别如何变化?相应图象上点的变化趋势如何?(2)直线y=-x与y=-x+3的位置关系如何?你能通过适当的移动将直线y=-x 变为直线y=-x+3吗?一般地,直线y=kx+b与y=kx又有怎样的位置关系呢?(3)直线y=2x+3与直线y=-x+3有什么共同点?一般地,你能从函数y=kx+b 的图象上直接看出b的数值吗?【教学说明】进一步巩固一次函数图象的画法,并为探究一次函数的性质做准备.让学生利用图象观察体验y=kx与y=kx+b两者之间的位置关系,从而得出函数y=kx+b的图象实际上是对直线y=kx上的所有点进行平移的结果,同时还让学生明白b的值就是图象与y轴交点的纵坐标.【归纳结论】一次函数y=kx+b的图象经过点(0,b).当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.三、运用新知,深化理解1.已知一次函数y=mx+|m+1|的图象与y轴交于点(0,3),且y随x值的增大而增大,则m的值为.2.一次函数y=3x-4的图象不经过().A.第一象限B.第二象限C.第三象限D.第四象限3.下列一次函数中,y随x值的增大而减小的是().A.y=2x-1B.y=3-4xx+2D.y=(5-2)x4.一次函数y=(3a-1)x+5图象上两点A(x1,y1),B(x2,y2),当x1<x2时,y1>y2,则a的取值范围是().A.a>0B.a<0C.a>1 3D.a<1 35.如图,将直线OA向上平移2个单位,得到一个一次函数的图象,求这个一次函数的表达式.【教学说明】让学生独立完成,加强对所学知识的理解,及时反馈教学效果,查漏补缺.对有困难的学生给予鼓励和帮助,并进行强化.【答案】1.2 2.B 3.B 4.D5.解:设直线OA的关系式为y=kx,把(-2,4)代入得k=-2,所以y=-2x,将直线OA向上平移2个单位之后一次函数的表达式为:y=-2x+2.四、师生互动,课堂小结1.师生共同回顾一次函数图象的性质和它与正比例函数图象之间的关系.2.本节课你掌握了哪些知识?觉得哪些是大家需要注意的?与同学们分享.【教学说明】教师引导学生回顾本课知识点,加强理解各知识点之间的联系,不断进行归纳总结.让学生大胆交流,力求让每一个人在数学上得到一定的发展.1.布置作业:习题4.4第1、2、3、4题.2.完成练习册中本课时相应练习..本节课学习了用两点法画一次函数图象,进而利用数形结合的探究讨论的方法寻求出一次函数图象的特征与关系式的相互联系,使我们对一次函数知识的理解与掌握更透彻,也体会到数学思想在数学研究中的重要性.4 一次函数的应用第1课时确定一次函数的表达式1.了解两个条件确定一次函数,一个条件确定正比例函数.2.能由两个条件求出一次函数的表达式,并解决有关实际问题.3.经历用两个已知条件确定一次函数表达式的应用过程,提高学生研究数学问题的技能,体验数形结合,逐步学习利用这一思想分析解决问题.4.具体感知数形结合的思想在一次函数中的应用价值.【教学重点】根据所给信息确定一次函数的表达式.【教学难点】灵活运用一次函数的有关知识解决相关问题.一、创设情境,导入新课我们前面学习了有关一次函数的一些知识,掌握了其关系式的特点及图象特征,并学会了已知关系式画出其图象的方法以及分析图象特征与关系式之间的联系规律.如果反过来,告诉我们有关一次函数图象的某些特征或实际问题,能否确实关系式呢?这将是我们这节课要解决的主要问题,大家可有兴趣?【教学说明】利用一次函数图象的特征和关系式的相互转化,加强学生对知识的理解.通过提问,引发同学分析思考、寻求解决问题的办法,激起学生探求知识的欲望.二、思考探究,获取新知确定一次函数的表达式.教材第89页“想一想”上面的内容.思考:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?【教学说明】通过思考分析解决由图象到关系式转化的方法过程,总结归纳一次函数关系式与图象之间的转化规律,增强数形结合的思想在函数中重要性的理解.采用上面类似的方法,你能解决日常生活中的实际问题吗?请看例题:例见教材第89页例1【教学说明】一次函数的应用实质就是确定一次函数的关系式,这就需要充分挖掘题中所给的已知条件,分析量与量之间的关系,从而找到求关系式的方法.然后利用关系式解决有关问题.三、运用新知,深化理解1.一个正比例函数的图象经过点A(3,-2),B(a,3),则a= .2.如图,直线l是一次函数y=kx+b的图象.填空:(1)当x=30时,y= .(2)当y=30时,x= .第2题图第3题图3.如图,一次函数的图象过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为().A.y=-x+2B.y=x+2C.y=x-2D.y=-x-24.如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.【教学说明】教师让学生独立完成,加深对所学知识的理解和检查学生对一次函数的实际应用的掌握程度,并有针对性地加强辅导.【答案】1. -92;2. 22,42;3.B;4.解:由图象可知b=2,图象又过点(2,-2),则有2k+b=-2,所以b=2,k=-2,这个一次函数的解析为y=-2x+2,当y=0时,解得x=1,l与两坐标轴所围成的三角形的面积为y=12×1×2=1.四、师生互动,课堂小结通过本节课的学习,你已经掌握了哪些知识?还有什么疑难问题需要解决的?与同学交流.【教学说明】学生利用互相交流的方式对知识进行搜集,归纳整理,互相补充,教师及时给予点评.特别是对于解题方法技巧上可以做适当强调,帮助他们加深印象.1.布置作业:习题4.5第1、2、4题.2.完成练习册中本课时相应练习..本节课利用图象或实际背景求一次函数关系式和利用关系式解决相关的实际问题,让学生从中体会求解关系式的方式方法.与此同时,在教学中要把图象和关系式有机结合起来,讨论它们之间的相互转化很有必要,培养学生全面认识事物的观点.第2课时一个一次函数的应用1.能利用一次函数解决简单的实际问题.2.了解一次函数与一元一次方程之间的关系.3.通过生活的实例结合一次函数的图象解决问题,继续体会数形结合的思想所起的重要作用.4.让学生深刻体会到数学知识来源于实际生产、生活的需求,反之,又服务于生产、生活的实际.【教学重点】利用一次函数解决简单的实际问题.【教学难点】根据一次函数图象去分析解决问题.一、创设情境,导入新课教材第91页例2上面的内容【教学说明】从生活中的实际问题出发,采用提问引发思考的方式引入,激发学生探求知识的兴趣.二、思考探究,获取新知简单的一次函数的实际应用教师引导学生完成教材第91页例2.【教学说明】让学生体会利用一次函数的图象解决实际问题的方法.如果从图象上不能很明显得出结论,还需要求出一次函数的表达式在进行求解.做一做:教材第92页“做一做”.【教学说明】巩固加深根据一次函数图象求直线表达式,同时体会当函数值为零时自变量的取值,为下面学习一元一次方程与一次函数的关系打下了基础.讨论:一元一次方程0.5x+1=0与一次函数y=0.5x+1有什么联系?【教学说明】充分体会一元一次方程与一次函数之间的转化关系,帮助学生从数形结合的角度进一步认识一次函数与一元一次方程的密切联系.【归纳结论】一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解.从图象上看,一次函数y=kx+b的图象与x轴交点的横坐标就是方程kx+b=0的解.三、运用新知,深化理解1.直线y=3x+6与x轴的交点的横坐标x的值是方程2x+a=0的解,则a的值是.2.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所有的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是().A.12分钟B.15分钟C.25分钟D.27分钟3.某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装80套.已知做一套M型号的时装需要A种布料0.6m,B种布料0.9m,可获利润45元;做一套N型号的时装需要A种布料1.1m,B种布料0.4m,可获利润50元.若设生产N型号的时装套数x,用这批布料生产这两种型号的时装所获得总利润为y元.(1)求y与x的函数关系式,并求出自变量x的取值范围;(2)该服装厂在生产这批时装中,当生产N型号的时装多少套时,所获利润最大?最大利润是多少?【教学说明】让学生独立完成,加深对新学知识的理解和检验学生掌握情况,便于教师查漏补缺,及时解决学生的疑难问题.【答案】1.4;2.B;3.解:(1)y=5x+3600(40≤x≤44);(2)当生产N型号的时装44套时,所获利润最大,最大利润是3820元.四、师生互动,课堂小结通过本节课的学习,你会利用一次函数图象解决有关问题吗?你有哪些收获?请与大家共同分享.【教学说明】教师引导学生回顾所学知识点,对知识不断归纳整理,特别有时需要利用图象求出关系式再去解决问题更准确.1.布置作业:习题4.6中的第1、2题.2.完成练习册中本课时相应练习..本节课从实际生活背景出发,利用一次函数及图象解决问题,让学生体会一次函数的应用价值和一次函数与一元一次方程的密切关系,体验应用知识的成就感和学习教学更加热爱生活.。