《线性代数》—行列式的定义和性质
- 格式:pdf
- 大小:84.68 KB
- 文档页数:8
行列式与行列式的性质行列式是线性代数中的一个重要概念,它在矩阵理论、线性方程组的求解以及向量空间的性质研究等方面都起到了至关重要的作用。
本文将从行列式的定义、性质以及应用等方面进行论述,以便更好地理解和应用行列式。
一、行列式的定义行列式是一个方阵所具有的一个标量值,它可以用来描述方阵的性质和特征。
对于一个n阶方阵A=[a_ij],其行列式记作det(A)或|A|,其中i和j分别代表矩阵中的行和列。
二、行列式的性质1. 行列式与矩阵的转置对于一个方阵A,其行列式与其转置矩阵的行列式相等,即det(A)=det(A^T)。
这个性质可以通过矩阵的定义和性质进行证明。
2. 行列式的可加性对于两个n阶方阵A和B,有det(A+B)=det(A)+det(B)。
这个性质可以通过行列式的定义和矩阵的性质进行证明。
3. 行列式的乘法性质对于一个n阶方阵A和一个标量k,有det(kA)=k^n*det(A)。
这个性质说明了行列式与矩阵的数乘之间的关系。
4. 行列式的行交换性对于一个n阶方阵A,如果将其两行进行交换,那么行列式的值会改变符号,即det(A)=-det(A'),其中A'是A进行行交换后的矩阵。
5. 行列式的行倍性对于一个n阶方阵A,如果将其某一行乘以一个非零标量k,那么行列式的值也会乘以k,即det(kA)=k*det(A)。
三、行列式的应用1. 线性方程组的求解行列式可以用来求解线性方程组的解,通过行列式的性质可以得到线性方程组是否有唯一解、无解或者有无穷多解。
2. 矩阵的可逆性一个n阶方阵A可逆的充要条件是其行列式不等于零,即det(A)≠0。
这个性质可以用来判断一个矩阵是否可逆。
3. 矩阵的秩矩阵的秩可以通过行列式的概念来定义,对于一个n阶矩阵A,其秩r等于其非零子式的最高阶数。
行列式的性质可以帮助我们计算矩阵的秩。
4. 矩阵的特征值与特征向量矩阵的特征值与特征向量可以通过行列式的性质来计算,特征值是一个标量,特征向量是一个非零向量,它们满足A*x=λ*x,其中A是矩阵,x是特征向量,λ是特征值。
行列式的性质与运算法则行列式是线性代数中的一个重要概念,它在矩阵运算中起着至关重要的作用。
行列式的性质和运算法则是我们学习和应用行列式的基础,本文将围绕这一主题展开阐述。
一、行列式的定义和基本性质行列式是一个数,它是一个方阵中元素的一种特殊组合。
对于一个n阶方阵A,它的行列式记作det(A)或|A|,其中n表示方阵的阶数。
行列式具有以下基本性质:1. 方阵A的行列式等于其转置矩阵A^T的行列式,即det(A) = det(A^T)。
2. 对调方阵A的两行(或两列),其行列式的值不变,即行列式具有行对换性质。
3. 如果方阵A的某一行(或某一列)的元素全为0,则行列式的值为0。
4. 行列式的值与方阵的行列式的值成正比,即如果一个方阵的某一行(或某一列)的元素都乘以一个常数k,那么行列式的值也将乘以k。
二、行列式的运算法则行列式的运算法则包括加法法则、数乘法则、乘法法则和转置法则。
1. 加法法则对于两个n阶方阵A和B,它们的行列式之和等于行列式分别取和的结果,即det(A + B) = det(A) + det(B)。
2. 数乘法则对于一个n阶方阵A和一个数k,方阵A的行列式乘以k等于行列式乘以k的结果,即det(kA) = k^n * det(A)。
3. 乘法法则对于两个n阶方阵A和B,它们的乘积的行列式等于行列式分别取乘积的结果,即det(AB) = det(A) * det(B)。
4. 转置法则对于一个n阶方阵A,它的转置矩阵A^T的行列式等于原方阵A的行列式,即det(A^T) = det(A)。
三、行列式的应用行列式的应用广泛,它在线性代数、微积分、几何学等领域都有重要的应用。
1. 判断方阵的可逆性一个n阶方阵A可逆的充要条件是其行列式不等于0,即det(A) ≠ 0。
利用这一性质,我们可以通过计算方阵的行列式来判断其可逆性。
2. 求解线性方程组对于一个n元线性方程组,我们可以将其系数矩阵表示为一个方阵A,并将常数项表示为一个列向量b。
行列式的性质及求解方法行列式是线性代数中的一个重要概念,具有广泛的应用领域,例如矩阵求逆、线性方程组的解法、空间向量的叉积等。
在本文中,我们将探讨行列式的性质及其求解方法。
一、行列式的定义及性质1.1 行列式的定义对于一个$n$阶方阵$A=[a_{ij}]$,定义它的行列式为:$$\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn}\\\end{vmatrix}=\sum_{\sigma \in S_n}(-1)^{\mathrm{sgn}(\sigma)}a_{1\sigma(1)}a_{2\sigma(2)}\cdotsa_{n\sigma(n)}$$其中,$\sigma$是$n$个元素的全排列,$S_n$表示$n$个元素的置换群,$\mathrm{sgn}(\sigma)$表示$\sigma$的符号,即$(-1)^k$,其中$k$为$\sigma$的逆序数。
1.2 行列式的性质- 行列式的值不变性行列式的值只与矩阵的元素有关,而与矩阵的行列变换或线性组合无关。
- 互换矩阵的两行或两列,行列式变号将矩阵的两行(列)互换,则该行列式的值取相反数。
- 矩阵的某一行(列)乘以一个数$k$,行列式的值乘以$k$将矩阵的某一行(列)乘以一个数$k$,则该行列式的值乘以$k$。
- 矩阵的某一行(列)加上另一行(列)的k倍,行列式不变将矩阵的某一行(列)加上另一行(列)的k倍,行列式的值不变。
- 方阵的行列式等于其转置矩阵的行列式$$\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn}\\\end{vmatrix}=\begin{vmatrix}a_{11} & a_{21} & \cdots & a_{n1} \\a_{12} & a_{22} & \cdots & a_{n2} \\\vdots & \vdots & \ddots & \vdots \\a_{1n} & a_{2n} & \cdots & a_{nn}\\\end{vmatrix}$$二、行列式的求解方法2.1 按定义计算法按照上述定义,计算行列式涉及到全排列的遍历与逆序数的计算,这种方法虽然理论上可行,但计算量较大,不适用于较大的矩阵。
行列式一、 行列式的定义对于n 阶方阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n nin n a a a a a a a a a A 22222111211, (11—2—1)与之相联系的一个数,表示成nnn ninna a a a a a a a a22222111211, (11—2—2)称为一个n 阶行列式或A 的行列式,记为A 或A det 。
在行列式中,ij a 也称为元素。
为了规定行列式的值,我们引入下面的概念。
定义 1 在方阵(11—2—1)中,划去元素ij a 所在的第i 行和第j 列,余下的()21-n 个元素按原来的排法构成的一个1-n 阶行列式nnj n j n n ni j i j i i n i j i j i i n j j a a a a a a a a a a a a a a a a1,1,1,11,11,11,1,11,11,11,111,11,111+-+++-++-+----+-,称为元素ij a 的余子式,记为ij M 。
()ij ji M +-1称为元素ij a 的代数余子式,记为ij A 。
例1 在四阶方阵⎪⎪⎪⎪⎪⎭⎫⎝⎛----132********33112 中,第2行第3列的元素5的余子式是12420131223--=M 。
而其代数余子式为()321+-乘它的余子式M ,即12420131223---=A 。
定义2 一阶行列式只有一个元素,其值就规定为这个元素的值。
n 阶行列式(2≥n )的值规定为它任意一行的各元素与对应的代数余子式的乘积之和。
用符号表示,就是()∑∑=+=-==nj ij ij ji nj ij ij M a A a A 111。
上式称为行列式按第i 行展开。
可以证明,这个值与展开时所用的行是没有关系的(见例3)。
例2 用定义展开二阶行列式22211211a a a a 。
解 按第1行展开。
因为()222211111a a A =-=+,()212121121a a A -=-=+,于是得这个行列式的值为2112221112121111a a a a A a A a -=+。
同济大学线性代数第六版行列式的定义与性质行列式是线性代数中的一个重要概念,广泛应用于各个领域。
在同济大学线性代数教材的第六版中,对行列式的定义和性质进行了详细的介绍和讲解。
本文将按照该教材的要求,对行列式的定义和性质进行论述,以便帮助读者更好地理解和掌握这一概念。
一、行列式的定义在同济大学线性代数第六版中,行列式的定义如下:给定一个n阶方阵 A = (a[i][j]),其中1≤i, j ≤ n,我们定义A的行列式为Det(A),记作|A|。
对于一阶方阵来说,其行列式即为该方阵的唯一元素。
对于二阶方阵来说,其行列式的计算公式为:Det(A) = a[1][1]·a[2][2] -a[1][2]·a[2][1]。
对于三阶及以上的方阵,行列式的计算通过递推公式进行。
二、行列式的性质同济大学线性代数第六版还介绍了行列式的一系列性质,我们将逐一进行论述。
性质1:互换行(列)则行列式变号行列式Det(A)中,如果将A中的两行(列)进行互换,则行列式的值会发生变号。
性质2:行/列与常数相乘,则行列式乘以相应的常数行列式Det(A)中,如果将A的某一行(列)的所有元素都乘以一个常数k,则行列式的值也会乘以k。
性质3:行/列成比例,则行列式为0行列式Det(A)中,如果A的某行(列)的元素之间成比例,则行列式的值为0。
性质4:两行(列)相同,则行列式为0行列式Det(A)中,如果A的两行(列)完全相同,则行列式的值为0。
性质5:行列式的任意一行(列)可以表示为其他行(列)的线性组合行列式Det(A)中,任意一行(列)可以表示为其他行(列)的线性组合。
性质6:行列式的行(列)元素交换,行列式变号行列式Det(A)中,如果将A的两行(列)进行交换,则行列式的值会发生变号。
除了以上性质,同济大学线性代数第六版中还介绍了更多关于行列式的性质,这里不再一一列举。
三、行列式的应用行列式在线性代数中具有广泛的应用。
行列式的基本概念===========行列式是线性代数中的基本概念之一,它是一个由矩阵元素构成的数学表达式。
本篇文章将详细介绍行列式的定义、性质、运算、应用、发展历程、相关问题与技巧以及在数学中的地位与价值。
1. 行列式的定义--------行列式是由一个方阵的元素构成的数学表达式。
它可以看作是矩阵的一种性质,用于求解线性方程组、判断矩阵是否可逆等。
行列式的定义如下:设A是一个n阶方阵,即A是一个n行n列的矩阵,A的行列式记作det(A),并且满足以下性质:1. 交换律:det(A)=det(AT),其中AT为A的转置矩阵。
2. 结合律:对于任意的常数k,det(kA)=k^n * det(A)。
3. 单位元:当A为n阶单位矩阵I时,det(I)=1。
2. 行列式的性质--------行列式具有以下性质:1. 如果矩阵A中有两行或两列相等,则det(A)=0。
2. 如果矩阵A是一个对称矩阵,那么它的行列式等于它的主对角线上的元素的乘积减去副对角线上的元素的乘积。
即det(A)=a11*a22*...*ann - a12*a21*...*ann+a1n*a2n*...*an-1,n-1。
3. 如果矩阵A是一个埃尔米特矩阵(即AT=A),那么它的行列式等于它的特征值的乘积。
即det(A)=a11*a22*...*ann * a12*a21*...*ann+a1n*a2n*...*an-1,n-1。
4. 如果矩阵A是一个可逆矩阵,那么它的行列式不等于零。
即det(A)!=0。
5. 如果矩阵A是一个正定矩阵,那么它的行列式大于零。
即det(A)>0。
6. 如果矩阵A是一个负定矩阵,那么它的行列式小于零。
即det(A)<0。
7. 如果矩阵A是一个半正定矩阵,那么它的行列式大于等于零。
即det(A)>=0。
8. 如果矩阵A是一个半负定矩阵,那么它的行列式小于等于零。
即det(A)<=0。