第1讲n阶行列式的定义与性质
- 格式:ppt
- 大小:1.14 MB
- 文档页数:56
一、内容提要本章主要介绍n阶行列式的定义,性质及其计算方法.此外还介绍用n阶行列式求解n元线性方程组的克莱姆法则.二、学习要求正确理解n阶行列式的定义;熟悉行列式的性质,会利用行列式的性质化简行列式;熟悉行列式按行(列)展开的方法;熟练掌握行列式的计算方法;掌握克莱姆法则.第一节 n阶行列式的定义一、二阶与三阶行列式行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的.因此我们首先讨论解方程组的问题.设有二元线性方程组(1)用加减消元法容易求出未知量x1,x2的值,当a11a22– a12a21≠0 时,有(2)这就是一般二元线性方程组的公式解.但这个公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源.我们称4个数组成的符号为二阶行列式.它含有两行,两列.横的叫行,纵的叫列.行列式中的数叫做行列式的元素.从上式知,二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一个是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号.根据定义,容易得知(2) 中的两个分子可分别写成如果记则当D≠0时,方程组(1) 的解(2)可以表示成(3)这样用行列式来表示解,形式简便整齐,便于记忆.首先(3) 中分母的行列式是从(1) 式中的系数按其原有的相对位置而排成的.分子中的行列式,x1的分子是把系数行列式中的第1列换成(1)的常数项得到的,而x2的分子则是把系数行列式的第2列换成常数项而得到的.例1用二阶行列式解线性方程组解:这时,因此,方程组的解是对于三元一次线性方程组(4)作类似的讨论,我们引入三阶行列式的概念.我们称符号(5)为三阶行列式,它有三行三列,是六项的代数和.这六项的和也可用对角线法则来记忆:从左上角到右下角三个元素的乘积取正号,从右上角到左下角三个元素的乘积取负号.例2令当D≠0时,(4)的解可简单地表示成(6)它的结构与前面二元一次方程组的解类似.例3解线性方程组解:所以,例4已知,问a,b应满足什么条件?(其中a,b均为实数).解,若要a2+b2=0,则a与b须同时等于零.因此,当a=0且b=0时给定行列式等于零.为了得到更为一般的线性方程组的求解公式,我们需要引入n阶行列式的概念,为此,先介绍排列的有关知识。
第一章 行列式行列式的概念是在研究线性方程组的解的过程中产生的. 它在数学的许多分支中都有着非常广泛的应用,是常用的一种计算工具。
特别是在本门课程中,它是研究后面线性方程组、矩阵及向量组的线性相关性的一种重要工具。
§1.1 n 阶行列式定义和性质1.二阶行列式定义1 二阶行列式 由22个数排成2行2列所组成下面的式子(或符号)2112221122211211a a a a a a a a -=称为二阶行列式,行列式中每一个数称为行列式的元素,数ij a 称为行列式的元素,它的第一个下标i 称为行标,表明该元素位于第i 行,第二个下标j 称为列标, 表明该元素位于第j 列.位于第i 行第j 列的元素称为行列式的),(j i 元。
2阶行列式由22个数组成,两行两列;展开式是一个数或多项式;若是多项式则必有2!2=项,且正负项的各数相同。
应用:解线性方程例1:二阶线性方程组⎩⎨⎧=+=+22221211212111b x a x a b x a x a且021122211≠-a a a a . 解:2112221122211211a a a a a a a a D -==,2122212221211b a a b a b a b D -==,2112112211112a b b a b a b a D -==得 .,2211DD x DD x ==例2:解方程组.328322121⎩⎨⎧-=-=+x x x x 解 D 2132-=13)2(2⨯--⨯=,7-=1D 2338--=)3(3)2(8-⨯--⨯=,7-=2D 3182-=18)3(2⨯--⨯=.14-=因,07≠-=D 故所给方程组有唯一解1x D D 1=77--=,1=2x DD 2=714--=.2=2.三阶行列式定义2由23个数排成3行3列所组成下面的式子(符号) 333231232221131211a a a a a a a a a =.332112322311312213322113312312332211a a a a a a a a a a a a a a a a a a ---++ 称为三阶行列式。
第一讲 行列式与矩阵一、内容提要(一)n 阶行列式的定义∑-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn j j j njn j j j j j nn n n n n a a a a a a a a a a a a D ΛΛΛΛΛΛΛΛΛ21212211)(212222111211)1(τ(二)行列式的性质1.行列式与它的转置行列式相等,即T D D =; 2.交换行列式的两行(列),行列式变号;3.行列式中某行(列)元素的公因子可提到行列式外面来; 4.行列式中有两行(列)元素相同,则此行列式的值为零;5.行列式中有两行(列)元素对应成比例,则此行列式的值为零; 6.若行列式中某行(列)的元素是两数之和,即nm n n in in i i i i na a ab a b a b a a a a D ΛΛΛΛΛΛΛΛΛ21221111211+++=, 则nnn n in i n nnn n in i n a a a b b b a a a a a a a a a a a a D ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ21121112112112111211+= 7.将行列式某行(列)的k 倍加到另一行(列)上去,行列式的值不变。
(三)行列式依行(列)展开 1.余子式与代数余子式(1)余子式的定义去掉n 阶行列式D 中元素ij a 所在的第i 行和第j 列元素,剩下的元素按原位置次序所构成的n-1阶行列式称为元素ij a 的余子式,记为ij M(2)代数余子式的定义ij a 的代数余子式的记为ij j i ij ij M A A +-=)1(, 2.n 阶行列式D 依行(列)展开 (1)按行展开公式∑=⎩⎨⎧≠==nj kj ij k i ki DA a 10 (2)按列展开公式∑=⎩⎨⎧≠==ni is ij sj sj DA a 10 (四)范德蒙行列式∏≤<≤----==nj i i jn nn n nnx xx x x x x x x x x D 1112112222121)(111ΛΛΛΛΛΛΛ(五)矩阵的概念1.矩阵的定义由m×n 个数),,2,1;,,2,1(n j m i a ij ΛΛ==组成的m 行n 列的矩形数表⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=mn m m n n a a a a a a a a a A ΛΛΛΛΛΛ212222111211 称为m×n 矩阵,记为n m ij a A ⨯=)(2.特殊的矩阵(1)方阵:行数与列数相等的矩阵;(2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下)三角阵;(3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵;(5)单位矩阵:主对角线上元素全是1的对角阵,记为E ; (6)零矩阵:元素全为零的矩阵。
第一章 行列式行列式是由研究线性方程组而产生的,在科学技术的许多领域里都要用到它,特别是在线性代数中更是不可缺少的工具。
为了研究n 元线性方程组,需要讨论n 阶行列式的问题。
本章我们将在二、三阶行列式的基础上给出n 阶行列式的定义、行列式的性质、行列式的展开与计算以及Cramer 法则等内容。
§1—§4 n 阶行列式的定义本节首先给大家介绍全排列、逆序数以及二、三阶行列式等知识,然后引出n 阶行列式的概念。
一、全排列及其逆序数在初等数学中讨论过全排列,即由n 个不同元素排成一列,叫做这n 个元素的全排列(简称排列)。
特别地,从1到n 这n 个自然数,规定由小到大的自然排列为标准次序。
于是,在这n 个自然数的任一排列np p p21中,当其中某两个元素的先后次序与排列的标准次序不同时,就说有一个逆序。
一个排列中所有逆序的总数称为这个排列的逆序数。
逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列。
下面我们来讨论计算排列的逆序数的方法。
不妨设从1到n 这n 个自然数的一个排列为np p p21,考虑元素i p (ni,,2,1 =),如果比i p 大且排在i p 前面的元素有i t 个,就说元素i p 的逆序数为i t ,那么所有元素的逆序数的总和∑==+++=ni in t t t t t 121即为这个排列np p p21的逆序数。
例1 求排列54312的逆序数。
解 在排列54312中,由于 5排在首位,逆序数为0;4的前面比4大的数有1个,其逆序数为1; 3的前面比3大的数有2个,其逆序数为2; 1的前面比1大的数有3个,其逆序数为3; 2的前面比2大的数有3个,其逆序数为3。
故排列54312的逆序数为933210=++++=t例2 求排列)2(42)12(31n n-的逆序数。
解 该排列的逆序数为2)1(01)2()1(-=+++-+-=n n n n t二、对换下面,我们讨论对换以及它与排列的奇偶性的关系。