第7章电力电子装置电磁兼容设计-s
- 格式:ppt
- 大小:420.00 KB
- 文档页数:26
电力电子变换器设计中的电磁兼容性研究电力电子变换器是现代电力系统中不可或缺的重要组件。
它们在电力转换和能量传输中扮演着至关重要的角色。
然而,由于电力电子变换器所涉及的高频电磁干扰和电磁辐射问题,其电磁兼容性问题成为设计中的关键挑战。
电力电子变换器的设计中,电磁兼容性研究是确保其正常运行和与其他系统协同工作的重要考虑因素。
电磁兼容性研究主要关注两个方面:电磁干扰和电磁辐射。
首先是电磁干扰问题。
由于电力电子变换器内部存在高频开关和大电流环路,这些因素都会导致电磁干扰的产生。
在电磁兼容性研究中,需要针对电磁干扰进行分析和解决。
其中,主要包括以下几个方面:电源滤波器设计、传导电磁干扰的抑制、辐射电磁干扰的抑制、线路布局和屏蔽技术等。
1. 电源滤波器设计:电力电子变换器的高频开关会导致电源输出端电压上的谐波。
为了减少这些谐波对电网和其他设备的干扰,需要设计合适的电源滤波器来滤除这些谐波。
2. 传导电磁干扰的抑制:电力电子变换器中存在许多高频开关电路,这些电路很容易产生传导电磁干扰。
通过使用合适的滤波电路和屏蔽技术,可以有效地抑制传导干扰。
3. 辐射电磁干扰的抑制:电力电子变换器中的开关器件和电缆会导致辐射电磁干扰。
通过合适的线路布局和屏蔽技术,可以降低辐射干扰的影响。
4. 线路布局和屏蔽技术:合理的线路布局和屏蔽技术能够减少电磁干扰的传播路径,从而有效地降低电磁干扰的影响。
除了电磁干扰问题外,电磁辐射问题也是电力电子变换器设计中不可忽视的因素。
电磁辐射会对周围的电子设备和通信系统产生干扰。
因此,在电力电子变换器的设计中,需要采取措施来降低电磁辐射。
1. 线路布局和屏蔽技术:合理的线路布局和屏蔽技术可以减少电磁辐射的传播路径,从而降低辐射干扰的影响。
2. 选择合适的开关器件:选择合适的开关器件可以降低电磁辐射的水平。
例如,采用低辐射电磁器件可以有效地减少辐射。
3. 接地和屏蔽技术:合理的接地和屏蔽技术可以降低电磁辐射的水平。
电力电子设备电磁兼容性设计引言随着电力电子技术的发展,电力电子设备在能源转换、传输和分配中起着至关重要的作用。
然而,由于电力电子设备中的高频电磁干扰,导致电磁兼容性问题成为一个日益严重的挑战。
本文将探讨电力电子设备的电磁兼容性问题,并介绍一些设计原则和方法来提高电力电子设备的电磁兼容性。
电磁干扰的原因和影响电力电子设备产生的高频电磁干扰主要由以下几个方面造成:1.开关干扰:电力电子设备中的开关元件(如晶体管、二极管)会产生大量高频开关干扰信号,这些信号会传播到设备的其他部分和周围环境中。
2.电源干扰:电力电子设备中的电源回路会产生高频电磁干扰,主要是由于电源输入和输出之间的电容和电感。
3.高频回路干扰:电力电子设备中的高频电路(如滤波电路、谐振电路)会产生高频电磁干扰信号,这些信号会辐射到设备的其他部分和周围环境中。
这些高频电磁干扰信号会对电力电子设备自身产生以下影响:1.性能降低:高频电磁干扰信号会干扰设备正常的工作信号,导致设备性能下降,甚至出现故障。
2.其他设备的干扰:设备辐射的高频电磁干扰信号可能干扰周围的其他电子设备,引起干扰或故障。
3.对人体健康的影响:高频电磁辐射可能对人体健康产生不良影响,如头痛、失眠等。
为了解决这些问题,电力电子设备的电磁兼容性设计变得至关重要。
电磁兼容性设计原则和方法为了提高电力电子设备的电磁兼容性,可以采取以下原则和方法:1. 布局和屏蔽合理的设备布局和屏蔽设计可以降低电磁干扰的传播和辐射。
具体措施包括:•分层布局:将不同功能的电路板分层放置,减少彼此之间的干扰。
•高频信号屏蔽:使用金属屏蔽罩、屏蔽壳等,对高频信号进行屏蔽,阻止其辐射到其他部分。
•地面屏蔽:加强设备的地面屏蔽,减少地面回路干扰。
2. 滤波器设计合理设计滤波器可以减少电力电子设备辐射的高频电磁干扰信号。
滤波器可以包括输入滤波器和输出滤波器。
具体措施包括:•输入滤波器:通过合理设计输入滤波器,可以降低电源干扰信号的传导。
独立电力系统及其电力电子装置的电磁兼容内容简介:本书总结了作者十多年来对独立电力系统电磁兼容的研究成果,并吸收了近年来国内外关于电磁兼容性研究的成果,针对从事该领域工作的实际需要,对电力电子装置及由其构成的独立电力系统电磁兼容性的各方面问题作了较全面、系统、深入的描述,重点阐述了传导EMI 的测量、电力电子设备和系统中的传导EMI分析与EMI抑制、系统级电磁兼容性分析与建模及系统级电磁兼容性故障诊断等。
本书通过大量实例来说明实际干扰的情况及消除办法,特别是系统级电磁兼容分析中关于干扰源的描述和干扰途径的确定等,是涉及独立电力系统及其电力电子装置中电磁兼容性各个方面的一部专著。
本书适用于高等院校和科研机构中从事电磁兼容和电力电子教学与研究工作的教师、研究生、本科生及相关领域的工程技术人员。
前言第1章概述1.1 电磁兼容的定义1.2 电磁兼容的标准化进程1.3 电磁兼容的研究领域1.4 电力电子系统中电磁兼容研究的发展1.5 本书的内容安排第2章电磁干扰描述2.1 常见的电磁干扰源及其特性2.1.1 自然干扰源2.1.2 人为干扰源2.2 电磁干扰的作用途径及分析方法2.2.1 传导干扰2.2.2 辐射干扰2.3 电磁干扰的分类2.3.1 按频率成分进行分类2.3.2 按干扰性质分类2.3.3 按传输方式分类第3章传导电磁干扰的测量3.1 信号的频域和时域特征3.2 EMC标准中常用的基本单位3.3 电磁兼容测试中常用的仪器3.3.1 EMI接收机3.3.2 频谱分析仪3.3.3 信号源和功率放大器3.3.4 测量附属设备3.4 干扰电压测量3.4.1 差模干扰电压测量3.4.2 共模干扰电压测量3.4.3 干扰电压测量时的一些问题3.5 干扰电流测量3.5.1 电流探头3.5.2 退耦电容3.5.3 功率吸收钳3.6 面电流测量方法3.6.1 感应线圈测量方法3.6.2 表面磁场测量方法3.7 脉冲类干扰的测量3.7.1 脉冲类干扰的参数3.7.2 瞬变脉冲强度的测量第4章常见电力电子设备的电磁干扰4.1 电力电子电路中的EMI4.1.1 电力半导体器件产生的EMI4.1.2 电力电子电路中的电磁干扰4.1.3 脉冲类信号的频谱估算4.2 整流电路产生的EMI预测4.2.1 可控整流电路产生的EMI计算4.2.2 高频整流电路产生的EMI4.3 斩波器产生的EMI4.3.1 斩波器电磁干扰模型4.3.2 IGBT开关暂态建模4.4 逆变器产生的EMI分析4.4.1 逆变器干扰源的开关函数描述4.4.2 PWM逆变器干扰计算方法第5章电力电子系统的传导干扰分析5.1 系统电磁干扰的分析方法5.2 多整流器系统中的传导干扰预测5.2.1 多个相控整流器系统的干扰预测5.2.2 多PWM高频整流器系统的干扰预测5.3 电力推进(整流-逆变-电动机)系统的电磁干扰分析5.3.1 系统结构5.3.2 逆变系统干扰源计算5.3.3 差模干扰等效电路5.3.4 共模干扰等效电路5.4 开关电源系统传导干扰分析5.4.1 干扰耦合通道辨识5.4.2 基本干扰耦合模型第6章抑制电磁干扰的措施6.1 对电磁干扰源采取的抑制措施6.1.1 继电器系统的噪声抑制6.1.2 电力半导体开关的噪声抑制6.1.3 变压器的屏蔽6.1.4 电容滤波6.1.5 其他减小干扰发射的办法6.2 滤波元件和滤波电路6.2.1 滤波元件的选择与设计6.2.2 滤波电路的选择与测量6.3 EMI滤波器的设计6.3.1 按插入损耗设计EMI滤波器6.3.2 最坏情况插入损耗的计算6.3.3 阻抗不匹配时的设计6.3.4 EMI滤波器元件高频特性的影响6.3.5 EMI滤波器的布置第7章电磁敏感度分析7.1 电磁干扰源的等效与EMS测试信号7.1.1 浪涌电压7.1.2 IEC规定的EMS测试信号7.1.3 GJB中规定的EMS测试信号7.2 系统内部的EMI耦合及其抑制技术7.2.1 公共阻抗耦合7.2.2 电磁场耦合7.2.3 电磁耦合抑制方法7.3 瞬变干扰能量计算7.3.1 拉普拉斯变换中根的计算方法7.3.2 脉冲类干扰的能量计算公式7.3.3 能量密度函数的绘制和应用第8章系统电磁兼容性分析与建模8.1 系统电磁兼容性分析概述8.1.1 电磁兼容分析方法8.1.2 电磁兼容模型描述8.2 系统电磁兼容性的仿真分析8.2.1 电磁兼容预测分析的步骤和作用8.2.2 系统电磁兼容性分析原理框图8.3 系统电磁兼容性分析中的建模技术8.3.1 EMI源的建模8.3.2 接地系统建模分析8.3.3 电磁耦合计算模型8.4 系统电磁兼容分析中的简化8.4.1 灵敏度应用于EMI研究8.4.2 干扰灵敏度的概念8.4.3 用灵敏度方法建立EMI模型第9章系统电磁兼容性故障诊断9.1 概述9.2 电磁兼容故障诊断方法9.3 电磁兼容故障诊断实例9.3.1 隐性故障诊断举例9.3.2 显性故障诊断举例参考文献附录附录一主要符号表附录二缩略术语表。
电力电子技术中的电磁兼容性设计电磁兼容性设计是电力电子技术中必须关注的一个重要方面。
电力电子设备需要在分布式电源、智能电网、清洁能源和高速列车等应用场景中发挥作用,因此在这些应用场景中需要高度注意电磁兼容性的问题。
在本文中,我们将讨论电力电子技术中的电磁兼容性设计。
1. 什么是电磁兼容性?在我们开始讨论电力电子技术中的电磁兼容性设计之前,让我们首先了解一下什么是电磁兼容性。
电磁兼容性通常是指电子设备在电磁环境中与其他设备、系统或环境进行协调、共存甚至共生存的能力。
简而言之,电磁兼容性是一种能够确保电子设备能正常运行且在电磁环境中不产生外部干扰或承受来自外部的干扰的能力。
2. 电力电子技术中的电磁兼容性电力电子技术中的电磁兼容性设计是确保电力电子设备能够在电磁环境中工作并保持高效性的重要一环。
因为电力电子设备通常在高功率状态下运行,为了确保其不受来自其他设备的干扰以及不会对其他设备或环境造成干扰,必须从设备选型、设计、制造和安装等方面考虑电磁兼容性。
3. 电磁干扰的来源电磁干扰的来源是多方面的,它可以来自电力电子设备自身,也可以来自其他设备或环境。
在电力电子技术中,电磁干扰主要来自以下几个方面:(1) 电源/信号线。
电源和信号线是交流电功率/信号输入和输出的主要途径。
这些线路可以作为天线,发射和接收电磁波信号。
(2) 开关元件。
开关元件的开关动作会产生大量噪声和高频随机变化,从而产生电磁干扰。
(3) 电磁辐射。
所有的电子设备都会产生电磁辐射。
尤其是在高压和高功率设备中,电磁辐射可能会对周围的设备和人产生影响。
4. 电磁兼容性设计的方法电磁兼容性设计是为了确保电力电子设备可以在电磁环境中正常工作而采用的一系列方法和手段。
这些方法和手段包括:(1) 策略性地选择设备。
在电力电子设备设计的起始阶段,选择高品质的设备是非常重要的。
例如,低噪声、低漏磁等特性的元器件可以降低设备的电磁辐射和电磁信噪比。
(2) 开展电磁兼容性分析。
电力电子技术在电磁兼容性中的应用电力电子技术是指利用电子技术对电力进行转换、控制和处理的一门学科。
它在现代电力系统中有着广泛的应用,为电力的输送和使用提供了便利。
然而,随着电子设备的日益普及和电力系统规模的不断扩大,电磁兼容性问题也越来越突出,给电力系统的安全可靠运行带来挑战。
本文将介绍电力电子技术在电磁兼容性中的应用,包括屏蔽技术、滤波器设计和电磁干扰抑制方法等方面。
一、屏蔽技术电磁辐射是电力电子设备所产生的电磁波在空间中传播的过程,当电磁波遇到传输介质时,一部分能量会被吸收,一部分能量会沿着传输介质的表面传播,这就是电磁波的辐射。
为了减少电磁辐射对周围电子设备的干扰,我们可以采用屏蔽技术来限制电磁辐射。
屏蔽技术主要包括外屏蔽和内屏蔽两种形式。
外屏蔽是通过在电力电子设备的外部加上金属屏蔽箱或屏蔽罩,将电磁辐射限制在设备内部。
内屏蔽则是在电子设备内部进行局部屏蔽,可以采用金属箔、金属网等材料进行内部结构的屏蔽。
二、滤波器设计电力电子设备在工作过程中会产生高频噪声和谐波信号,这些信号会通过电力线路传播,对其他设备产生干扰。
为了滤除这些干扰信号,需要设计合适的滤波器。
滤波器设计的关键是选择合适的滤波器类型和参数。
常见的滤波器类型包括低通滤波器、带通滤波器和陷波滤波器等。
根据实际需求选择合适的滤波器类型,并根据电磁兼容性测试结果进行参数调整,可以有效地抑制电磁干扰。
三、电磁干扰抑制方法除了屏蔽技术和滤波器设计外,还可以采取其他一些电磁干扰抑制方法来提高电力电子设备的电磁兼容性。
1. 接地设计:电力电子设备的接地设计是影响其电磁兼容性的重要因素。
合理设计接地系统可以降低电磁辐射和接收到的外界干扰,提高设备的免疫能力。
2. 引入消噪器:消噪器是通过引入衰减器、吸波器或电磁隔膜等元件来减小电磁干扰的设备。
通过选择合适的消噪器类型和位置,可以有效地抑制电磁干扰信号。
3. 降噪技术:降噪技术是指在电力电子设备设计过程中,通过合理的电路布局、信号处理和滤波等手段,降低电磁辐射和传导干扰,提高设备的抗干扰性能。
电力电子系统的电磁干扰与兼容技术西安交通大学肖国春2010.9.11主要内容1 引言(14)2 电力电子系统的干扰特点(5)3 电力电子系统的干扰分类(9)4 电力电子装置的干扰抑制技术(34)5 研究进展(8)6 结束语(1)主要内容1 引言基础知识与背景提到电磁干扰1 引言(6/14)什么是电磁兼容?★EMC包括两方面的含义:在一定的电磁环境中能按原设计正常工作,对电磁干扰有一定的抗扰度;所产生的电磁噪声不致于对它周围环境造成严重污染或影响其它设备正常运行。
抗干扰与电磁发射控制⇒电磁兼容EMS + EMI = EMC骚电磁干扰三要素1 引言(12/14)背景电力电子装置以其高效率的电能转换而著称,正日益广泛地用于工业与民用的电力变换和传动控制。
据估计,大约有50%~60%的电能要流经某种电力电子设备后才能为人类所利用,最终这个比例可能上升到100%。
世界用电量平均每年上升7%~14%。
按此速度计算,25年后空间电磁能量密度最高将达到26倍;50年后达到700倍。
本世纪电磁环境恶化已成定局。
这种电磁污染不仅限于设备,还关系到人类本身。
1 引言(13/14)背景电力电子装置的高频化和大容量化不仅导致器件所承受的电应力的增加和开关损耗的增加,而且产生难以抑制的宽带电磁干扰,对电网和环境造成严重污染,甚至威胁到装置本身乃至与之相关的其他电子设备的正常工作各种国际和国内电磁兼容规范的强制执行,未能达标的产品将无法进入市场。
电力电子装置也不例外。
12电力电子装置中的半导体器件工作在2 电力电子系统的干扰特点(3/5)共模干扰与差模干扰(实例)反激(Flyback)型2 电力电子系统的干扰特点(4/5)电力电子系统干扰的主要特点S装置功率大主电路大功率开关过程中产生高的di/dt和dv/dt,产生强大的(传导型)EMI。
S频率高高频大功率装置会产生强的电磁场(近场)辐射,严重影响周围的电磁环境和电网。
S体积小,控制复杂性能高,功能全,装置内部的控制电路还要承受其主电路及工业应用现场电磁噪声的干扰。
电力电子装置电磁兼容分析摘要随着电磁兼容法规在海内外的普遍实施,电磁兼容问题在电力电子领域受到了越来越多的关注。
本文回顾了国内外最近几年对电力电子装置电磁兼容/电磁干扰问题的研究进展,内容包括功率变流器的电磁干扰分析及抑制技术、电机传动的电磁干扰分析及抑制技术、EMI滤波器的寄生效应等。
最后讨论了电力电子装置电磁兼容技术的发展趋势。
关键词:电磁兼容EMI 抑制电力电子装置1 引言电力电子装置的电磁干扰行为与其他电子设备比如通信系统的电磁干扰行为没有本质上的区别。
电磁干扰的产生需要具备三个条件:第一是干扰源;第二是干扰耦合途径;第三是干扰敏感设备。
三者构成了电磁干扰的三个基本要素。
然而从应用的角度来考虑,电力电子装置的电磁兼容问题具有如下内在特征。
就EMI 而言,虽然电力电子装置的开关频率远低于通信系统的信号频率,但是它的工作电压、工作电流和处理的功率都更高。
电力电子装置的主功率开关器件在开关过程中产生非常高的电流和电压变化率,即非常高的di/dt 与du/dt,它们通过电路中寄生电感和寄生电容产生强烈的瞬态噪声。
因此,主电路开关器件和相关的电路产生的电磁噪声成为电力电子装置中的主要电磁干扰源,并主要以传导和近场干扰源的形式出现。
当然一些高频、高功率电源,诸如高频感应加热电源和等离子体电源等,也会产生强烈的辐射电磁干扰。
而且,所有电力电子装置也会导致严重的EMI 噪声和市电谐波电流注入到电网中,这就不仅污染了电网,也会影响连接到同一电网中的其他电气电子设备的正常工作。
从某种意义上来说,与通信设备比较,电力电子装置产生的EMI 问题可能会更严重。
考虑到EMS 问题,相比通信系统,电力电子装置的控制器通常门限电压更高、尺寸更大,这很容易让人理解为电力电子装置的EMS 问题比电子通信系统的要更容易解决。
然而,下面一些事实使得电力电子装置的EMS 问题依然不可忽视:(1)面临更大的噪声强度。
电力电子装置的噪声电压能达到数百伏甚至上千伏,di/dt 和du/dt 能分别达到103A/µs 和104V/µs。