高等工程数学之数理统计初步与Matlab实例共47页文档
- 格式:ppt
- 大小:3.80 MB
- 文档页数:47
高校统计学专业数理统计建模算法Matlab实现代码详解统计学专业是现代社会中非常重要的学科之一,因为它帮助我们理解和解释各种数据,从而为决策提供依据。
在统计学领域中,数理统计建模是一种重要的方法,它利用数学模型来描述和预测数据的行为。
而Matlab作为一种强大的科学计算软件,可以有效地实现数理统计建模算法。
本文将详细介绍高校统计学专业数理统计建模算法在Matlab中的实现代码。
首先,我们将介绍几种常见的数理统计建模算法,并展示它们在Matlab中的具体代码实现。
随后,我们将详细解释这些代码的原理和使用方法,以便读者能够更好地理解和运用这些算法。
1. 线性回归线性回归是数理统计建模中最基本的算法之一。
它通过拟合一个线性模型来预测连续变量的值。
在Matlab中,可以使用“fitlm”函数实现线性回归。
以下是代码示例:```matlabdata = readtable('data.csv'); % 读取数据集model = fitlm(data, 'Y ~ X1 + X2'); % 构建线性回归模型summary(model); % 打印模型摘要信息```2. 逻辑回归逻辑回归是一种常用的分类算法,它用于预测二元变量的概率。
在Matlab中,可以使用“fitglm”函数实现逻辑回归。
以下是代码示例:```matlabdata = readtable('data.csv'); % 读取数据集model = fitglm(data, 'Y ~ X1 + X2', 'Distribution', 'binomial'); % 构建逻辑回归模型summary(model); % 打印模型摘要信息```3. 决策树决策树是一种常用的分类和回归算法,它通过构建一个树状模型来预测变量的取值。
在Matlab中,可以使用“fitctree”函数实现决策树。
Matlab在数理统计中的运用摘要:概率论与数理统计是现代数学的重要分支,近年来随着计算机的普及,概率论在经济,管理,金融,保险,生物,医学等方面都发挥着越来越大的作用。
使得概率统计成为今天各类各专业大学生最重要的数学必修课之一。
然而,传统的概率统计教学过于偏重理论的阐述、公式的推导、繁琐的初等运算;同时,缺乏与计算机的结合,给学生的学习带来很多困难。
本文介绍概率统计中的主要问题在Matlab中的实现,让我们从繁琐的计算中解放出来,把更多的时间和精力用于基本概念和基本理论的思考和方法的创新,从而提高教师的教学效率和学生的学习效率。
关键词:区间估计,matlab,概率统计一、常用概率密度的计算Matlab中计算某种概率分布在指定点的概率密度的函数,都以代表特定概率分布的字母开头,以pdf (probability density function)结尾,例如:unid pdf(X, N):计算1到N上的离散均匀分布在X每一点处的概率密度;poisspdf(X, Lambda):计算参数为Lambda的泊松分布在X每一点处的概率密度;exppdf(X, mu):计算参数为mu的指数分布在X每一点处的概率密度;normpdf(X, mu, sigma):计算参数为mu, sigma的正态分布在X每一点处的概率密度。
其他如连续均匀分布、二项分布、超几何分布等也都有相应的计算概率密度的函数。
除计算概率密度的函数外,Matlab中还有计算累积概率密度、逆概率分布函数及产生服从某分布的随机数的函数,分别以cdf,inv和rnd结尾。
下面我们来用一个具体的例子说明一下:例1:计算正态分布N(0,1)的随机变量X在点0.6578的密度函数值。
解:>> pdf('norm',0.6578,0,1)ans =0.3213例2:自由度为8的卡方分布,在点2.18处的密度函数值。
解:>> pdf('chi2',2.18,8)ans = 0.0363二、随机变量数字特征的计算(一)数学期望与方差对离散型随机变量,可利用Matlab矩阵运算计算出其数学期望和方差;而对于连续型随机变量,则可以利用Matlab符号运行计算。
《概率论与数理统计》MATLAB上机实验实验报告一、实验目的1、熟悉matlab的操作。
了解用matlab解决概率相关问题的方法。
2、增强动手能力,通过完成实验内容增强自己动手能力。
二、实验内容1、列出常见分布的概率密度及分布函数的命令,并操作。
概率密度函数分布函数(累积分布函数) 正态分布normpdf(x,mu,sigma) cd f(‘Normal’,x, mu,sigma);均匀分布(连续)unifpdf(x,a,b) cdf(‘Uniform’,x,a,b);均匀分布(离散)unidpdf(x,n) cdf(‘Discrete Uniform’,x,n);指数分布exppdf(x,a) cdf(‘Exponential’,x,a);几何分布geopdf(x,p) cdf(‘Geometric’,x,p);二项分布binopdf(x,n,p) cdf(‘Binomial’,x,n,p);泊松分布poisspdf(x,n) cdf(‘Poisson’,x,n);2、掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X(1) 试计算X=45的概率和X≤45 的概率;(2) 绘制分布函数图形和概率分布律图形。
答:(1)P(x=45)=pd =3.0945e-07P(x<=45)=cd =5.2943e-07(2)3、用Matlab软件生成服从二项分布的随机数,并验证泊松定理。
用matlab依次生成(n=300,p=0.5),(n=3000,p=0.05),(n=30000,p=0.005)的二项分布随机数,以及参数λ=150的泊松分布,并作出图线如下。
由此可以见得,随着n的增大,二项分布与泊松分布的概率密度函数几乎重合。
因此当n足够大时,可以认为泊松分布与二项分布一致。
4、 设22221),(y x e y x f +−=π是一个二维随机变量的联合概率密度函数,画出这一函数的联合概率密度图像。
概率与数理统计matlab实验报告.doc一、实验目的通过本次实验,从理论和实践两个角度来学习概率与数理统计的基本知识,包括概率的基本概念、随机变量的概念、分布函数及其性质、期望值和方差、协方差和相关系数、极限定理等。
二、实验原理概率的基本概念:样本空间、随机事件、概率、基本事件、基本概率随机变量的概念:离散随机变量、连续随机变量及其概率密度函数、分布函数分布函数及其性质:分布函数的定义、分布函数的性质期望值和方差:随机变量的期望值和方差的定义协方差和相关系数:协方差和相关系数的定义和性质极限定理:大数定理和中心极限定理三、实验内容与步骤实验一掷硬币实验实验内容:掷硬币实验,记录掷硬币结果并画出频率直方图和频率分布图。
实验步骤:2.使用rand函数模拟掷硬币实验。
设定投掷仿真次数,通过ceil(rand(1,n)*2)-1产生等概率的0和1。
3.统计投掷结果并画出频率直方图。
实验二抛色子实验实验内容:抛色子实验,记录抛色子结果、投掷次数,并画出柱形图。
1.定义一个变量来存储抛色子的结果。
实验三正态分布实验实验内容:正态分布实验,生成符合正态分布的随机数,并绘制该随机变量的概率密度函数和分布函数图像。
1.使用normrnd函数生成符合正态分布的随机数。
2.计算随机变量的概率密度函数和分布函数。
实验四中心极限定理实验实验内容:中心极限定理实验,通过多次模拟,验证中心极限定理的正确性。
1.使用rand函数模拟实验。
2.计算多次试验结果的平均值和标准差。
3.统计多次试验结果,并画出概率密度函数和分布函数图像。
四、实验结论通过本次实验,可以初步了解概率与数理统计的基本概念,从而更好地理解随机现象的本质。
同时,通过实验的方式,可以更加生动直观地展示和验证概率与数理统计的各种经典理论,如期望值和方差、协方差和相关系数等。
此外,实验还通过各种模拟方式,向我们演示了中心极限定理的成立条件和具体表现,从而让我们更加深入地理解这一经典定理的内涵和实际意义。
第9章 概率论与数理统计的MATLAB 实现MA TLAB 总包提供了一些进行数据统计分析的函数,但不完整。
利用MA TLAB 统计工具箱,可以进行基本概率和数理统计分析,以及进行比较复杂的多元统计分析。
本章主要针对大学本科的概率统计课程介绍工具箱的部分功能。
9.1 随机变量及其分布利用统计工具箱提供的函数,可以比较方便地计算随机变量的分布律(概率密度函数)和分布函数。
9.1.1 离散型随机变量及其分布律如果随机变量全部可能取到的不相同的值是有限个或可列个无限多个,则称为离散型随机变量。
MA TLAB 提供的计算常见离散型随机变量分布律的函数及调用格式: 函数调用格式(对应的分布) 分布律y=binopdf(x,n,p)(二项分布) )()1(),|(),,1,0(x I p p x n p n x f n x n x --⎪⎪⎭⎫ ⎝⎛= y=geopdf(x,p)(几何分布) x p p p x f )1()|(-= ),1,0( =xy=hygepdf(x,M,K,n)(超几何分布) ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=n M x n K M x K n K M x f ),,|(y=poisspdf(x,lambda)(泊松分布) λλλ-=e x x f x !)|(),1,0( =x y=unidpdf(x,n)(离散均匀分布) NN x f 1)|(= 9.1.2 连续型随机变量及其概率密度对于随机变量X 的分布函数)(x F ,如果存在非负函数)(x f ,使对于任意实数x 有⎰∞-=x dt t f x F )()(则称X 为连续型随机变量,其中函数)(x f 称为X 的概率密度函数。
MA TLAB 提供的计算常见连续型随机变量分布概率密度函数的函数及调用格式:函数调用格式(对应的分布) 概率密度函数y=betapdf(x,a,b)(β分布) )10()1(),(1),|(11<<-=--x x x b a B b a x f b ay=chi2pdf(x,v)(卡方分布) )2(2)|(2212v exv x f v x v Γ=--)0(≥xy=exppdf(x,mu)(指数分布) μμμxex f -=1)|()0(≥xy=fpdf(x,v1,v2)(F 分布) 2211222121212121111)2()2()2(),|(v v v v v x v x vv v v v v v v x f +-⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛ΓΓ+Γ= y=gampdf(x,a,b)(伽马分布) b xa a e x ab b a x f --Γ=1)(1),|()0(≥xy=normpdf(x,mu,sigma)(正态分布) 222)(21),|(σμπσσμ--=x ex fy=lognpdf(x,mu,sigma)(对数正态分布) 222)(ln 21),|(σμπσσμ--=x ex x fy=raylpdf(x,b)(瑞利分布) 2222)|(b x e b x b x f -=y=tpdf(x,v)(学生氏t 分布) 2121)2()21()|(+-⎪⎪⎭⎫ ⎝⎛+Γ+Γ=v v x v v v v x f πy=unifpdf(x,a,b)(连续均匀分布) )(1),|(],[x I ab b a x f b a -=y=weibpdf(x,a,b)(威布尔分布) )(),|(),0(1x I eabx b a x f bax b ∞--= 比如,用normpdf 函数计算正态概率密度函数值。
(完整版)Matlab概率论与数理统计Matlab 概率论与数理统计⼀、matlab基本操作1.画图【例01.01】简单画图hold off;x=0:0.1:2*pi;y=sin(x);plot(x,y,'-r');x1=0:0.1:pi/2;y1=sin(x1);hold on;fill([x1, pi/2],[y1,1/2],'b');【例01.02】填充,⼆维均匀随机数hold off;x=[0,60];y0=[0,0];y60=[60,60];x1=[0,30];y1=x1+30;x2=[30,60];y2=x2-30;xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0];fill(xv,yv,'b');hold on;plot(x,y0,'r',y0,x,'r',x,y60,'r',y60,x,'r');plot(x1,y1,'r',x2,y2,'r');yr=unifrnd (0,60,2,100);plot(yr(1,:),yr(2,:),'m.')axis('on');axis('square');axis([-20 80 -20 80 ]);2. 排列组合C=nchoosek(n,k):kn C C =,例nchoosek(5,2)=10, nchoosek(6,3)=20.prod(n1:n2):从n1到n2的连乘【例01.03】⾄少有两个⼈⽣⽇相同的概率公式计算nn nn NNn N N N N n N N N C n p )1()1(1)!(!1!1+--?-=--=-=365364(3651)365364365111365365365365rs rs rs ?-+-+=-=-?rs=[20,25,30,35,40,45,50]; %每班的⼈数 p1=ones(1,length(rs)); p2=ones(1,length(rs));% ⽤连乘公式计算for i=1:length(rs)p1(i)=prod(365-rs(i)+1:365)/365^rs(i); end% ⽤公式计算(改进) for i=1:length(rs)for k=365-rs(i)+1:365p2(i)=p2(i)*(k/365);end ;end% ⽤公式计算(取对数) for i=1:length(rs)⼆、随机数的⽣成3.均匀分布随机数rand(m,n); 产⽣m⾏n列的(0,1)均匀分布的随机数rand(n); 产⽣n⾏n列的(0,1)均匀分布的随机数【练习】⽣成(a,b)上的均匀分布4.正态分布随机数randn(m,n); 产⽣m⾏n列的标准正态分布的随机数【练习】⽣成N(nu,sigma.^2)上的正态分布5.其它分布随机数三、⼀维随机变量的概率分布1. 离散型随机变量的分布率(1) 0-1分布 (2) 均匀分布(3) ⼆项分布:binopdf(x,n,p),若~(,)X B n p ,则{}(1)k k n kn P X k C p p -==-,x=0:9;n=9;p=0.3; y= binopdf(x,n,p); plot(x,y,'b-',x,y,'r*')y=[ 0.0404, 0.1556, 0.2668, 0.2668, 0.1715, 0.0735, 0.0210, 0.0039, 0.0004, 0.0000 ]‘当n 较⼤时⼆项分布近似为正态分布 x=0:100;n=100;p=0.3; y= binopdf(x,n,p); plot(x,y,'b-',x,y,'r*')(4)泊松分布:piosspdf(x, lambda),若~()Xπλ,则{}! k eP X kkλλ-==x=0:9; lambda =3;y= poisspdf (x,lambda);plot(x,y,'b-',x,y,'r*')y=[ 0.0498, 0.1494, 0.2240, 0.2240, 0.1680, 0.1008, 0.0504, 0.0216, 0.0081, 0.0027 ] (5)⼏何分布:geopdf (x,p),则1 {}(1)kP X k p p-==-(6)超⼏何分布:hygepdf(x,N,M,n),则{}k n kM N MnNC CP X kC--==x=0:9;p=0.3y= geopdf(x,p);plot(x,y,'b-',x,y,'r*')y=[ 0.3000, 0.2100, 0.1470, 0.1029, 0.0720, 0.0504, 0.0353, 0.0247, 0.0173, 0.0121 ]x=0:10;N=20;M=8;n=4;y= hygepdf(x,N,M,n);plot(x,y,'b-',x,y,'r*')y=[ 0.1022, 0.3633, 0.3814, 0.1387, 0.0144, 0, 0, 0, 0, 0, 0 ]2.概率密度函数(1)均匀分布:unifpdf(x,a,b),1()a x bf x b a≤≤=-其它a=0;b=1;x=a:0.1:b;y= unifpdf (x,a,b);(2)正态分布:normpdf(x,mu,sigma),221()2()2xf x eµσπσ--=x=-10:0.1:12;mu=1;sigma=4;y= normpdf(x,mu,sigma);rn=10000;z= normrnd (mu,sigma,1,rn); %产⽣10000个正态分布的随机数d=0.5;a=-10:d:12;b=(hist(z,a)/rn)/d;%以a为横轴,求出10000个正态分布的随机数的频率plot(x,y,'b-',a,b,'r.')(3)指数分布:exppdf(x,mu),11()xe a x bf xθθ-≤≤=?其它x=0:0.1:10;mu=1/2;y= exppdf(x,mu);plot(x,y,'b-',x,y,'r*')(4)2χ分布:chi2pdf(x,n),12221(;)2(2)00n xnx e xf x n nx--≥=Γ<hold onx=0:0.1:30;n=4;y= chi2pdf(x,n);plot(x,y,'b');%blue n=6;y= chi2pdf(x,n);plot(x,y,'r');%redn=8;y= chi2pdf(x,n);plot(x,y,'c');%cyan n=10;y= chi2pdf(x,n);plot(x,y,'k');%black legend('n=4', 'n=6', 'n=8', 'n=10');(5)t分布:tpdf(x,n),22((1)2)(;)1(2)n xf x nnn nπ-Γ+=+?Γ?hold onx=-10:0.1:10;n=2;y= tpdf(x,n);plot(x,y,'b');%blue n=6;y= tpdf(x,n);plot(x,y,'r');%redn=10;y= tpdf(x,n);plot(x,y,'c');%cyann=20;y= tpdf(x,n);plot(x,y,'k');%black legend('n=2', 'n=6', 'n=10', 'n=20');(6)F分布:fpdf(x,n1,n2),112122212112121222(()2)10(;,)(2)(2)00n n nnn n n nx x xf x n n n n n nx+--Γ++≥=?ΓΓ<hold onx=0:0.1:10;n1=2; n2=6;y= fpdf(x,n1,n2);plot(x,y,'b');%bluen1=6; n2=10;y= fpdf(x,n1,n2);plot(x,y,'r');%redn1=10; n2=6;y= fpdf(x,n1,n2);plot(x,y,'c');%cyann1=10; n2=10;y= fpdf(x,n1,n2);plot(x,y,'k');%blacklegend(' n1=2; n2=6', ' n1=6; n2=10', ' n1=10; n2=6', ' n1=10; n2=10');3.分布函数(){}F x P X x=≤【例03.01】求正态分布的累积概率值设2~(3,2)X N,求{25},{410},{2},{3}P X P X P X P X<<-<<>>,p1=normcdf(5,3,2)- normcdf(2,3,2)=0.5328p1=normcdf(1,0,1)- normcdf(-0.5,0,1) =0.5328p2=normcdf(10,3,2)- normcdf(-4,3,2)=0.9995p3=1-(normcdf(2,3,2)- normcdf(-2,3,2))=0.6977p4=1-normcdf(3,3,2)=0.5004. 逆分布函数,临界值(){}y F x P X x ==≤,1()x F y -=,x 称之为临界值【例03.02】求标准正态分布的累积概率值y=0:0.01:1;x=norminv(y,0,1);【例03.03】求2(9)χ分布的累积概率值hold offy=[0.025,0.975]; x=chi2inv(y,9); n=9;x0=0:0.1:30;y0=chi2pdf(x0,n); plot(x0,y0,'r');x1=0:0.1:x(1);y1=chi2pdf(x1,n); x2=x(2):0.1:30;y2=chi2pdf(x2,n); hold onfill([x1, x(1)],[y1,0],'b'); fill([x(2),x2],[0,y2],'b');函数名调⽤形式注释sort sort(x),sort(A) 排序,x 是向量,A 是矩阵,按各列排序 sortrows sortrows(A) A 是矩阵,按各⾏排序 mean mean(x) 向量x 的样本均值 var var(x) 向量x 的样本⽅差 std std(x) 向量x 的样本标准差 median median(x) 向量x 的样本中位数 geomean geomean(x) 向量x 的样本⼏何平均值 harmmean harmmean(x) 向量x 的样本调和平均值 rangerange(x)向量x 的样本最⼤值与最⼩值的差【练习1.1】⼆项分布、泊松分布、正态分布(1)对10,0.2n p ==⼆项分布,画出(,)b n p 的分布律点和折线;(2)对np λ=,画出泊松分布()πλ的分布律点和折线;(3)对2,(1)np np p µσ==-,画出正态分布2(,)N µσ的密度函数曲线;(4)调整,n p ,观察折线与曲线的变化趋势。
数理统计与Matlab讲义宋向东燕山大学理学院统计学系2010年7月目 录I目 录第1章 数理统计基本概念 .......................................................................................... 1 1.1 总体与样本 ....................................................................................................... 1 1.1.1 简单随机样本 ............................................................................................. 1 1.1.2 有限总体的无放回样本 .............................................................................. 2 1.2 统计量 ................................................................................................................ 3 1.2.1 样本k 阶矩 ................................................................................................. 3 1.2.2 顺序统计量 ................................................................................................. 3 1.2.3 经验分布函数 ............................................................................................. 4 1.3 三个常用分布 .. (6)1.3.12χ分布 ·..................................................................................................... 6 1.3.2 t 分布 .......................................................................................................... 7 1.3.3 F 分布 ......................................................................................................... 8 第2章 参数估计 ....................................................................................................... 10 2.1 点估计 ............................................................................................................ 10 2.1.1 无偏性 ...................................................................................................... 10 2.1.2 有效性 ...................................................................................................... 12 2.1.3 相合性 ...................................................................................................... 12 2.2 区间估计 ........................................................................................................ 13 2.2.1 单正态总体均值的置信区间 .................................................................... 13 2.2.2 单正态总体方差的置信区间 .................................................................... 14 2.2.3 两正态总体均值差的置信区间 ................................................................ 14 2.2.4 两正态总体方差比的置信区间 ................................................................ 15 第3章 假设检验 ....................................................................................................... 16 3.1 假设检验的基本概念 ..................................................................................... 16 3.2 正态总体参数的假设检验 .............................................................................. 17 3.2.1 单正态总体均值的假设检验 .................................................................... 17 3.2.2 单正态总体方差的假设检验 .................................................................... 18 3.2.3 两正态总体均值的假设检验 .................................................................... 19 3.2.4 两正态总体方差的假设检验 .................................................................... 20 3.2.5 大样本非正态总体均值的假设检验 ......................................................... 20 3.3 三个常用的非参数检验 .................................................................................. 21 3.3.1 符号检验................................................................................................... 21 3.3.2 Wilcoxon 秩和检验 ................................................................................... 23 3.3.3 Wilcoxon 符号秩检验 ............................................................................... 28 3.4 检验的功效函数 ............................................................................................. 30 3.5 总体分布的假设检验 . (35)3.5.12χ检验 · (35)数理统计与Matlab讲义3.5.2 Kolmogorov检验 (38)第4章回归分析 (42)4.1 一元回归分析 (42)4.1.1 回归方程的计算 (42)4.1.2 回归方程的显著性检验 (43)4.2 多元回归分析 (46)4.2.1 多元回归方程的计算 (46)4.2.2 显著性检验 (47)4.2.3 逐步回归分析 (50)第5章方差分析 (54)5.1 单因素方差分析 (54)5.1.1 方差分析的基本概念 (54)5.1.2 单因素方差分析的计算 (57)5.1.3 单因素方差分析的多重比较 (61)5.2 双因素方差分析 (63)5.2.1 有重复实验的双因素方差分析 (63)5.2.2 无重复实验的双因素方差分析 (67)参考文献 (71)II第1章 数理统计基本概念1第1章 数理统计基本概念1.1 总体与样本总体:研究对象的全体。