高等工程数学之数理统计初步与Matlab实例共47页文档
- 格式:ppt
- 大小:3.80 MB
- 文档页数:47
高校统计学专业数理统计建模算法Matlab实现代码详解统计学专业是现代社会中非常重要的学科之一,因为它帮助我们理解和解释各种数据,从而为决策提供依据。
在统计学领域中,数理统计建模是一种重要的方法,它利用数学模型来描述和预测数据的行为。
而Matlab作为一种强大的科学计算软件,可以有效地实现数理统计建模算法。
本文将详细介绍高校统计学专业数理统计建模算法在Matlab中的实现代码。
首先,我们将介绍几种常见的数理统计建模算法,并展示它们在Matlab中的具体代码实现。
随后,我们将详细解释这些代码的原理和使用方法,以便读者能够更好地理解和运用这些算法。
1. 线性回归线性回归是数理统计建模中最基本的算法之一。
它通过拟合一个线性模型来预测连续变量的值。
在Matlab中,可以使用“fitlm”函数实现线性回归。
以下是代码示例:```matlabdata = readtable('data.csv'); % 读取数据集model = fitlm(data, 'Y ~ X1 + X2'); % 构建线性回归模型summary(model); % 打印模型摘要信息```2. 逻辑回归逻辑回归是一种常用的分类算法,它用于预测二元变量的概率。
在Matlab中,可以使用“fitglm”函数实现逻辑回归。
以下是代码示例:```matlabdata = readtable('data.csv'); % 读取数据集model = fitglm(data, 'Y ~ X1 + X2', 'Distribution', 'binomial'); % 构建逻辑回归模型summary(model); % 打印模型摘要信息```3. 决策树决策树是一种常用的分类和回归算法,它通过构建一个树状模型来预测变量的取值。
在Matlab中,可以使用“fitctree”函数实现决策树。
Matlab在数理统计中的运用摘要:概率论与数理统计是现代数学的重要分支,近年来随着计算机的普及,概率论在经济,管理,金融,保险,生物,医学等方面都发挥着越来越大的作用。
使得概率统计成为今天各类各专业大学生最重要的数学必修课之一。
然而,传统的概率统计教学过于偏重理论的阐述、公式的推导、繁琐的初等运算;同时,缺乏与计算机的结合,给学生的学习带来很多困难。
本文介绍概率统计中的主要问题在Matlab中的实现,让我们从繁琐的计算中解放出来,把更多的时间和精力用于基本概念和基本理论的思考和方法的创新,从而提高教师的教学效率和学生的学习效率。
关键词:区间估计,matlab,概率统计一、常用概率密度的计算Matlab中计算某种概率分布在指定点的概率密度的函数,都以代表特定概率分布的字母开头,以pdf (probability density function)结尾,例如:unid pdf(X, N):计算1到N上的离散均匀分布在X每一点处的概率密度;poisspdf(X, Lambda):计算参数为Lambda的泊松分布在X每一点处的概率密度;exppdf(X, mu):计算参数为mu的指数分布在X每一点处的概率密度;normpdf(X, mu, sigma):计算参数为mu, sigma的正态分布在X每一点处的概率密度。
其他如连续均匀分布、二项分布、超几何分布等也都有相应的计算概率密度的函数。
除计算概率密度的函数外,Matlab中还有计算累积概率密度、逆概率分布函数及产生服从某分布的随机数的函数,分别以cdf,inv和rnd结尾。
下面我们来用一个具体的例子说明一下:例1:计算正态分布N(0,1)的随机变量X在点0.6578的密度函数值。
解:>> pdf('norm',0.6578,0,1)ans =0.3213例2:自由度为8的卡方分布,在点2.18处的密度函数值。
解:>> pdf('chi2',2.18,8)ans = 0.0363二、随机变量数字特征的计算(一)数学期望与方差对离散型随机变量,可利用Matlab矩阵运算计算出其数学期望和方差;而对于连续型随机变量,则可以利用Matlab符号运行计算。
《概率论与数理统计》MATLAB上机实验实验报告一、实验目的1、熟悉matlab的操作。
了解用matlab解决概率相关问题的方法。
2、增强动手能力,通过完成实验内容增强自己动手能力。
二、实验内容1、列出常见分布的概率密度及分布函数的命令,并操作。
概率密度函数分布函数(累积分布函数) 正态分布normpdf(x,mu,sigma) cd f(‘Normal’,x, mu,sigma);均匀分布(连续)unifpdf(x,a,b) cdf(‘Uniform’,x,a,b);均匀分布(离散)unidpdf(x,n) cdf(‘Discrete Uniform’,x,n);指数分布exppdf(x,a) cdf(‘Exponential’,x,a);几何分布geopdf(x,p) cdf(‘Geometric’,x,p);二项分布binopdf(x,n,p) cdf(‘Binomial’,x,n,p);泊松分布poisspdf(x,n) cdf(‘Poisson’,x,n);2、掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X(1) 试计算X=45的概率和X≤45 的概率;(2) 绘制分布函数图形和概率分布律图形。
答:(1)P(x=45)=pd =3.0945e-07P(x<=45)=cd =5.2943e-07(2)3、用Matlab软件生成服从二项分布的随机数,并验证泊松定理。
用matlab依次生成(n=300,p=0.5),(n=3000,p=0.05),(n=30000,p=0.005)的二项分布随机数,以及参数λ=150的泊松分布,并作出图线如下。
由此可以见得,随着n的增大,二项分布与泊松分布的概率密度函数几乎重合。
因此当n足够大时,可以认为泊松分布与二项分布一致。
4、 设22221),(y x e y x f +−=π是一个二维随机变量的联合概率密度函数,画出这一函数的联合概率密度图像。
概率与数理统计matlab实验报告.doc一、实验目的通过本次实验,从理论和实践两个角度来学习概率与数理统计的基本知识,包括概率的基本概念、随机变量的概念、分布函数及其性质、期望值和方差、协方差和相关系数、极限定理等。
二、实验原理概率的基本概念:样本空间、随机事件、概率、基本事件、基本概率随机变量的概念:离散随机变量、连续随机变量及其概率密度函数、分布函数分布函数及其性质:分布函数的定义、分布函数的性质期望值和方差:随机变量的期望值和方差的定义协方差和相关系数:协方差和相关系数的定义和性质极限定理:大数定理和中心极限定理三、实验内容与步骤实验一掷硬币实验实验内容:掷硬币实验,记录掷硬币结果并画出频率直方图和频率分布图。
实验步骤:2.使用rand函数模拟掷硬币实验。
设定投掷仿真次数,通过ceil(rand(1,n)*2)-1产生等概率的0和1。
3.统计投掷结果并画出频率直方图。
实验二抛色子实验实验内容:抛色子实验,记录抛色子结果、投掷次数,并画出柱形图。
1.定义一个变量来存储抛色子的结果。
实验三正态分布实验实验内容:正态分布实验,生成符合正态分布的随机数,并绘制该随机变量的概率密度函数和分布函数图像。
1.使用normrnd函数生成符合正态分布的随机数。
2.计算随机变量的概率密度函数和分布函数。
实验四中心极限定理实验实验内容:中心极限定理实验,通过多次模拟,验证中心极限定理的正确性。
1.使用rand函数模拟实验。
2.计算多次试验结果的平均值和标准差。
3.统计多次试验结果,并画出概率密度函数和分布函数图像。
四、实验结论通过本次实验,可以初步了解概率与数理统计的基本概念,从而更好地理解随机现象的本质。
同时,通过实验的方式,可以更加生动直观地展示和验证概率与数理统计的各种经典理论,如期望值和方差、协方差和相关系数等。
此外,实验还通过各种模拟方式,向我们演示了中心极限定理的成立条件和具体表现,从而让我们更加深入地理解这一经典定理的内涵和实际意义。