全国高中数学联赛分类汇编专题01不等式
- 格式:doc
- 大小:728.00 KB
- 文档页数:11
高中竞赛不等式公式大全摘要:一、引言二、高中竞赛中常见的不等式类型1.基本不等式2.柯西不等式3.排序不等式4.切比雪夫不等式5.其他不等式三、各类不等式的应用及解题技巧1.基本不等式的应用及解题技巧2.柯西不等式的应用及解题技巧3.排序不等式的应用及解题技巧4.切比雪夫不等式的应用及解题技巧5.其他不等式的应用及解题技巧四、高中竞赛不等式公式大全的总结正文:一、引言不等式作为数学中的一个重要部分,在高中竞赛中占据着举足轻重的地位。
熟练掌握各类不等式及其应用,对于提高竞赛成绩具有至关重要的作用。
本文将为您整理一份高中竞赛不等式公式大全,助您竞赛之路一臂之力。
二、高中竞赛中常见的不等式类型1.基本不等式基本不等式是最常见的不等式类型之一,主要包含算术平均数与几何平均数的不等式、调和平均数与几何平均数的不等式等。
2.柯西不等式柯西不等式是一种在向量空间中的重要不等式,它可以用于证明其他许多不等式,同时也是解决某些问题的重要工具。
3.排序不等式排序不等式是一种与排序相关的不等式,可以用于解决一些与排序有关的问题,如求解排序问题、证明排序的稳定性等。
4.切比雪夫不等式切比雪夫不等式是一种在概率论和统计学中常见的不等式,可以用于求解一些概率和方差的问题。
5.其他不等式除了以上常见的不等式类型,还有一些其他的不等式,如赫尔德不等式、闵可夫斯基不等式等。
三、各类不等式的应用及解题技巧1.基本不等式的应用及解题技巧基本不等式在求解一些最值问题、比较大小问题等方面有着广泛的应用。
解题时需要注意观察题目条件,灵活运用基本不等式。
2.柯西不等式的应用及解题技巧柯西不等式在求解一些向量空间中的最值问题、证明其他不等式等方面具有重要意义。
解题时应熟练掌握柯西不等式的形式,灵活运用。
3.排序不等式的应用及解题技巧排序不等式在解决排序问题、证明排序的稳定性等方面具有重要意义。
解题时需要注意排序不等式的适用范围,正确运用。
4.切比雪夫不等式的应用及解题技巧切比雪夫不等式在求解一些概率和方差的问题中具有重要作用。
全国高中数学联赛一试常用解题方法八、基本不等式法 方法介绍基本不等式法是指利用基本不等式求解数学问题的方法.中学数学竞赛中常见的基本不等式有:(1)平均值不等式; (2)柯西不等式; (3)绝对值不等式;(4)函数的单调性的应用. 例题精讲例1设P 是椭圆192522=+x y 的任意一点,21,F F 是椭圆的两个焦点,试求||||21PF PF ⋅的取值范围.注:设n PF m PF ==||,||21,则10=+n m ,由焦半径公式得9,1≤≤n m , 所以25)10(||||21≤-==⋅m m mn PF PF ,当5==n m 时等号成立. 例2数列}{n a 定义如下:1,51,2411≥+==+n a a a a nn n .求证:对任意1>n ,均有251<<n a . 注:由条件可知对任意0,1>≥n a n ,51155145154331>⨯≥+=+n n n a a a . 另一方面,当2=n 时,210172<=a .设k n =时,有2<k a .若21<≤k a ,则1+k a 21515815153<⨯+<+=k k a a ;若151<<k a ,则25151********<⨯+<+=+k k k a a a .所以总有21<+k a .下略.例3已知523≤≤x ,求证:1923153212<-+-++x x x .注:利用公式151521522211521a a a a a a +++≤+++ (平方平均值),可得左边15931531632441815331534324418x x x x x x -⨯+-⨯++⨯≤-⨯+-⨯++⨯= 1921541915<⨯==右边. 另法1:利用公式33232221321a a a a a a ++≤++,可得 左边193963913)315()32()1(31<+<++=-+-++++≤x x x x x ,下略.另法2:利用公式22222121a a a a +≤+,可得 左边2)315()32(212)31532(12x x x x x x -+-++≤-+-++=1921422)26()1(42612≤+=-++≤-++=x xx x x . 另法3:利用柯西不等式,可得左边192)14(4)3153211)(1111(≤+=-+-+++++++x x x x x .例4设λ是给定的正数,若对所有非负实数y x ,均有222)(y x c xy y x +≥++λ,求实数c的最大值.注:(1)若2≥λ,则22222)(2y x xy y x xy y x +=++≥++λ,当0=x 或0=y 时取等号,此时c 的最大值为1; (2)若20<<λ,则222222)2(42)2)(2()()2()(y x y x y x xy y x xy y x ++=+--+≥--+=++λλλλ, 当y x =取等号,此时c 的最大值为42λ+. 例5设实数c b a ,,满足2332222=++c b a ,求证:12793≥++---c b a .注:由柯西不等式得[]9)3()2()1()321()32(2222222=⋅+⋅+⋅++≤++c b a c b a ,所以332≤++c b a ,故133332793333)32(=≥≥++-++----c b a c b a . 例6设βα,为锐角,且)sin(sin sin 22βαβα+=+,求证:2πβα=+.注:由βα,为锐角得0)cos(>-βα,又=+)sin(βα)cos()cos(1sin sin 22βαβαβα-+-=+(*)于是0)cos()sin(1)cos(≥-+-=+βαβαβα,故)cos()cos(0,2||0βαβαπβα-<+≤≤-≤,代入(*)式得,)(sin )(cos 1)sin(022βαβαβα+=+-≤+≤,所以1)sin(≥+βα,只能是2,1)sin(πβαβα=+=+.另法:若2πβα>+,则0c o s )2s i n (s i n ,2>=->->ββπαβπα,同理0cos sin >>αβ,故)sin(sin cos cos sin sin sin 22βαβαβαβα+=+>+,与)si n(si n si n 22βαβα+=+矛盾,所以2πβα=+.例7已知不等式632sin 2cos sin 6)4cos()32(2+<-++-+a a θθθπθ对于]2,0[πθ∈恒成立,求a 的取值范围.注:设x =+θθcos sin ,则x x x 22)4cos(,12sin ],2,1[2=--=∈πθθ,从而原不等式可化为0436322,63)1(26)32(22>++---+<--++a xx ax x a x x x a ,也即为 0)2(3)2(2>-+--+a x x a x x x ,故0)2)(32(>-+-a x x x ,故02,032<-+<-a xx x ,即02<-+a xx 对]2,1[∈x 恒成立,从而只要max )2(x x a +>,又容易证明x x x f 2)(+=在]2,1[∈x 上递减,所以3,3)2(max >=+a xx .例8设1,0,,=++≥z y x z y x .求证:311)2(11)2(11)2(11827222≤+-++-++-≤x z z y y x .注:因为z z z z z y x ++-=+-=--=+-1131)1)(3(4)1(44)2(1122,所以原不等式等价于311)313131()111111(827≤-+-+-++++++≤z y x z y x ,由柯西不等式得 []49111111,9)1()1()1()111111(≥+++++≥++++++++++z y x z y x z y x ; []89313131,9)3()3()3()313131(≥-+-+-≥-+-+--+-+-z y x z y x z y x . 又z z y y x x 21111,21111,21111-≤+-≤+-≤+, 故25)(213111111=++-≤+++++z y x z y x . 又)2(6131),2(6131),2(6131z z y y x x +≤-+≤-+≤-, 故67)(611313131=+++≤-+-+-z y x z y x . 下略.例9求函数25501022+++-=x x x y 的值域.注:222255)5(+++-=x x y ,设),5,(),5,5(x OB x OA =-=由55||||||=+≥+知,55≥y ,等号当,同向取到,此时25=x . 说明:本题亦可构造距离求解.例10已知c b a ,,为实数,函数c bx ax x f ++=2)(,当10≤≤x 时,1|)(|≤x f . 求||||||c b a ++的最大值.注:因c b a f c b a f c f ++=++==)1(,42)21(4,)0(, 故)0(3)1()21(4),0(2)21(4)1(2f f f b f f f a --=+-=,=++||||||c b a |)0(||)0(3)1()21(4||)0(2)21(4)1(2|f f f f f f f +--++-|)0(||)0(|3|)1(||)21(|4|)0(|2|)21(|4|)1(2|f f f f f f f ++++++≤17|)0(|6|)21(|8|)1(|3≤++≤f f f .当1)21(,1)0()1(-===f f f ,或1)21(,1)0()1(=-==f f f ,即1,8,8=-==c b a 或1,8,8==-=c b a 或1,8,8=-=-=c b a 时,上式中的两个""≤同时取到.例11将编号为1,2,3,…,9的九个小球随机放置在圆周的九个等分点上,每个等分点上各一个小球,设圆周上所有相邻两球号码之差的绝对值之和为S ,求S 达到最小值的方法的概率(若某种方法,经旋转或镜面反射可与另一种方法重合,则认为是相同方法).注:九个编号不同的小球放在圆周的九个等分点上,每点放一个,相当于九个不同元素在圆周上的一个圆形排列,故共有!8种放法,考虑到翻转因素,则本质不同的放法有2!8种.下求使S 达到最小值的放法数:在圆周上,从1到9有优弧与劣统两条路径,对其中任一条路径,设k x x x ,,,21 是依次排列于这段弧上的小球号码,则8|91||)9()()1(||9||||1|211211=-=-++-+-≥-++-+-k k x x x x x x x x ,取等号当且仅当9121<<<<<k x x x ,即每一段弧上的小球编号都是由1到9递增排列,因此1682min =⨯=S .由上知,当每个弧段上的球号}9,,,,,1{21k x x x 确定之后,达到最小值的排列方案便惟一确定.在1,2,…,9中,除1与9外,剩下7个球号2,3,…,8,将它们对应为两个子集,元素较少的一个子集共有6372717072=+++C C C C 种情况,每种情况对应圆周上使S 达到最小的惟一排法,即有利事件总数有62种,故所求概率为31512!826==P . 同步操练1.设0,|,lg |)(>=b a x x f ,且b a ≠,则下列关系中不可能成立的是( )A.)2()()2(b a ab f ab f b a f +>>+ B. )()2()2(ab f ba fb a ab f >+>+ C. 2()()2(b a f ab f b a ab f +>>+ D. )2()2()(b a f b a ab f ab f +>+>注:利用函数|lg |)(x x f =的图象及ba abab b a +>>+2)2,选D . 2.使关于x 的不等式k x x ≥-+-63有解的实数k 的最大值是 .注:由柯西不等式得6)63)(11()63(2=-+-+≤-+-x x x x ,当29=x 时取到等号,因原不等式有解,故6≤k .3.给定正数c b a q p ,,,,,其中q p ≠,若q a p ,,是等比数列,q c b p ,,,是等差数列,则一元二次方程022=+-c ax bx 的根的情况是 .注:由题意得b q c c p b a pq +=+==2,2,2,于是32,32q p c q p b +=+=,进而可得232323232a pq pq q p q p q p bc ==⋅≥+⋅+=,于是0,2<∆>a bc ,无实根.4.直线134=+yx 与椭圆191622=+y x 相交于B A ,两点,该椭圆上点P 使得ABP ∆的面积等于3,则这样的点P 共有 个.注:设)20)(sin 3,cos 4(πααα<<P ,即点P 在第一象限的椭圆上,考虑四边形PAOB 的面积)4sin(26)cos (sin 6)sin 4(321)sin 3(421πααααα+=+=⨯+⨯=+=∆∆OBP OAP S S S ,所以)4(26max π==x S ,因64321=⨯⨯=∆AOB S ,所以PAB S ∆的最大值为3)12(6<-,故点P 不可能在直线AB 的上方,显然在直线AB 的下方有两个点P 满足条件.5.已知y x ,都在区间)2,2(-内,且1-=xy ,则函数229944yx u -+-=的最小值为 . 注:消去y 之后,可得)49(3735122xx u +-+=,求得函数u 的最小值为512.6.已知正实数b a ,满足1=+b a ,则b a M 2112+++=的整数部分是 . 注:因10<<a ,故8)42(2)211(2)211(2222<+-=+++≤+++a a b a b a ,又22112>+++b a ,所以M 的整数部分是2.7.用一张长16厘米、宽10厘米的矩形铁皮,四角各截去一个正方形,折成一个无盖铁盒,由此铁盒的最大容积是 .注:设正方形边长为)50(<<x x (单位:厘米),则x x x V 3)210)(8(32⋅--=, 于是144]33)210()8([323=+-+-≤x x x V ,当2,32108==-=-x x x x 时等等号成立,故最大容积为144立方厘米.8.已知)(x f 是定义在R 上的函数,1)1(=f ,且对任意R x ∈,都有1)()1(,5)()5(+≤++≥+x f x f x f x f ,若x x f x g -+=1)()(,则=)2012(g . 注:由x x f x g -+=1)()(得1)()(-+=x x g x f ,所以,1)1()()1()1(,5)1()(1)5()5(+-+≤-++++-+≥-+++x x g x x g x x g x x g 即)()1(),()5(x g x g x g x g ≤+≥+,所以)()2()3()4()5()(x g x g x g x g x g x g ≤+≤+≤+≤+≤,所以)()1(x g x g =+, 即)(x g 是以1为周期的周期函数,又1)1(=g ,故1)2012(=g .9.函数112424+--++=x x x x y 的值域为 .注:构造向量)23,21(),23,21(22-=+=x x ,则||||y -=,而)0,1(=-,又q p ,不同向,所以11,1||||||||<<-=-<-=y q p q p y ;另一方面222222)23()21()23()21(+-≥++x x ,故0≥y ,于是值域为]1,0[.10.过定点)1,2(P 作直线l 分别交x 轴正向和y 轴正向于B A ,,使A O B ∆的面积最小,则l的方程为 .注:设直线1=+bya x ,则ab b a 22121≥+=,等号在2,4==b a 时取到,所以使AOB ∆面积最小的直线方程为042=-+y x .11.在ABC ∆中,c b a ,,是角C B A ,,的对边,且满足2222c b a =+,则角C 的最大值是 .注:2142cos 22222≤+=-+=ab b a ab c b a C ,当c b a ==时,等号成立,故3π≤∠C .12.设1122)(----=x x x f ,若20πθ≤≤时,0)22()sin 2(cos 2<--++m f m f θθ恒成立,则实数m 的取值范围是 .注:易知)(x f 为奇函数,又)(x f 在R 上是增函数,故22sin 2cos 2+<+m m θθ,令θsin =t ,则)10(0)12(22≤≤>++-t m mt t 恒成立,即)1()1(22+->-t t m . 当1=t 时,R m ∈;当10<≤t 时,]12)1[(2)(2t t t h m -+--=>,由函数x x x g 2)(+=在]1,0(上递减,知当0=t 时1)(max -=x h ,于是得21->m .综上所述,21->m .13.设*,321N n n S n ∈++++= ,求1)32()(++=n n S n S n f 的最大值为 .注:)8(50134641)2)(32()32()(1f nn n n n S n S n f n n =≤++=++=+=+. 14.设椭圆16222=+y x 有一个内接PAB ∆,射线OP 与x 轴正向成3π角,直线BP AP ,的斜率适合条件0=+BP AP k k .(1)求证:过B A ,的直线的斜率k 是定值; (2)求PAB ∆面积的最大值.注:(1)直线x y OP 3:=,代入6322=+y x ,得)3,1(P ,设直线PB PA ,的方程分别为)1(3),1(3-=---=-x k y x k y ,得3332,33322222+--=+-+=k k k x k k k x B A ,从而3)632(,3)632(22+---=+--=k k k y k k k y B A ,于是3=AB k 为定值. (2)设直线AB 方程为b x y +=3,故0)6(32622=-++b bx x ,1634||22+-=b AB ,而点P 到直线AB 的距离为2||b d =,于是3)12(12222≤-=∆b b S PAB ,当2212b b -=,即6±=b 时,取到最大值3.15.已知βα,是方程)(01442R t tx x ∈=--的两个不等实根,函数12)(2+-=x t x x f 的定义域为],[βα.(1)求)(min )(max )(x f x f t g -=;(2)证明:对于)3,2,1)(2,0(=∈i u i π,若1sin sin sin 321=++u u u ,则643)(tan 1)(tan 1)(tan 1321<++u g u g u g .注:(1)设βα≤<≤21x x ,则0144,0144222121≤--≤--tx x tx x , 因此021)(2,02)(4)(42121212221<-+-≤-+-+x x t x x x x t x x ,又0212)(22)(21212121>+-+>+-+x x x x t x x x x t , 于是0)1)(1(]22)()[()()(212221211212>+++-+-=-x x x x x x t x x x f x f , 故函数)(x f 在区间],[βα上是增函数.因41,-==+αββαt ,故)()()(min )(max )(αβf f x f x f t g -=-=,即2516)52(181625)25(11)]22()[()(2222222222+++=+++=++++-+-=t t t t t t t t g αβαββααβαβ. (2)因ii i i i i i i i u u u u u u u u u g 222222cos 916616cos 91624162cos 916cos 24cos 1625tan 16)5tan 2(1tan 8)(tan +=+⨯≥++=+++= 故∑=+≤++312321)cos 916(6161)(tan 1)(tan 1)(tan 1i i u u g u g u g )sin 939316(6161312∑=-⨯+⨯=i i u . 因)2,0(,1sin312π∈=∑=i i i u u ,故1)sin (sin 3231312=≥∑∑==i i i i u u ,而均值不等式与柯西不等式中,等号不能同时成立,所以643)31975(6161)(tan 1)(tan 1)(tan 1321=⨯-<++u g u g u g .。
全国高中数学历届联赛——不等式试题汇编1.【2016年全国联赛】设实数a满足.则a的取值范围是________.【答案】【解析】由.则由原不等式得:.又,故.2.【2015年全国联赛】在平面直角坐标系中,点集所对应的平面区域的面积为______.【答案】24【解析】设.先考虑点集在第一象限中的部分,此时,.故这些点对应于图中的及其内部.由对称性,知点集对应的区域是图中以原点为中心的菱形及其内部.类似地,设.则点集对应的区域是图中以为中心的菱形及其内部.由点集的定义,知所对应的平面区域是被点集中恰一个所覆盖的部分.因此,本题所要求的即为图中阴影区域的面积. 由,知两直线的交点为.由对称性知.故答案为:243.【2013年全国联赛】若实数满足,则的取值范围是______.【答案】【解析】 令,此时,,且题设等式化为.于是,满足方程.如图,在平面内,点的轨迹是以为圆心、为半径的圆在的部分,即点与弧并集. 故.从而,.4.【2009年全国联赛】在坐标平面上有两个区域M 和N ,M 为02y y x y x ⎧⎪⎨⎪-⎩≥≤≤,N 是随t 变化的区域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = .F E DC BA Oyx【答案】212t t -++【解析】由题意知()f t S =阴影部分面积AOB OCD BEF S S S ∆∆∆=-- ()22111122t t =---212t t =-++5.【2009年全国联赛】使不等式1111200712213a n n n +++<-+++L 对一切正整数n 都成立的最小正整数a 的值为 . 【答案】2009 【解析】设()1111221f n n n n =++++++L .显然()f n 单调递减,则由()f n 的最大值()1120073f a <-,可得2009a =.6.【2018年全国联赛】设n 是正整数,均为正实数,满足,且.求证:.【答案】证明见解析 【解析】由条件知,.记,则化为。
近五年全国高中数学联赛选编——不等式1.(2010年 加试3)给定整数2n >,设正实数12,,,n a a a 满足1,1,2,,k a k n ≤=,记12,1,2,,kk a a a A k n k+++==.求证:1112nnk k k k n a A ==--<∑∑ 解:由01k a <≤知,对11k n ≤≤-,有110,0kni ii i k a k an k ==+<≤<≤-∑∑.注意到当,0x y >时,有{}max ,x y x y -<,于是对11k n ≤≤-,有11111kn n k i i i i k A A a a n k n ==+⎛⎫-=-+ ⎪⎝⎭∑∑11111n ki i i k i a a n k n =+=⎛⎫=-- ⎪⎝⎭∑∑ 11111max ,nk i i i k i a a n k n =+=⎧⎫⎛⎫<-⎨⎬ ⎪⎝⎭⎩⎭∑∑ 111max (),n k k nk n ⎧⎫⎛⎫≤--⎨⎬ ⎪⎝⎭⎩⎭1k n =-, 故111n n nk k n k k k k a A nA A ===-=-∑∑∑()1111n n n k n kk k A A A A --===-≤-∑∑111n k k n -=⎛⎫<- ⎪⎝⎭∑12n -=.111nnnk k n k k k k a A nA A ===-=-∑∑∑()1111n n n k n k k k A A A A --===-≤-∑∑111n k k n -=⎛⎫<- ⎪⎝⎭∑12n -=.2.(2011年 加试3)设)4(,,,21≥n a a a n 是给定的正实数,n a a a <<< 21.对任意正实数r ,满足)1(n k j i r a a a a j k ij ≤<<≤=--的三元数组),,(k j i 的个数记为)(r f n .证明:4)(2n r f n <.证明:对给定的)1(n j j <<,满足n k j i ≤<<≤1,且r a a a a jk i j =--①的三元数组),,(k j i 的个数记为)(r g j .注意到,若j i ,固定,则显然至多有一个k 使得①成立.因j i <,即i 有1-j 种选法,故1)(-≤j r g j . 同样地,若k j ,固定,则至多有一个i 使得①成立.因j k >,即k 有j n -种选法,故j n r g j -≤)(.从而},1min{)(j n j r g j --≤.因此,当n 为偶数时,设m n 2=,则有∑∑∑-=-=-=+==121212)()()()(m mj jm j j n j j n r gr g r g r f2)1(2)1()2()1(1212-+-=-+-≤∑∑-+==m m m m j m j m m j m j 4222n m m m =<-=. 当n 为奇数时,设12+=m n ,则有∑∑∑+==-=+==mm j jmj j n j j n r gr g r g r f 21212)()()()(∑∑+==-++-≤mm j mj j m j 212)12()1(422n m <=.3.(2012年 加试3)4.(2013年加试3)5.(2014年加试1)。
2012高考数学分类汇编-不等式选讲1000字不等式是高中数学中的一个重要知识点,也是高考难度较大的部分。
在不等式的学习中,我们需要掌握基本的不等式类型、不等式的解法、不等式的应用等知识点。
一、基本不等式类型1. 一元一次不等式:形如ax+b≤0或ax+b≥0的不等式,其中a、b为实数,x为未知数。
解法:将不等式分两种情况讨论,化简得出不等式的解集。
2. 一元二次不等式:形如ax²+bx+c≤0或ax²+bx+c≥0的不等式,其中a、b、c为实数,x为未知数。
解法:求出二次函数的零点,根据函数的变化性和不等式的符号,求出解集。
3. 绝对值不等式:形如|ax+b|≤c或|ax+b|≥c的不等式,其中a、b、c为实数,x为未知数。
解法:将绝对值符号去掉,分两种情况讨论,得到两个一元一次不等式,求解并合并。
4. 分式不等式:形如f(x)≤ 0或f(x)≥ 0的不等式,其中f(x)为一个分式函数。
解法:根据分式的零点和不等式的符号,分别求解不等式。
二、不等式的解法1. 图像解法:根据函数图像的性质,判断不等式的解集。
2. 化简法:将不等式转化为易于求解的形式。
3. 移项法:将未知数移至同一侧,化为一元不等式求解。
4. 差分法:构造一个新的不等式,使原不等式变为差分形式,进而求解。
5. 变形法:根据一些数学恒等式,将不等式进行变形,使得问题更易于解决。
三、不等式的应用1. 实际应用问题中的不等式:如周长不等式、面积不等式、三角形不等式、均值不等式等。
2. 理论应用问题中的不等式:如证明某个不等式成立或不成立,或者在定理证明中使用不等式来简化分析。
总之,掌握不等式的基本类型、解法和应用,对于高考数学的学习和考试都有很大的帮助。
(一)不等式1. (排序不等式)设,...21n a a a ≤≤≤ n b b b ≤≤≤...21 n j j j ,...,,21是n ,...,2,1的一个排列,则..........221121112121n n j n j j n n n b a b a b a b a b a b a b a b a b a n +++≤+++≤+++-2.(均值不等式) 设n a a a ,......,,21是n 个正数,则na a a n +++...21....21nn a a a ≥3.(柯西不等式)设),...2,1(,n i R b a i i =∈则.)())((211212i ni i ni ini i b a ba ∑∑∑===≥等号成立当且仅当存在R ∈λ,使得),...,2,1(n i a b i i ==λ.从历史角度看,柯西不等式又可称柯西--布理可夫斯基-席瓦兹不等式变形:(1)设+∈∈R b R a i i ,则.)()(11212∑∑∑===≥ni i ni i ni ii b a b a (2)设i i b a ,同号,且 ,0,≠i i b a 则.)()(1121∑∑∑===≥ni i i ni i ni iib a a b a4.(J e n se n 不等式)若)(xf 是),(b a 上的凸函数,则对任意),(,...,,21b a x x x n ∈)].(...)()([1)...(2121n n x f x f x f nn x x x f +++≤+++5.(幂均值不等式)设α)(0+∈>>R a i β 则 .)...()...(121121βββββαααααM na a a n a a a M nn =+++≥+++=证: 作变换 令i i x a =β,则β1i i x a = 则.)...()...(12121βαβαβαβαβαnx x x x x x n M M n n +++≥+++⇔≥ 因 0>>βα 所以 ,1>βα则函数βαx x f =)(是),0(+∞上的凸函数,应用Jensen 不等式即得。
全国高中数学历届联赛——不等式试题汇编一、简介不等式是数学中一种重要的概念,涉及到数的大小关系和数的取值范围等问题。
全国高中数学历届联赛一直重视不等式的考核,下面将为大家汇编一些历年来的不等式试题。
二、一元一次不等式1. 第一题已知不等式3x - 2 > 5,求解x的取值范围。
解析:首先将不等式中的常数移到一边,得到3x > 7,然后通过除以正数的操作得到x > 7/3。
所以x的取值范围为[7/3, +∞)。
2. 第二题已知不等式2x + 1 < 7,求解x的取值范围。
解析:同样地,将不等式中的常数移到一边得到2x < 6,然后除以正数得到x < 3。
所以x的取值范围为(-∞, 3)。
三、一元二次不等式1. 第一题已知不等式x^2 - 5x + 6 > 0,求解x的取值范围。
解析:首先将不等式转化为对应的方程x^2 - 5x + 6 = 0,并求得方程的解x1 = 2,x2 = 3。
然后绘制一元二次函数的图像,根据函数的凹凸性和与x轴的交点,可以得出x的取值范围为(-∞, 2) ∪ (3, +∞)。
2. 第二题已知不等式x^2 - 4x + 3 < 0,求解x的取值范围。
解析:同样地,将不等式转化为对应的方程x^2 - 4x + 3 = 0,并求得方程的解x1 = 1,x2 = 3。
绘制函数图像,可以得出x的取值范围为(1, 3)。
四、综合不等式1. 第一题已知不等式2(x - 1) + 3 < 4(x + 2),求解x的取值范围。
解析:先将不等式中的括号展开,得到2x - 2 + 3 < 4x + 8。
整理得到x > -13/2。
所以x的取值范围为(-13/2, +∞)。
2. 第二题已知不等式(x - 1)(x + 2) > 0,求解x的取值范围。
解析:首先将不等式的等号两边进行因式分解,得到(x - 1)(x + 2) = 0。
A .x +1x(x >0)的最小值是2B .2254x x ++的最小值是2C .2222x x ++的最小值是2D .若x >0,则2-3x -4x的最大值是2-43【变式1-2】(2023·全国·高三专题练习)下列不等式证明过程正确的是( )A .若,R a b Î,则22b a b a a b a b+³×=B .若x >0,y >0,则lg lg 2lg lg x y x y +³×C .若x <0,则4x x+424x x³-×=-D .若x <0,则222222x x x x --+>×=【变式1-3】(2022秋·广东·高三深圳市宝安中学(集团)校考)在下列函数中,最小值是22的是( )A .()20y x x x =+¹B .()10y x x x=+>C .22233y x x =+++D .2xxy e e =+题型02 基础模型:倒数型【解题攻略】倒数型:1t t +,或者b at t+容易出问题的地方,在于能否“取等”,如2sin sin ,其中锐角q q q +,22155x x +++【典例1-1】(2022·浙江杭州·杭州高级中学校考模拟预测)已知,,a b c R Î且0,++=>>a b c a b c ,则22a c ac+的取值范围是( )A .[)2,+¥B .(],2-¥-C .5,22æù--çúèûD .52,2æùçúèû【典例1-2】(2020下·浙江衢州·高三统考)已知ABC V 的面积为23,3A p=,则4sin 2sin sin sin 2sin sin C B BC B C+++的最小值为( )A .162-B .162+C .61-D .61+【变式1-1】(2021上·全国·高三校联考阶段练习)已知1,,,12a b c éùÎêúëû,则2222a b c ab bc+++的取值范围是( ).A .[]2,3B .5,32éùêúëûC .52,2éùêúëûD .[]1,3【变式1-2】(2020上·河南·高三校联考阶段练习)函数22621x y x -=-的最小值为( )A .2B .4C .6D .8【变式1-3】(2022上·上海徐汇·高三上海市第二中学校考阶段练习)若()2sin 3sin f x x t x=+++(x,t R Î)最大值记为()g t ,则()g t 的最小值为A .0B .14C .23D .34题型03 常数代换型【解题攻略】利用常数11m m⨯=代换法,可以代通过“分子分母相约和相乘”,相约去或者构造出“倒数”关系。
全国高中数学竞赛专题-不等式证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的性质分类罗列如下:不等式的性质:.0,0<-⇔<>-⇔≥b a b a b a b a 这是不等式的定义,也是比较法的依据. 对一个不等式进行变形的性质: (1)a b b a <⇔>(对称性)(2)c b c a b a +>+⇔>(加法保序性)(3).0,;0,bc ac c b a bc ac c b a <⇒<>>⇒>>(4)*).(,0N n b a b a b a nn nn ∈>>⇒>>对两个以上不等式进行运算的性质.(1)c a c b b a >⇒>>,(传递性).这是放缩法的依据. (2).,d b c a d c b a +>+⇒>> (3).,d b c a d c b a ->-⇒<> (4).,,0,0bc ad dbc a cd b a >>⇒>>>> 含绝对值不等式的性质:(1).)0(||22a x a a x a a x ≤≤-⇔≤⇔>≤ (2).)0(||22a x a x a x a a x -≤≥⇔≥⇔>≥或 (3)||||||||||||b a b a b a +≤±≤-(三角不等式). (4).||||||||2121n n a a a a a a +++≤+++证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法.因此,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。
不等式1、(2001一试6)已知6枝玫瑰与3枝康乃馨的价格之和大于24,而4枝攻瑰与5枝康乃馨的价格之和小于22元,则2枝玫瑰的价格和3枝康乃馨的价格比较,结果是( ). A.2枝玫瑰价格高 B.3枝康乃馨价格高 C.价格相同 D.不确定 【答案】A2、(2003一试5)已知x ,y 都在区间(-2,2)内,且xy=-1,则函数u=44-x 2+99-y 2的最小值是( )(A) 85 (B) 2411 (C) 127 (D) 125【答案】D3、(2004一试3)不等式log 2x -1+12log 12x 3+2>0的解集为( )A .[2,3)B .(2,3]C .[2,4)D .(2,4] 【答案】C【解析】令log 2x=t ≥1时,t -1>32t -2.t ∈[1,2),x ∈[2,4),选C .4、(2005一试1)使关于x 的不等式36x x k -+-≥有解的实数k 的最大值是( )A .63-B .3C .63+D .6 【答案】D5、(2006一试2)设2log (21)log 2 1x x x x +->-,则x 的取值范围为( ) A .112x << B .1, 12x x >≠且 C . 1x > D . 01x << 【答案】B6、(2007一试2)设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( ) A. ]31,31[- B. ]21,21[- C. ]31,41[-D. [−3,3]【答案】A【解析】令a x 32=,则有31||≤a ,排除B 、D 。
由对称性排除C ,从而只有A 正确。
一般地,对k ∈R ,令ka x 21=,则原不等式为2|||34|||23|1|||a k a k a ≥-⋅+-⋅,由此易知原不等式等价于|34|23|1|||-+-≤k k a ,对任意的k ∈R 成立。
由于⎪⎪⎪⎩⎪⎪⎪⎨⎧<-<≤-≥-=-+-125334121134325|34|23|1|k k k k k k k k ,所以31|}34|23|1{|min R =-+-∈k k k ,从而上述不等式等价于31||≤a 。
7、(2001一试10)不等式232log 121>+x 的解集为 。
9、(2009一试3)在坐标平面上有两个区域M 和N ,M 为02y y xy x ⎧⎪⎨⎪-⎩≥≤≤,N 是随t 变化的区域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = . 【答案】212t t -++【解析】由题意知()f t S =阴影部分面积AOB OCD BEFS S S ∆∆∆=--()22111122t t =---212t t =-++10、(2009一试4)使不等式1111200712213a n n n +++<-+++对一切正整数n 都成立的最小正整数a 的值为 .【答案】2009【解析】设()1111221f n n n n =++++++.显然()f n 单调递减,则由()f n 的最大值()1120073f a <-,可得2009a =.11、(2011一试3)设b a ,为正实数,2211≤+ba ,32)(4)(ab b a =-,则=b a log .12、(2012一试3)设,,[0,1]x y z ∈,则M =是 .13、(2001一试15)用电阻值分别为a 1、a 2、a 3、a 4、a 5、a 6、(a 1>a 2>a 3>a 4>a 5>a 6)的电阻组装成一个如图的组件,在组装中应如何选取电阻,才能使该组件总电阻值最小?证明你的结论。
3.设4个电阻的组件(如图2)的总电阻为R CD若记∑≤<≤=411,j i jiRR S ∑≤<<≤=412k j i kjiRR R S ,则S 1、S 2为定值,于是4313212R R S R R R S R CD --=只有当R 3R 4最小,R 1R 2R 3最大时,R CD 最小,故应取R 4<R 3,R 3<R 2,R 3<R l ,即得总电阻的阻值最小4°对于图3把由R 1、R 2、R 3组成的组件用等效电阻R AB 代替.要使R FG 最小,由3°必需使R 6<R 5;且由1°应使R CE 最小.由2°知要使R CE 最小,必需使R 5<R 4,且应使R CD 最小. 而由3°,要使R CD 最小,应使R 4<R 3<R 2且R 4<R 3<R 1, 这就说明,要证结论成立14、(2003一试13)设32≤x ≤5,证明不等式2x +1+2x -3+15-3x <219.15、(2003二试3)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).【解析】证明:设点集为V ={A 0,A 1,…,A n -1},与A i 连线的点集为B i ,且|Bi |=b i .于是1≤b i ≤n -1.又显然有i =0n -1∑b i =2l ≥q (q +1)2+2. 若存在一点与其余点都连线,不妨设b 0=n -1. 则B 0中n -1个点的连线数l -b 0≥12q (q +1)2+1-(n -1) (注意:q (q +1)=q 2+q =n -1)=12(q +1)(n -1)-(n -1)+1=12(q -1)(n -1)+1 ≥12(n -1)+1≥[12(n -1)]+1.(由q ≥2) 但若在这n -1个点内,没有任一点同时与其余两点连线,则这n -1个点内至多连线[n -12]条,故在B 0中存在一点A i ,它与两点A j 、A k (i 、j 、k 互不相等,且1≤i ,j ,k )连了线,于是A 0、A j 、A i 、A k 连成四边形.现设任一点连的线数≤n -2.且设b 0=q +2≤n -2.且设图中没有四边形.于是当i ≠j 时,B i 与B j 没有公共的点对,即|B i ∩B j |≤1(0≤i ,j ≤n -1).记B 0-=V \B 0,则由|B i ∩B 0|≤1,得|B i ∩B 0-|≥b i -1(i =1,2,…,n -1),且当1≤i ,j ≤n -1且i ≠j 时,B i ∩B 0-与B j ∩B 0-无公共点对.从而(n -1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(n -1≥q (q +1)代入)得 q (q +1)( n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(各取一部分因数比较) ①但(nq -q -n +3-b 0)-q (n -b 0-1)=(q -1)b 0-n +3(b 0≥q +2)≥(q -1)(q +2)-n +3=q 2+q +1-n =0.②(nq -q +2-b 0)-(q +1)(n -b 0)=qb 0-q -n +2≥q (q +1)-n +2=1>0. ③又(nq -q -n +3-b 0)、(nq -q +2-b 0)、q (n -b 0-1)、 (q +1)(n -b 0)均为正整数,从而由②、③得, q (q +1)(n -b 0)(n -b 0-1)<(nq -q +2-b 0)(nq -q -n +3-b 0). ④由①、④矛盾,知原命题成立.又证:画一个n ×n 表格,记题中n 个点为A 1,A 2,…,A n ,若A i 与A j 连了线,则将表格中第i 行j 列的方格中心涂红.于是表中共有2l 个红点,当d (A i )=m 时,则表格中的i 行及i 列各有m 个红点.且表格的主对角线上的方格中心都没有涂红.由已知,表格中必有一行有q +2个红点.不妨设最后一行前q +2格为红点.其余格则不为红点(若有红点则更易证),于是:问题转化为:证明存在四个红点是一个边平行于格线的矩形顶点.若否,则表格中任何四个红点其中心都不是一个边平行于格线的矩形顶点.于是,前n -1行的前q +2个方格中,每行至多有1个红点.去掉表格的第n 行及前q +2列,则至多去掉q +2+(n -1)=q +2+q 2+q =(q +1)2+1个红点.于是在余下(n -1)×(n -q -2)方格表中,至少有2l -(q +1)2-1=q (q +1)2+2-(q +1)2-1=(q -1)(q +1)2+1=q 3+q 2-q 个红点. 设此表格中第i 行有m i (i =1,2,…,n -1)个红点,于是,同行的红点点对数的总和=i =1n -1∑C 2 m i.其中n -1=q 2+q .(由于当n >k 时,C 2n +C 2k <C 2 n +1+C 2 k -1,故当红点总数16、(2008一试14)解不等式121086422log (3531)1log (1)x x x x x ++++<++.【解析】方法一:由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++<+.即 1210864353210x x x x x +++--<. 分组分解 12108x x x +- 1086222x x x ++- 864444x x x ++- 642x x x ++- 4210x x ++-<,864242(241)(1)0x x x x x x +++++-<,所以4210x x +->,22(0x x <。
所以2x <,即x <<.故原不等式解集为(. 方法二: 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等17、(2009一试11)求函数y=++的最大和最小值.【解析】函数的定义域为[]013,.因为y=+=+=当0x=时等号成立.故y的最小值为.又由柯西不等式得22y=()()()11122731312123x x x⎛⎫+++++-=⎪⎝⎭≤所以11y≤.由柯西不等式等号成立的条件,得()491327x x x=-=+,解得9x=.故当9x=时等号成立.因此y的最大值为11.18、(2009二试2)求证不等式:2111ln12nkknk=⎛⎫-<-⎪+⎝⎭∑≤,1n=,2,…【解析】证明:首先证明一个不等式:⑴ln(1)1xx xx<+<+,0x>.事实上,令()ln(1)h x x x=-+,()ln(1)1xg x xx=+-+.则对0x>,1()101h xx'=->+,2211()01(1)(1)xg xx x x'=-=>+++.于是()(0)0h x h>=,()(0)0g x g>=.在⑴中取1xn=得⑵111ln11n n n⎛⎫<+<⎪+⎝⎭.19、(2012二试3)设012,,,,n P P P P 是平面上1n +个点,它们两两间的距离的最小值为(0)d d >求证:01020()3n dP P P P P P ⋅⋅>因而01020()3n dP P P P P P ⋅⋅>证法二: 不妨设01020.n P P P P P P ≤≤≤ 以(0,1,2,,)i P i k =为圆心,2d为半径画1k +个圆,它们两两相离或外切, 设Q 是是圆i P 上任意一点,由于00000013222i ii k k k d P Q P P PQ P P P P P P P P ≤+=+≤+=因而,以0P 为圆心,032k P P 为半径的圆覆盖上述个圆故22003()(1)()1,2,,)22k k d P P k P P k n ππ>+⇒>=所以01020()3n d P P P P P P ⋅⋅>。