序批式活性污泥法(SBR)工艺介绍
- 格式:docx
- 大小:17.45 KB
- 文档页数:4
10.5.7 序批式活性污泥法(SBR工艺)Sequencing Batch Reacter Activated Sludge Procee,其机理与普通活性污泥法完全相同。
SBR工艺是按时间顺序进行进水,反应(曝气)、沉淀、出水、排泥等五个程序进行操作,从污水的进入开始到排泥结束称为一个操作周期,这种操作通过微机程序控制周而复始反复进行,从而达到污水处理之目的。
因此SBR工艺最显著的工艺特点是不需要设置二沉池和污水,污泥回流系统;通过程序控制合理调节运行周期使运行稳定,并实现除磷脱氮;不设二沉淀池及省却回流系统,占地少,投资省,基建和运行费低,适合于中小水量污水处理的工艺,但由于该工艺是稳定状态下运行的活性污泥工艺,工业化运用时间较短,尚无十分成熟的设计、运行、管理经验,因此SBR工艺是一种尚处于发展、完善阶段的技术。
(1)SBR工艺特点①工作原理SBR是活性污泥法的一个变型,它的反应机理以及污染物质的去除机制与传统活性污泥基本相同,仅运行操作不同,操作模式由进水——反应——沉淀——排水——排泥5个程序,在一个周期均在一个设有曝气和搅拌装置的反应器(池)中进行,这种操作周而复始进行,以达到不断进行污水处理的目的,省却二沉池和污水、污泥回流系统。
传统SBR工艺在工程应用中存在一定的局限性,首先是在进水流量较大的情况下,需对反应系统进行调节,如果处理出水要求同时除磷脱氮,则更需对工艺流程进行必要的改造,因而在实际应用中SBR逐渐发展了各种新形式。
②循环式CAST(CASS)系统CAST是SBR工艺的一种新型式,称为循环式活性污泥法(亦称CASS)它分为主反应区和预反应区,运行方式为连续进水(沉淀期和排水期保持进水),间歇排水,并将主反应区部分污泥回流至预反应区,运行时沉淀阶段不进水,使排水的稳定性得到保障,这样CAST实际分为三个反应区:一区为生物选择器又称为预反应区;二区为缺氧区;三区为好氧区,各区容积之比为1:5:30。
定义与特点反应过程反应原理工作原理适用范围去除固体杂质调节水质水量降低有机物浓度030201预处理生物反应化学反应反应阶段将沉淀下来的污泥回流到反应阶段,以增加微生物量,提高污水处理效果。
沉淀阶段污泥回流泥水分离排放水污泥处理排放阶段反应器的设计应考虑其容积、形状、高度、底部形状、支架和附件等因素,以实现良好的水力性能和稳定性。
反应器一般采用钢结构或钢筋混凝土结构,内部可采用不同的填料或曝气器以实现不同的工艺效果。
反应器是SBR污水处理工艺的核心设备之一,主要作用是进行生物反应。
反应器曝气设备的主要作用是为反应器中的微生物提供氧气,促进微生物的代谢和生长。
曝气设备一般采用空气泵、罗茨风机或离心风机等设备,将空气通过曝气管或曝气盘等装置注入反应器中。
曝气设备应根据工艺需求和反应器大小选择合适的型号和功率,并设置合理的曝气时间和强度。
曝气设备污泥泵的主要作用是将反应器中的污泥抽出,以便进行后续处理或处置。
污泥泵一般采用离心泵、螺杆泵或隔膜泵等类型,其选型应根据反应器的形状、大小和污泥的特性进行选择。
污泥泵的流量和扬程应满足工艺需求,并应设置合适的管路和阀门,以确保污泥的顺利排出。
撇水器的主要作用是将反应器中的水分从污泥中分离出来,以便进行后续处理或排放。
撇水器一般采用堰板式、旋转式或叶片式等类型,其设计应考虑反应器的形状、大小和污泥的特性进行选择。
撇水器的堰板高度、旋转速度或叶片角度等参数应满足工艺需求,以确保水分能够顺利地排出反应器。
高效去除污染物SBR工艺通过在反应器中实现微生物的吸附和降解,能够高效地去除污水中的污染物,包括有机物、氮、磷等。
SBR工艺适用于多种类型的污水,包括生活污水、工业废水和农业废水等,具有广泛的适应性。
SBR工艺可以根据实际需要调整运行方式,例如可以采取间歇运行或连续运行,也可以进行周期性的调节。
SBR工艺采用了高效的反应器,可以在较小的空间内实现污水的处理,从而节省了占地面积。
1.1 SBR工艺简介SBR是序批式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的字母缩写。
其最初是由英国学者Ardern和Lockett于1914年提出的,但是鉴于当时曝气器易堵塞,自动控制水平低,运行操作管理复杂等原因,很快就被连续式活性污泥法取代。
直至20世纪70年代,随着各种新型曝气器、浮动式出水堰(滗水器)和自动控制监测的硬件设备和软件技术的开发,特别是计算机和工业自控技术的不断完善,对污水处理过程进行自动操作已成为可能,SBR工艺以它独特的优点受到广泛关注,并迅速得到发展和应用,现在世界上已有数百座SBR污水处理厂在成功运行。
美国国家环境保护署(EPA)认为SBR工艺是一种低投资、低操作成本及维修费用、高效益的环境治理技术。
SBR属于活性污泥法的一种,其反应机制及去除污染物的机理与传统的活性污泥法基本相同,只是运行操作方式有很大区别。
它是以时间顺序来分割流程各单元,整个过程对于单个操作单元而言是间歇进行的。
典型SBR集曝气、沉淀于一池,不需设置二沉池及污泥回流设备。
在该系统中,反应池在一定时间间隔内充满污水,以间歇处理方式运行,处理后混合液进行沉淀,借助专用的排水设备排除上清液,沉淀的生物污泥则留于池内,用于再次与污水混合处理污水,这样依次反复运行,构成了序批式处理工艺。
典型的SBR系统分为进水、反应、沉淀、排水与闲置五个阶段运行,见图1-1。
图1-1 SBR基本运行模式SBR工艺具有以下几个主要的优点:1. 处理构筑物很少,一个SBR反应器集曝气、沉淀于一体,省去了初沉池、二沉池和回流污泥泵房。
因此,大大节约了处理构筑物的占地面积、构筑物间的连接管道及流体输送设备,一般可降低工程总投资的10%~20%。
2. 由于其间歇进水,时间长短、水量多少均可调节,因此对水量水质的变化具有较强的适应性,不需另设调节池。
3. 占地少,比传统活性污泥法少占地30%-50%,是目前各种污水处理工艺中占地最省的工艺之一。
序批式活性污泥法(SBR)简介1、SBR法的发展背景SBR(sequncing batch reactor)法是一种序批式生物反应器间歇运行的活性污泥法污水处理工艺。
作为一种污水生物处理方法,它始终没有离开过同连续流式活性污泥法(CFS)的共同发展,但由于序批式的污水处理方法受到曝气头孔眼堵塞,设备利用率不高等问题的困扰,致使间歇式活性污泥法发展缓慢。
事实上,自20世纪20年代以来污水处理基本以CFS (Continuous Flow System Sludge Prorcess) 为主。
SBR处理工艺其实也并不是一种“全新”的污水处理技术。
早在1914 年由英国人Alden 和Lockett 等人就提出污水按批量运行(operated in batch mode)的概念,只是当时没有得到推广应用,直到20世纪70 年代初,由美国Natre Dame 大学的Irvine教授等人,采用实验室规模装置对SBR 工艺进行了系统研究,并于1980 年在美国国家环保局(USEPA) 的资助下,在印第安纳州的Culver 城改建并投产了世界上第一个SBR 污水处理厂。
此后,日本、德国、澳大利亚、法国等国都对SBR 处理工艺进行了应用与研究。
法国的Degrement 水公司将SBR反应器作为定型产品供小型污水处理站使用。
我国于20 世纪80 年代中期开始对SBR 进行研究和应用.上海市政设计院于1985 年在吴淞肉联厂设计投产我国第一座SBR 污水处理站,设计处理能力为2400t/d。
目前北京、广州、无锡、扬州、昆明、山西、福州、陕西等地已有多座SBR 处理设施投入使用。
2、SBR法工艺原理SBR 本质上仍属于活性污泥法的一种,它是由5 个阶段组成,即进水( Fill ) 、反应(React ) 、沉淀(Settle) 、排水(Decant) 、闲置( Idle),从污水流入开始到待机时间结束算一个周期。
在一个周期内,一切过程都在一个设有曝气或搅拌装置的反应池内进行,这种周期周而复始反复进行(如图1 所示) 。
SBR是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。
与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。
它的主要特征是在运行上的有序和间歇操作,SBR技术的核心是SBR 反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。
正是SBR工艺这些特殊性使其具有以下优点:1、理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。
2、运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。
3、耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。
4、工艺过程中的各工序可根据水质、水量进行调整,运行灵活。
5、处理设备少,构造简单,便于操作和维护管理。
6、反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。
7、SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。
8、脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。
9、工艺流程简单、造价低。
主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。
SBR系统的适用范围由于上述技术特点,SBR系统进一步拓宽了活性污泥法的使用范围。
就近期的技术条件,SBR系统更适合以下情况:1) 中小城镇生活污水和厂矿企业的工业废水,尤其是间歇排放和流量变化较大的地方。
2) 需要较高出水水质的地方,如风景游览区、湖泊和港湾等,不但要去除有机物,还要求出水中除磷脱氮,防止河湖富营养化。
3) 水资源紧缺的地方。
SBR系统可在生物处理后进行物化处理,不需要增加设施,便于水的回收利用。
SBR工艺在工厂小型生活污水处理厂的应用一、本文概述随着工业化和城市化的快速发展,小型生活污水处理厂在保障水质安全和环境可持续发展方面扮演着越来越重要的角色。
在众多污水处理工艺中,序批式活性污泥法(Sequencing Batch Reactor,简称SBR)工艺因其高效、灵活和节能的特点,在小型生活污水处理厂中得到了广泛应用。
本文旨在探讨SBR工艺在工厂小型生活污水处理厂的应用,分析其处理效果、运行管理、经济效益及环境影响等方面的实际情况,以期为相关领域的实践和研究提供参考。
本文首先介绍了SBR工艺的基本原理和特点,包括其发展历程、工艺流程、主要设备及其功能等。
随后,结合具体工程案例,详细阐述了SBR工艺在小型生活污水处理厂的设计、建设和运行过程中的实际应用情况,包括工艺参数的确定、设备的选型与配置、运行管理要点等。
在案例分析的基础上,本文进一步分析了SBR工艺在小型生活污水处理厂中的处理效果,包括出水水质、污染物去除率等指标的评价,并探讨了其经济性和环境友好性。
本文总结了SBR工艺在小型生活污水处理厂应用中的优势与不足,并提出了针对性的改进建议。
展望了SBR工艺在未来小型污水处理领域的发展趋势和应用前景,以期为相关领域的实践和研究提供有益的借鉴和指导。
二、SBR工艺原理及特点SBR(Sequencing Batch Reactor)工艺,即序批式活性污泥法,是一种按间歇曝气方式来运行的活性污泥污水处理技术。
其工艺原理主要基于生物反应动力学原理,通过在单一反应池内依次完成进水、反应、沉淀、排水和闲置五个阶段,实现对污水的有效处理。
工艺流程简单:SBR工艺将曝气、沉淀、排水等功能集于一个反应池内,省去了传统活性污泥法的多个构筑物,从而简化了工艺流程,减少了占地面积和投资成本。
运行灵活:SBR工艺可以通过调整运行周期、反应时间、曝气量等参数,以适应不同水质和处理要求,具有较强的运行灵活性。
污泥产量低:SBR工艺通过间歇曝气的方式,可以在一定程度上抑制污泥的产生,从而降低污泥处理成本。
污水站SBR序批式活性污泥法工艺方案污水站是指用来处理城市污水的设施,而SBR序批式活性污泥法是一种常用的污水处理技术。
下面是一个关于污水站SBR序批式活性污泥法工艺方案的描述。
1. 工艺原理和过程流程:SBR序批式活性污泥法是一种通过分阶段进行接触氧化和沉淀的处理工艺。
其原理是将污水分成多个处理阶段,每个阶段包括进料、接触氧化、沉淀和放水等步骤。
2. 污水处理单元介绍:SBR序批式活性污泥法包含进水池、SBR反应池、二沉池以及出水池等单元。
- 进水池: 用于接收和调节进水质量和流量,并将污水送入SBR反应池。
- SBR反应池: 是进行生物接触氧化的核心单元,污水在此处与活性污泥接触,通过生物反应去除有机物质。
- 二沉池: 用于沉淀生物固体和部分悬浮物,并将上清液送入出水池。
- 出水池: 用于储存处理后的水,准备放水或进一步处理。
3. 运行方案和控制策略:SBR序批式活性污泥法工艺方案需要合理的运行和控制策略,包括进水流量的调控、活性污泥浓度的控制、反应时间的调整等。
- 进水流量调控: 根据进水质量和流量的变化,调整进水池的进水量,使处理系统能够稳定运行。
- 活性污泥浓度控制: 通过控制活性污泥的负荷和回流比例,使活性污泥浓度保持在适宜的范围内,以保证处理效果。
- 反应时间调整: 根据进水水质和处理要求,调整SBR反应池的反应时间,以保证充分的生物接触氧化和沉淀过程。
4. 污泥处理方案:活性污泥法处理污水产生的污泥需要经过处理和处置。
一种常用的处理方案是将污泥进行浓缩、脱水、消化和终端处理。
- 污泥浓缩和脱水: 使用污泥浓缩设备将活性污泥浓缩,然后将其送入污泥脱水设备,通过压榨和过滤等方法去除水分。
- 污泥消化: 将浓缩脱水后的污泥送入污泥消化器进行高温发酵,以降低污泥体积和稳定其性质。
- 终端处理: 经过消化后的污泥可以进行土壤改良、填埋或焚烧等终端处理,以实现无害化处置。
综上所述,污水站采用SBR序批式活性污泥法可有效处理城市污水。
序批式活性污泥法(SBR)工艺介绍
1、SBR工艺介绍
序批式活性污泥法,又称间歇式活性污泥法。
污水在反应池中按序列、间歇进入每个反应工序,即流入、反应、沉淀、排放和闲置五个工序。
2、SBR的工作过程
SBR工作过程是:在较短的时间内把污水加入到反应器中,并在反应器充满水后开始曝气,污水里的有机物通过生物降解达到排故要求后停止曝气,沉淀一定时间将上清液排出。
上述过程可概括为:短时间进水-曝气反应-沉淀-短时间排水-进入下个工作周期,也可称为进水阶段-加入底物、反应阶段-底物降解、沉淀阶段-固液分离、排水阶段-排上清液和待机阶段-活性恢复五个阶段。
(1)进水阶段
进水阶段指从向反应器开始进水至到达反应器最大容积时的一段时间。
进水阶段所用时间需根据实际排水情况和设备条件确定。
在进水阶段,曝气池在一定程度上起到均衡污水水质、水量的作用,因而,阳R对水质、水量的波动有一定的适应性。
在此期间可分为三种情况:曝气(好氧反应)、搅拌(厌氧反应)及静置。
在曝气的情况下有机物在进水过程中已经开始被大量氧化,在搅拌的情况下则抑制好氧反应。
对应这三种方式就是非限制曝气、半限制曝气和限制曝气。
运行时可根据不同微生物的生长特点、废水的特性和要达到的处理目标,采用非限制曝气、半限制曝气和限制曝气方式进水。
通过控制进水阶段的环境,就实现了在反应器不变的情况下完成多种处理功能。
而连续流中由于各构筑物和水泵的大小规格已定,改变反应时间和反应条件是困难的。
(2)反应阶段
是SBR主要的阶段,污染物在此阶段通过微生物的降解作用得以去除。
根据污水处理的要求的不同,如仅去陈有机碳或同时脱氯陈磷等,可调整相应的技术参数,并可根据原水水质及排放标准具体情况确定反应阶段的时间及是否采用连续曝气的方式。
(3)沉淀阶段
沉淀的目的是固液分离,相当于传统活性污泥法的二次沉淀他的功能。
停止曝气和搅拌,使混合液处于静止状态,完成泥水分离,静态沉淀的效果良好。
经过沉淀后分离出的上清液即可排放,沉淀的目的是固液分离,污泥絮体和上清液分离。
由于在沉淀时反应器内是完全静止的,在SBR系统中这个过程比在中效率更高。
沉淀过程一般是由时间控制的,沉淀时间在0.5——1h之间,甚至可能达到2h,以便于下一个排水工序。
污泥层要求保持在排水设备的下面,并且在排放完成之前不上升超过排水设备。
随着测量仪器的发展,已经可自动监测污泥泥液面,因此可根据污泥沉阵性能而改变沉淀时间。
可以预先在自动控制系统上设定一个值,一旦污泥界面计所监测到的污泥界面高皮达到该数值便可结束沉淀工序。
(4)排水阶段
排水阶段的目的是从反应器中排陈污泥的澄清液,一直恢复到循环开始时的最低水位,该水位离污泥层还要有一定的保护高度。
反应器底部沉降下来的污泥大部分作为下一个周期的回流污泥,过剩的污泥可在排水阶段排除,也可在待机阶段排除。
SBR排水一般采用滗水器。
滗水所用的时间由滗水能力来决定,一般不会影响下面的污泥层。
现在也可在沉淀的同时就开始排水,当然要控制好滗水速度以不影响沉淀为原则。
这样就把沉淀和滗水两个阶段融合在一起。
(5)待机阶段
沉淀之后到下个周期开始的期间称为待机工序。
根据需要可进行搅拌或瀑气。
在多池系统中,待机的目的是在转向另一个单元前为一个反应器提供时间以完成它的整个周期。
待机不是一个必需的步骤,可以去掉。
在待机期间根据工艺和处理目的;可以进行曝气、混合、去除剩余污泥。
待机期的长短由处理水量决定。
排除剩余污泥是SBR运行中另一个重要步骤,它并不作为五个基本过程之一,这是因为排故剩余污泥的时间不确定。
与传统的连续式系统一样,排除剩余污泥的量和频率由运行要求决定。
3、基本性能和运行模式
(1)有效的防止污泥膨胀
底物浓度梯度大,是控制膨胀的重要因素。
完全混合式反应器里基本没有浓度梯度丝状茵含量高,极易膨胀,属于推流式反应器的SBR系统浓度梯度很大,丝状茵含量低,不易膨胀。
SBR系统进水阶段和反应阶段的缺氧(厌氧)和好氧状态的交替,能抑制专性好氧的丝状菌的过量繁殖,而控制膨胀。
(2)BOD的去除
SBR系统的一个重要优点是操作者通过控制有关条件可保持微生物的选择性。
在一个完整的处理周期内,微生物选择压变化大.这些选择压包括氧气和基质的可获性。
尽管在一些传统的连续式系统中也会出现这些选择压中的某一种情况,而SBR系统具有很好的选择和拓展能力,允许微生物在优越的环境中生长。
(3)悬浮物的去除和稳定
SBR在沉淀时的一个优点在于停止了进、出水,也停止了得气和混合.充分利用了静态沉淀原理,这样可获得更快的分离,也可沉下更多的固体。
传统的连续式系统的沉淀单元是无法停止进、出水的,因此沉淀在动态条件下进行。
SBR系统另外一个优点是其灵活性,可以改变沉淀过程的时间。
在流量较大时,沉淀时间可以减少到固体分离所必需的最小时问.以缩短整个周期
的时问,处理更大的流量,如有必要滗水可以在沉淀时就开始。
传统系统则不具备这种灵活性。
(4)硝化和反硝化
污水中的氮以有机氨和氨氮的形式进人系统,以氮气的形式从系统中去除。
氨氮转化为氮气的过程分为硝化和反硝化过程。
硝化过程是在溶解氧充足的条件下进行,反硝化过程是在缺氧的情况下发生。
为去除SBR系统中的氮,只要对处理厂的运行进行简单的调节(调节周期和曝气时间),而不用对处理厂的构筑物进行大的改造。
(5)生物除磷
生物除磷首先需要一个厌氧期(没有溶解氧和氧化态的氮),同时存在易降解的有机质,在好氧阶段(高溶解氧浓度)促使污泥摄取过量的磷。
在下一个厌氧期开始前从反应器中排除一定量的剩余污泥。
SBR的灵活性表现在可通过改变运行模式来满足这些条件。
在一个SBR 系统中完成除磷的运行程序为:进水,曝气,沉淀排泥,排水。
四、SBR工艺的特点
经典SBR的基本运行模式。
其操作由进水(fill),反应(react),沉淀(settle),滗水(draw)和待机(idle)等5个基本过程组成。
从污水流入开始到待机时间结束算做一个周期。
在一个周期内一切过程都在一个设有曝气或搅拌装置的反应器内依次进行,不需要连续活性污泥法中必需设置的沉淀池、回流污泥泵等设备。
连续活性污泥法是在空间上设置不同设施进行固定连续操作,与此相反,经典SBR是单一的反应器内,在时间上进行各种目的的不同操作。
它的间歇运行方式与许多行业废水产生的周期比较一致,可以充分SBR 的技术特点,因此在工业污水处理中应用非常广泛。
在一些难降解废水的处理方面,经典SBR仍然经常被采用。
由于SBR 工艺占地小,平面布置紧凑,在小城镇污水处理方面成功应用SBR工艺的例子也非常多。