数轴课堂专项训练 0311
- 格式:doc
- 大小:282.50 KB
- 文档页数:3
数轴练习题1. 理解数轴- 画出一个数轴,并标出-3、-2、-1、0、1、2、3这些点。
- 标出点-2和点3之间的距离。
2. 数轴上的移动- 如果一个点从数轴上的-1移动到3,它移动了多少单位?- 如果一个点从数轴上的2开始,向左移动4个单位,它现在在数轴的哪个位置?3. 数轴上的对称点- 找出数3在数轴上的对称点。
- 一个点在数轴上的坐标是x,它的对称点的坐标是多少?4. 数轴上的运算- 如果一个数在数轴上的位置是a,另一个数在数轴上的位置是b,它们的和(a+b)在数轴上的位置是多少?- 如果一个数在数轴上的位置是a,另一个数在数轴上的位置是b,它们的差(a-b)在数轴上的位置是多少?5. 数轴上的绝对值- 计算数轴上点-4和点2的绝对值。
- 一个点在数轴上的坐标是x,它的绝对值在数轴上的位置是多少?6. 数轴上的不等式- 如果x > 0,那么在数轴上x的位置应该在哪个区域?- 如果x < -2,那么在数轴上x的位置应该在哪个区域?7. 数轴上的比较- 比较-3和2的大小,并在数轴上表示出来。
- 如果a < b,那么在数轴上a和b的位置关系是怎样的?8. 数轴上的分数- 将数轴上的1/2、1/4、3/4、5/4这四个分数的位置标出来。
- 如果一个分数的分子和分母都是正数,那么这个分数在数轴上的位置是大于0还是小于0?9. 数轴上的数的表示- 描述如何使用数轴来表示一个数的平方。
- 描述如何使用数轴来表示一个数的立方。
10. 数轴上的区间- 描述如何使用数轴来表示一个区间,例如[-2, 3]。
- 如果一个区间是(-1, 2),那么这个区间在数轴上包括哪些点?通过这些练习题,学生可以加深对数轴的理解,并且能够更熟练地在数轴上进行各种数学操作。
数轴是连接代数和几何的桥梁,对于理解更高级数学概念至关重要。
数轴、相反数、绝对值专题训练1. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m 11 034m(即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{ …}②负数集合:{ …}③整数集合:{ …}④非正数集合:{ …}⑤非负整数集合:{ …}⑥有理数集合:{ …}3. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b 0aA .0<a <bB .a <0<bC .b <0<aD .a <b <04. 00.5121,小.5. 在数轴上大于-4.12的负整数有______________________.6. 到原点的距离等于3的数是____________.7. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.8. 已知数轴上点A 与原点的距离为2,则点A 对应的有理数是____________ 点B 与点A 之间的距离为3,则点B 对应的有理数是________________.9. 在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是_________.10. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西 边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米11. 如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图 12. 上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+- C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列正确的是( )aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______; 21+=_______; 5--=_______;3+=_______; _______=1; _______=-2.20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____;(3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____. 25、化简下列各数的符号: (1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b的值。
【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.14数轴与绝对值综合问题大题专练(重难点培优)一、解答题1.(2021·四川成都·七年级期中)a ,b ,c 在数轴上的位置如图所示:(1)求|a |a +|b |b +|c |c =_______(2)a 、b 、c 在数轴上的位置如图所示,则:化简:|a +c |―|a ―b |+|c ―a |;(3)求|x ―a |―|x ―b |的最大值,并求出此时x 的范围.2.(2021·河南周口·七年级期中)(1)画出数轴,在数轴上标出表示﹣2的点A ,设点B 在数轴上,且到点A 的距离为3,请标出点B 的位置,并写出点B 表示的数.(2)已知|a |=2,b 2=1,求a +b 的值.3.(2020·贵州·安顺市西秀区宁谷中学七年级期中)有理数a 、b 、c 在数轴上的位置如图所示,且表示数a 的点、数b 的点到原点的距离相等.(1)用“>”“=”“<”填空;b 0,a +b 0,a -c 0.b -c 0.(2)化简:|a +b |+|c -a |-|b |.4.(2021·山西阳泉·七年级期中)请完成以下问题(1)有理数a ,b ,c 所对应的点在数轴上的位置如图所示,试比较a ,﹣a ,b ,﹣b ,c ,﹣c ,0的大小,并用“<”连接.(2)有理数a 、b 、m 、n 、x 满足下列条件:a 与b 互为倒数,m 与n 互为相反数,x 的绝对值为最小的正整数,求2021(m +n )+2020x 3﹣2019ab 的值.5.(2020·山西晋城·七年级期中)综合与实践:一名外卖员骑电动车从饭店出发送外卖,向西走了2千米到达小琪家,然后又向东走了4千米到达小莉家,继续向东走了3.5千米到达小刚家,最后回到饭店.以饭店为原点,以向东的方向为正方向,用一个单位长度表示1千米,点O,A,B,C 分别表示饭店,小莉家,小刚家和小琪家.(1)请你在数轴上表示出点O,A,B,C的位置;(2)小刚家距小琪家多远?(3)小莉步行到小刚家,每小时走5千米;小琪骑自行车到小刚家,每小时骑15千米.若两个人同时分别从自己家出发,问两个人能否同时到达小刚家?若不能,谁先到达?6.(2022·福建·晋江市第一中学七年级期中)对于有理数a,b,n,d,若|a―n|+|b―n|=d,则称a和b 关于n的“相对关系值”为d,例如:|2―1|+|3―1|=3,则2和3关于1的“相对关系值”为3.(1)―3和5关于1的“相对关系值”为__________.(2)若a和2关于3的“相对关系值”为10,求a的值.7.(2021·江苏·常州实验初中七年级期中)已知:数轴上的点A、B分别表示﹣1和3.5.(1)在数轴上画出A、B两点;(2)若点C与点A距离4个单位长度,则点C表示的数是___.(3)若折叠纸面,使数轴上﹣1表示的点与3表示的点重合,则10表示的点与数___表示的点重合.8.(2022·河北保定·七年级期中)如图,已知实数a(a>0)表示在数轴上对应的位置为点P,现对点P进行如下操作:先把点P沿数轴以每秒1个单位的速度向左移动t秒,再把所得到的点沿数轴以每秒2个单位的速度向右移动a秒,得到点P′,我们把这样的操作称为点P的“回移”,点P′为点P的“回移点”.(1)用含有字母a,t的式子写出“回移点”P′表示的数__________;(填空)(2)当t=2时,①若a=4,求点P的回移点P′表示的实数;②若回移点P′与点P恰好重合,求a的值;(3)当t=3时,若回移点P′与点P相距7个单位长度,求a的值.9.(2022·北京朝阳·七年级期中)如图,在数轴上点A、C、B表示的数分别是-2、1、12.动点P从点A出发,沿数轴以每秒3个单位长度的速度向终点B匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向终点A匀速运动,设点Q的运动时间为t秒.(1)AB的长为_______;(2)当点P与点Q相遇时,求t的值.(3)当点P与点Q之间的距离为9个单位长度时,求t的值.(4)若PC+QB=8,直接写出t点P表示的数.10.(2022·河北秦皇岛·七年级期中)如图,已知数轴上的点A、B对应的数分别是-5和1.(1)若P到点A、B的距离相等,求点P对应的数;(2)动点P从点A出发,以2个长度单位/秒的速度向右运动,设运动时间为t秒,问:是否存在某个时刻t,恰好使得P到点A的距离是点P到点B的距离的2倍?若存在,请求出t的值;若不存在,请说明理由;(3)若动点P从点A出发向点B运动,同时,动点Q从点B出发向点A运动,经过2秒相遇;若动点P从点A出发向点B运动,同时,动点Q从点B出发与点P同向运动,经过6秒相遇,试求P点与Q点的运动速度(长度单位/秒)11.(2021·湖北武汉·七年级期中)如图,以O为原点的数轴上有A,B两点,它们对应的数分别为a,b,且(a﹣10)2+(2b+8)2=0.(1)直接写出结果:a= ,b= .(2)设点P,Q分别从点A,B同时出发,在数轴上相向运动,且在原点O处相遇.设它们运动的时间为t秒,点P运动的速度为每秒2.5个单位长度.①用含t的式子表示:t秒后,点P,Q在数轴上所对应的数(直接写出结果),点P对应的数是 ,点Q对应的数是 .②当P,Q两点间的距离恰好等于A,B两点间距离的一半时,求t的值.12.(2021·浙江温州·七年级期中)如图,在数轴上,点A表示﹣4,点B表示﹣1,点C表示8,P是数轴上的一个点.(1)求点A与点C的距离.(2)若PB表示点P与点B之间的距离,PC表示点P与点C之间的距离,当点P满足PB=2PC时,请求出在数轴上点P表示的数.(3)动点P从点B开始第一次向左移动1个单位长度,第二次向右移动2个单位长度,第三次向左移动3个单位长度,第四次向右移动4个单位长度,依此类推…在这个移动过程中,当点P满足PC=2PA时,则点P移动次.13.(2021·江苏徐州·七年级期中)阅读理解:如图,对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足3倍的数量关系,则称该点是其他两个点的“倍分点”.例如:数轴上点A、B、C表示的数分别是1、4,5,此时点B是点A,C的“倍分点”.知识运用:(1)当点A表示数―2,点B表示数2时,下列个数:―5,0,1,4中,是A,B两点的“倍分点”表示的数是2____________;(2)当点A表示数―1,点B表示数3时,点P是数轴上的一个动点.①若点P在点A、点B之间,且点P是点A,B的“倍分点“,则点P表示的数是____________;②若点P在点A的左侧,且点P是点A,B的“倍分点“,则点”表示的数是____________;③若点P在点B的右侧,当点A、点B、点P中,有一个点恰好是另外两点的“倍分点”时,请你直接写出点P表示的数是____________.14.(2020·广东广州·七年级期中)数轴上点A、B、C分别表示数a、b、c,且b是最小正整数,|a+b|+(c―5)2 =0.(1)填空:a=______,b=______,c=______;(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B、C分别以每秒m(m<5)个单位长度和5个单位长度的速度向右运动,假设经过t秒,点B与点C之间的距离表示为BC,点A与点B之间的距离表示为A B.若BC―AB的值保持不变,求m的值.15.(2021·广东·佛山市南海区石门实验学校七年级期中)如图,已知点A,B,C是数轴上三点,O为原点,点C对应的数为3,BC=2,AB=6.(1)点A,B对应的数分别为:__________、__________。
数轴练习题加答案数轴是一种数学工具,用于表示实数和它们的顺序。
它是一个直线,通常水平放置,标有等距的点,这些点代表整数。
数轴上每个点之间的距离代表一个单位长度。
以下是一些数轴练习题以及它们的答案。
练习题1:在数轴上标出以下数:-3, 0, 5, 7。
答案:在数轴上,从左到右依次标出-3, 0, 5, 7。
0位于数轴的中心,-3在0的左边,5和7在0的右边。
练习题2:如果点A在数轴上表示-2,点B表示3,求点A和点B之间的距离。
答案:点A和点B之间的距离是3 - (-2) = 5。
练习题3:在数轴上,如果点P表示一个数,且它与-1的距离是4个单位长度,求点P表示的数。
答案:如果点P在-1的右边,那么P表示的数是-1 + 4 = 3。
如果点P在-1的左边,那么P表示的数是-1 - 4 = -5。
练习题4:给定数轴上的点Q表示-4,点R表示6,求点Q和点R之间的中点。
答案:中点的值是(-4 + 6) / 2 = 1。
练习题5:在数轴上,点S表示-3,点T表示7。
如果点U表示一个数,使得点U与点S和点T的距离相等,求点U表示的数。
答案:点U表示的数是(-3 + 7) / 2 = 2。
练习题6:如果在数轴上有一个点V,它表示的数是-2,并且它与另一个点W的距离是3个单位长度,求点W表示的数。
答案:如果点W在点V的右边,那么W表示的数是-2 + 3 = 1。
如果点W在点V的左边,那么W表示的数是-2 - 3 = -5。
练习题7:在数轴上,点X表示一个数,并且与0的距离是5个单位长度,求点X表示的数。
答案:如果点X在0的右边,那么X表示的数是5。
如果点X在0的左边,那么X表示的数是-5。
练习题8:如果点Y表示一个数,并且它与点Z表示的数的和是10,而点Y和点Z在数轴上的距离是6个单位长度,求点Y和点Z各自表示的数。
答案:设点Y表示的数为y,点Z表示的数为z。
根据题意,我们有y + z = 10 和 |y - z| = 6。
数轴练习题含答案数轴是数学中表示数的直线,通常水平放置,原点位于中间,左边是负数,右边是正数。
数轴练习题可以帮助学生更好地理解数轴的概念和应用。
以下是一些数轴练习题及其答案:练习题1:在数轴上标出以下数:-3, 0, 5, 10。
答案:在数轴上,从原点向左数3个单位是-3,原点是0,向右数5个单位是5,再向右数5个单位是10。
练习题2:如果点A表示的数是-2,点B表示的数是4,求点A和点B 之间的距离。
答案:点A和点B之间的距离是4 - (-2) = 6。
练习题3:在数轴上,如果一个点P表示的数是x,并且点P到原点的距离是3,求x的可能值。
答案:点P到原点的距离是3,所以x的可能值是3或-3。
练习题4:给定数轴上的点Q表示的数是-5,点R表示的数是7。
如果点S表示的数是点Q和点R的平均值,求点S表示的数。
答案:点S表示的数是(-5 + 7) / 2 = 1。
练习题5:在数轴上,点A表示的数是-1,点B表示的数是3。
如果点C表示的数是点A和点B的中点,求点C表示的数。
答案:点C表示的数是(-1 + 3) / 2 = 1。
练习题6:在数轴上,如果点D表示的数是2,并且点D到点E的距离是5,求点E表示的数。
答案:点E表示的数可以是2 + 5 = 7,或者2 - 5 = -3。
练习题7:如果数轴上的点F表示的数是-3,并且点F到点G的距离是4,求点G表示的数。
答案:点G表示的数可以是-3 + 4 = 1,或者-3 - 4 = -7。
练习题8:给定数轴上的点H表示的数是5,点I表示的数是-3。
如果点J表示的数是点H和点I的相反数的平均值,求点J表示的数。
答案:点J表示的数是(5 + (-3)) / 2 = 1。
这些练习题涵盖了数轴的基本应用,包括点的表示、距离的计算以及平均值的求法。
通过这些练习,学生可以加深对数轴概念的理解,并提高解决相关问题的能力。
第一章有理数1.2 数轴(5大题型提分练)知识点1:数轴(1)概念:规定了原点、正方向、单位长度的直线叫做数轴.三要素:原点、正方向、单位长度(2)对应关系:任何一个有理数都可以用数轴上的点来表示.比较大小:在数轴上,右边的数总比左边的数大.(3)应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法.题型一数轴的三要素及其画法1.下列图形中是数轴的是( )A.B.C.D.2.下面是四名同学画的数轴,其中正确的是()A.B.C .D .3.数轴的三个要素是:原点、 和单位长度.4.数轴上,如果表示数a 的点在原点的左边,那么a 是一个 数;如果表示数b 的点在原点的右边,那么b 是一个 数.5.画数轴:①画一条直线(一般水平方向),标出一点为原点,在原点下边标上“O ”.②规定正方向(一般规定从原点向右的方向为正),用箭头表示.③选择适当的长度为单位长度.6.判断下面所画数轴是否正确,并说明理由题型二 用数轴上的点表示有理数7.数轴上表示整数的点叫整点,某数轴单位长度为1cm ,若在数轴上随意画一条长为100cm 线段AB ,则线段AB 盖住的整点的个数为( )A .100B .99C .99或100D .100或1018.点A 为数轴上表示5-的点,将点A 在数轴上平移2个单位长度到点B ,则点B 所表示的数为( )A .3B .3-C .3-或7-D .3-或79.在数轴上,在原点的左边,距原点6个单位长度的点表示的数为 .10.数轴上+5表示的点位于原点边距原点 个单位长度,数轴上位于原点左边4个单位长度的点表示,数轴上距原点6个单位长度并在原点右边的点表示的数是 .11.在数轴上画出表示下列各数的点:112-,0,2,3--,()4.5--.12.如图,点O ,A ,B ,C 在数轴上的位置如图所示,O 为原点,2AC =,OA OB =.若点C 表示的数为4-,则点B 表示的数为多少?题型三 数轴上两点之间的距离13.在数轴上表示3-的点与表示2的点之间的距离是( )A .5B .5-C .5或5-D .114.在一条可以折叠的数轴上,点A ,B 表示的数分别是10-,3,如图,以点C 为折点,将此数轴向右对折,若点A 在点B 的右边,且1AB =,则点C 表示的数是( )A .4-B .3-C .1-D .015.数轴上表示数13和表示数2-的两点之间的距离是 .16.点A 、B 是数轴上的两点,且点A 表示的数是4-,点A 与点B 之间的距离是6,则点B 表示的数是 .17.已知数轴上表示数a 的点M 与表示数1-的点之间得到距离为3,表示数b 的点N 与表示数2的点之间的距离为4,求M ,N 两点之间的距离.18.阅读理解:数轴上线段的长度可以用线段端点表示的数进行减法运算得到,如图,线段()213AB ==---;线段()541BC ==--.问题:(1)数轴上点M 、N 代表的数分别为4-和3,则线段MN =_______;(2)数轴上点E 、F 代表的数分别为5-和1-,则线段EF =_______;(3)数轴上的两个点之间的距离为5,其中一个点表示的数为3-,求另一个点表示的数.题型四 数轴上的动点问题19.如图,半径为1个单位长度的圆从A 点沿数轴向左滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .2pB .4p -C .41p -+D .41p --20.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2020次后,数轴上数2020所对应的点是( )A .点CB .点DC .点AD .点B21.数轴上点A 先向左移动3个单位长度,再向右移动5个单位长度,正好是8-这个点,那么原来点A 对应的数是 .22.在数轴上,表示2+的点A 开始移动,第1次先从点A 向左移动1个单位至点1A ,第2次从1A 向右移动2个单位至点2A ;第3次从点2A 向左移动3个单位至点3A ,第4次从点3A 向右移动4个单位至点4A ;按此规律移动,则点2003A 在数轴上表示的数是 .23.如图,在一条不完整的数轴上一动点A 向左移动6个单位长度到达点B ,再向右移动10个单位长度到达点C .(1)①若点A 表示的数为0,则点B 、点C 表示的数分别为:_________、_________;②若点C 表示的数为1,则点A 、点B 表示的数分别为:_________、_________;(2)如果点A C 、表示的数互为相反数,则点B 表示的数为_________.(3)若点A 表示原点,则距离点B 三个单位长度的点表示的有理数是_________.24.阅读与思考如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看出,终点表示的数是2-.参照图中所给的信息,完成填空:已知A ,B 都是数轴上的点.(1)若点A 表示数3-.将点A 向右移动5个单位长度至点1A .则点1A 表示的数是________;(2)若点A 表示数2,将点A 先向左移动7个单位长度,再向右移动92个单位长度至点2A ,则点2A 表示的数是________;(3)若将点B 先向左移动3个单位长度,再向右移动6个单位长度,终点表示的数恰好是0,则点B 所表示的数是________.题型五 根据点在数轴的位置判断式子的正负25.有理数,a b 在数轴上的对应点如图所示,则下列结论中不正确的是( )A .0a b -<B .0a b +<C .0ab <D .0b a>26.有理数a b ,在数轴上的对应位置如图,则下列结论正确的是( )A .0a b >B .0ab <C .0a b +<D .0a b -<27.点a ,b 在数轴上的位置如图,则a b + 0,a b -+ 028.实数a ,b 在数轴上的对应点如图所示,则下列结论中①a b <;②0a b +<;③0a b -<;④0ab >,⑤0a b<其中正确的有 .(填序号)29.已知a ,b ,c 在数轴上的位置如图所示,化简:b c a b c a+-+--30.已知A B C ,,三点在数轴上的位置如图所示,它们表示的数分别是a b c ,,.(1)填空:abc 0,a b + 0;(填“>”,“=”或“<”)(2)若2a =-且点B 到点A C ,的距离相等,当216b =时,求c 的值;31.下列四个数轴的画法中,规范的是( )A .B .C .D .32.若数轴上点A 表示的数是3-,则与点A 相距6个单位长度的点表示的数是( )A .3±B .9±C .3-或9D .3或9-33.如图,在数轴上点A ,B ,C 对应的有理数分别是a ,b ,c .下列结论:①0c b ->;②0ab >;③0a b c +->;其中正确的是( )A .①②③B .②③C .①③D .①②34.如图所示,将圆的周长分为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数1所对应的点重合,再让圆沿着数轴按逆时针方向滚动,那么数轴上的数2021-将与圆周上的数字( )重合.A .0B .1C .2D .335.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上字母A B C D ,,,,先将圆周上的字母A 对应的点与数轴的数字2-所对应的点重合,若将圆沿着数轴向右滚动(无滑动),那么数轴上的数2023所对应的点将与圆周上的字母( )重合.A .字母AB .字母BC .字母CD .字母D36.规定了 叫数轴.37.用长为2020个单位长度的线段AB 放在数轴上,能覆盖 个整数点.38.已知点A 和点B 在同一数轴上,点A 表示数1,又点B 和点A 相距2个单位长度,则点B 表示的数是 .39.已知数轴上M ,N ,P ,Q 四点所表示的数分别为m ,n ,p ,q ,m n p q <<<,其中有两个数的和为0,且满足0mnpq >.若1MN =,4NP =,5PQ =.则这四个数中互为相反数的是 .40.有理数a ,b 在数轴上对应点的位置如图所示,给出下列关系式;①a<0,0b >;②0a b ->;③0a b +>;④0a b ->,⑤||||0a b a b+=.其中正确的有 (填序号).41.画出数轴并表示下列有理数:1.5,﹣2,2,﹣2.5,92,34-,0.42.有理数a ,b 在数轴上的对应点的位置如图所示.用不等号把a ,b ,a -,b -连接起来.43.如图,数轴上有三点A ,B ,C .(1)将点A 向右移动4个单位长度后,A ,B ,C 三个点所表示的数中最小的数是多少?(2)点B 向左移动2个单位长度,点C 向左移动8个单位长度,A ,B ,C 三个点所表示的数中最大的数是多少?(3)怎样移动A ,B ,C 三点中的两点,才能使三个点表示的数相同?有几种移动的方法?44.阅读理解: 数轴上线段的长度可以用线段端点表示的数进行减法运算得到,如图,线段231BC ==-;线段()312AB ==--.问题:(1)数轴上点M 、N 代表的数分别为10和3,则线段MN =___________;(2)数轴上点E 、F 代表的数分别为3和1-,则线段EF =___________;(3)数轴上的两个点之间的距离为5,其中一个点表示的数为12,求另一个点表示的数.45.七年级数学兴趣小组成员自主开展数学微项目研究,他们决定研究“折线数轴”.探索“折线数轴”:素材1 如图,将一条数轴在原点O ,点B ,点C 处折一下,得到一条“折-,点B表示12,点C表示24,点D表示36,我们称点A与点D 线数轴”.图中点A表示9在数轴上的“友好距离”为45个单位长度,并表示为 45AD=.素材2 动点P从点A出发,以2个单位长度/秒的初始速度沿着“折线数轴”向其正方向运动.当运动到点O与点B之间时速度变为初始速度的一半.当运动到点B与点C之间时速度变为初始速度的两倍.经过点C后立刻恢复初始速度.问题解决:探索1 :动点P从点A运动至点B需要多少时间?探索2 :动点P从点A出发,运动t秒至点B和点C之间时,求点P表示的数(用含t的代数式表示);探索3 :动点P从点A出发,运动至点D的过程中某个时刻满足 16PB PC+=时,求动点P 运动的时间.1.C【分析】本题主要考查数轴的概念,熟练掌握数轴的三要素:正方向,原点,单位长度,是解题的关键.根据数轴的三要素:正方向,原点,单位长度,逐一判断选项,即可.【详解】A中的没有单位长度,错误;B中没有正方向,错误;C中满足原点,正方向,单位长度,正确;D中没有原点,错误.故选C.2.D【分析】本题考查数轴,熟知规定了原点、正方向、单位长度的直线叫做数轴是解题的关键.据此对各选项逐一分析判断即可.【详解】解:A.数轴上的点应该越向右越大,2-与1-位置颠倒,故此选项不符合题意;B.没有原点,故此选项不符合题意;C.没有正方向,故此选项不符合题意;D.数轴画法正确,故此选项符合题意.故选:D.3.正方向【分析】本题考查数轴的三要素(原点、正方向和单位长度),解题的关键是熟记数轴的三要素,据此解答即可.【详解】解:数轴的三个要素是:原点、正方向和单位长度.故答案为:正方向.4.负正【分析】根据数轴上点的位置特征判断即可.【详解】解:数轴上,如果表示数a的点在原点的左边,那么a是一个负数;如果表示数b 的点在原点的右边,那么b是一个正数,故答案为:负;正【点睛】本题考查了数轴,解题的关键是弄清数轴上点的位置特征.5.①见解析;②见解析;③见解析【详解】解:作图如下:6.1、错误;2、错误;3、错误;4、错误;5、错误;6、错误;7、错误;8、正确【分析】根据数轴的概念,即可求解.【详解】解:1、不是直线,故所画错误;2、不是直线,故所画错误;3、无原点,故所画错误;4、无单位长度,故所画错误;5、无正方向,故所画错误;6、数轴只有一个正方向,故所画错误;7、数轴上右边的数总是大于左边的数,正数在原点的右侧,负数在原点的左侧,故所画错误;8、原点、正方向、长度单位都有,故所画正确.【点睛】本题主要考查了数轴的概念,熟练掌握规定了原点,正方向,单位长度的直线叫做数轴.原点,正方向,单位长度是数轴的三要素是解题的关键.7.D【分析】本题主要考查了数轴的实际应用,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为100cm的线段AB,则线段AB盖住的整点的个数可能正好是101个,也可能不是整数,而是有两个半数那就是100个.【详解】解:依题意得:①当线段AB起点在整点时覆盖101个数,②当线段AB起点不在整点,即在两个整点之间时覆盖100个数.故选:D.8.C【分析】本题考查了数轴上点的平移规律,掌握规律是解题的关键.平移规律:向右加,向左减;据此即可求解.-的点,【详解】解:∵点A为数轴上表示5∴将点A在数轴上向右平移2个单位长度到3-,将点A在数轴上向左平移2个单位长度到7-,∴点B所表示的数为3-或7-故选:C.9.6-【分析】本题考查数轴上的点表示有理数,解题的关键是明确数轴的特点,数轴从原点左边的点表示负数,原点右边的点表示正数.根据数轴的特点可以解答本题.【详解】解:在数轴上,在原点的左边,距原点6个单位长度的点表示的数为6-.故答案为:6-10. 右 5 4- 6+【分析】根据数轴的特点及距离的定义解答即可.本题考查了数轴的知识,比较简单,解答此题的关键是熟知以下知识:(1)数轴上原点右边的数都大于0,左边的数都小于0;(2)数轴上各点到原点的距离是这个数的绝对值.【详解】解:数轴上5+表示的点位于原点,右边距原点 5个单位长度,数轴上位于原点左边4个单位长度的点表示4-,数轴上距原点6个单位长度并在原点右边的点表示的数是6+.故答案为:右;5;4-;6+.11.答案见解析【分析】本题考查了数轴上的点表示有理数,根据正数在原点右边,负数在原点左边,0在原点上,即可解答,正确在数轴上表示出来有理数是解题的关键.【详解】解:13122-=-在原点左边,0在原点上,2在原点右边,33--=-在原点左边,()4.5 4.5--=在原点右边,数轴如图所示:.12.6【分析】本题考查数轴,根据题意可得点A 表示的数为6-,又由OA OB =即可得到点B 表示的数.【详解】∵2AC =,点C 表示的数为4-,∴点A 表示的数为6-,∵OA OB =,∴点B 所表示的数为6.13.A【分析】本题考查了数轴上两点间的距离,根据数轴上两点间的距离计算方法直接计算即可求解,掌握数轴上两点间的距离计算方法是解题的关键.【详解】解:∵()235--=,∴数轴上表示3-的点与表示2的点之间的距离是5,故选:A .14.B【分析】本题考查的是数轴和数轴上两点间的距离,解题的关键是求出BC 的长度.根据图1算出AB 的长度13,图2中的1AB =,用(131)26-¸=就是BC 的长度,用两点之间的距离公式得出点C 表示的数.【详解】解:图1:10313AB =--=,图2:1AB =,()113162BC =´-=,点C 表示的数是:363-=-,故选:B15.123【分析】本题考查了数轴上两点之间的距离.熟练掌握数轴上两点之间的距离是解题的关键.根据()123--,计算求解即可.【详解】解:由题意知,数轴上表示数13和表示数2-的两点之间的距离是()112233--=,故答案为:123.16.10-或2【分析】本题主要考查了数轴上两点间的距离,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键.根据数轴上两点间距离,分别列式计算即可得解.【详解】解:∵点A 表示的数是4-,点A 与点B 之间的距离是6,∴点B 表示的数462-+=或4610--=-,故答案为:10-或2.17.MN 之间的距离为2或4或10【分析】本题考查了数轴上两点距离;根据题意求出a 与b 的值,即可确定出M ,N 两点之间的距离.【详解】解:根据题意得:4a =-或2,2b =-或6,当4a =-,2b =-时,2MN =;当4a =-,6b =时,10MN =;当2a =,2b =-时,4MN =;当2a =,6b =时,4MN =.综上所述,MN 之间的距离为2或4或10.18.(1)7(2)4(3)另一个点表示的数为2或8-【分析】本题考查了数轴上两点间的距离,熟练掌握知识点是解题的关键.(1)直接根据数轴上两点间的距离求解即可;(2)直接根据数轴上两点间的距离求解即可;(3)分两种情况讨论,当另一个点在3-右侧或当另一个点在3-左侧,再根据数轴上两点间的距离求解即可.【详解】(1)数轴上点M 、N 代表的数分别为4-和3,则线段()34347MN =--=+=,故答案为:7;(2)数轴上点E 、F 代表的数分别为5-和1-,则线段()15154EF =---=-+=,故答案为:4;(3)由题可得:①当另一个点在3-右侧时,352-+=;②当另一个点在3-左侧时,358--=-,综上,另一个点表示的数为2或8-.19.D【分析】先求出滚动两周的距离,然后根据数轴上的点与实数一一对应,可得B 点表示的数.【详解】解:滚动两周的距离为2214p p ´´=,∴点B 表示的数是41p --,故选:D .【点睛】本题考查了数轴上的动点问题,求出滚动两周的距离是解题的关键.20.B【分析】通过题意得到4个数为一个循环,由2020÷4=505,得到2020对应点D .【详解】解:在翻转过程中,1对应的数是A ,2对应的数是B ,3对应的数是C ,4对应的数是D ,…依次4次一循环的出现,∵20204505¸=,∴2020所对应的点是D ,故选:B .【点睛】本题考查实数与数轴,能够确定多少个数为一个循环是解答本题的关键.21.10-【分析】本题考查的是数轴, 原来点A 对应的数为x ,再根据左减右加的法则求出x 的值即可.熟知数轴上点的移动法则是解答此题的关键.【详解】解:原来点A 对应的数为x ,则358x -+=-,解得10x =-.故答案为:10-.22.1001-【分析】奇数次移动是左移,偶数次移动是右移,第n 次移动n 个单位.每左移右移各一次后,点A 右移1个单位,故第2002次右移后,点A 向右移动()120022´¸个单位,第2003次左移2003个单位,即可求解.【详解】解:第n 次移动n 个单位,第2003次左移20031´个单位,每左移右移各一次后,点A 右移1个单位,所以2003A 表示的数是()212002220031000+´¸-=-.故答案为:1000-.【点睛】本题考查数轴上点的移动规律,确定每次移动方向和距离的规律,以及相邻两次移动后的实际距离和方向是解答此题的关键.23.(1)①6-,4;②3,9--(2)8-(3)3-或9-【分析】(1)①根据数轴上点移动的规律:左减右加即可得到点B ,C 表示的数;②根据数轴上点移动的规律:左减右加即可得到点B ,A 表示的数;(2)设点A 表示的数是a ,表示出点C 表示的数,根据相反数的意义得到40a a ++=,求出a ,再根据点移动的规律得到点B 表示的数;(3)先求出点B 表示的数,再根据数轴上点移动的规律得到答案.【详解】(1)①∵点A 示的数为0,点A 左移动6个单位长度到达点B ,∴点B 表示的数是066-=-,∵点B 向右移动10个单位长度到达点C .∴点C 表示的数是6104-+=故答案为:6-,4;②∵点C 表示的数为1,点B 向右移动10个单位长度到达点C .∴点B 表示的数是1109-=-,∵点A 左移动6个单位长度到达点B ,∴点A 表示的数是963-+=-,故答案为:3,9--;(2)设点A 表示的数是a ,∵点A 向左移动6个单位长度到达点B ,再向右移动10个单位长度到达点C .∴点C 表示的数是6104a a -+=+,∵点A C 、表示的数互为相反数,∴40a a ++=,得2a =-,即点A 表示的数是2-,∴点B 表示的数为268--=-,故答案为:8-;(3)∵点A 表示原点,点A 左移动6个单位长度到达点B ,∴点B 表示的数是066-=-,∴距离点B 三个单位长度的点表示的有理数是633-+=-或639--=-,故答案为:3-或9-.【点睛】此题考查了数轴上点移动的规律:左减右加,熟练掌握点移动的规律是解题的关键.24.(1)2(2)12-(3)3-【分析】本题主要考查了数轴上动点平移问题,解题关键是掌握数轴上点往右移几就加几,往左移几就减几,概括为“右加左减.(1)根据数轴上的点向右平移加,向左平移减,可得点表示的数;(2)根据数轴上的点向右平移加,向左平移减,可得点表示的数;(3)根据数轴上的点向右平移加,向左平移减,可得B 点表示的数.【详解】(1)解:由题意得:352-+=,∴点1A 表示的数是2;(2)解:由题意得:912722-+=-∴点2A 表示的数是12-;(3)解:由题意得:0先向右移动3个单位长度,再向左移动6个单位长度得到点B ∴0363+-=-∴点B 所表示的数是3-25.C【分析】本题考查了有理数的加减乘法运算,解题的关键是掌握有理数的运算法则和数轴上的点表示数的特点.根据a 、b 在数轴上的位置判断出0a b <<,然后一一判断即可.【详解】解:A 、∵0a b <<,∴0a b -<,故选项A 结论正确,不符合题意;B 、∵0a b <<,∴0a b +<,故选项B 结论正确,不符合题意;C 、∵0a b <<,∴0ab >,故选项C 结论错误,符合题意;D 、 ∵0a b <<,∴0b a>,故选项D 结论正确,不符合题意;故选:C .26.B【分析】本题考查了根据点在数轴上的位置判断式子的正负,由数轴得出101b a -<<<<,b a <,再逐项判断即可得到答案,采用数形结合的思想是解此题的关键.【详解】解:由数轴可得:101b a -<<<<,b a <,0a b\<,故A 错误,不符合题意;0ab <,故B 正确,符合题意;0a b +>,故C 错误,不符合题意;0a b ->,故D 错误,不符合题意;故选:B .27. > <【分析】根据数轴上点的位置判断出a b +与a b -+的正负即可.【详解】解:根据数轴上点的位置得:0b a <<,且a b >,则0a b +>,0a b -+<,故答案为:>;<.【点睛】本题主要考查了数轴,弄清数轴上点的位置是解本题的关键.28.①③⑤【分析】本题主要考查数轴,根据数轴判断式子的正负. 根据数轴可知:0a b <<,可得a b <,0ab <,0a b<,根据0a b <<,且a b <,可得0a b +>,根据0a b <<,可得0b -<,0a b -<.【详解】解:根据数轴可知:0a b <<,∴a b <,0ab <,0a b<,故①⑤正确,④错误.∵0a b <<,且a b <,∴0a b +>,故②错误,∵0a b <<,∴0b -<,∴0a b -<,故③正确,综上,①③⑤正确,故答案为:①③⑤.29.2a +2b ;【分析】根据数轴分别判断a+b,b+c,c-a 的正负性,然后去绝对值解题即可.【详解】()()22b c a b c ab c a b c a a b+-+--éù=+--+--ëû=+【点睛】本题结合数轴和绝对值,关键在于根据数轴判断正负性.30.(1)<,>(2)10【分析】(1)根据a b c ,,在数轴上的位置得出00a ,b c <<<,进行判断即可得出最终结果;(2)根据题意,求出b 的值,再结合BC AB =,列出式子计算即可求出.【详解】(1)解:由a b c ,,在数轴上的位置可知:00a ,b c <<<,<0abc \,b Q 比a 距离原点要远,b a \>,0a b \+>,故答案为:,.(2)216b =Q ,0b >,4b \=,2a =-Q ,BC AB =,()442c \-=--,10c \=.【点睛】本题主要考查了利用数轴判断式子正负,数轴上两点的距离公式,利用数轴判断a 、b 、c 的取值范围是解此题的关键.31.C【分析】根据数轴的三要素判断即可.【详解】解:数轴是规定了原点、正方向、单位长度的直线,选项A 的数轴单位长度不一致,因此选项A 不正确;选项B 的数轴无原点,因此选项B 不正确;选项C 符合数轴的意义,正确;选项D 的数轴没有正方向,因此选项D 不正确;故选:C .【点睛】此题主要考查数轴的意义,掌握数轴的三要素是正确判断的前提.32.D【分析】本题考查了数轴的知识,根据数轴上两点间的距离求解即可,熟练掌握数轴上两点间的距离计算公式是解题的关键.【详解】解:∵数轴上若点A 表示的数是3-,∴与点A 相距个6单位长度的点表示是369--=-或363-+=,故选:D .33.D【分析】本题主要考查了根据数轴上点的位置判断式子的正负,掌握相关知识是解题的关键.根据数轴可知0a b c <<<,然后分析判断即可.【详解】解:根据数轴可知,0a b c <<<,∴0c b ->,0ab >,0a b c +-<,所以,结论正确的有①②.故选:D .34.C【分析】由于圆的周长为4个单位长度,所以只需先求出此圆在数轴上环绕的距离,再用这个距离除以4,如果余数分别是0,1,2,3,则分别与圆周上表示数字0,1,2,3的点重合.【详解】解:由题意知:圆的周长为4个单位长度.1Q 到2021-共有2022个单位长度,\当2022450...2¸=,则数轴上的数2021-将与圆周上的数字2重合.故选:C .【点睛】本题考查了数轴、循环的有关知识,找到表示数-2021的点与圆周上起点处表示的数字重合,是解题的关键.35.B【分析】本题考查了数轴,一次求出与数1,2,3,4,…对应的点重合的字母,发现规律即可解决问题,能根据题中圆的运动方式,发现字母D,A,B,C分别与数轴上表示数字1,2,3,4,…,的点重合,是解此题的关键.【详解】解:Q圆的周长为4个单位长度,\将圆沿着数轴向右滚动(无滑动)时,字母D与数字1所对应的点重合,字母A与数字2所对应的点重合,字母B与数字3所对应的点重合,字母C与数字4所对应的点重合,字母D与数字5所对应的点重合,…,依次类推,字母D,A,B,C分别与数轴上表示数字1,2,3,4,…,的点重合,Q余3,20234505¸=\数轴上的数2023所对应的点将与圆周上的字母B重合,故选:B.36.原点、正方向、单位长度的直线【分析】由数轴的定义可得:规定了原点、正方向、单位长度的直线叫数轴.【详解】数轴的定义为:规定了原点、正方向、单位长度的直线叫数轴.故答案为原点、正方向、单位长度的直线.【点睛】本题考查数轴,熟练掌握数轴的基本定义即是解题关键.37.2020或2021##2021或2020【分析】本题考查了数轴的性质,画出数轴,按照题意归纳总结,找到规律,得出答案是解答本题的关键.画出一个数轴,在上面画一个单位长度的线段,可以得到能覆盖1或2个整数点;画两个单位长度的线段,可以得到能覆盖2或3个整数点;以此类推,找到规律,由此得到答案.【详解】解:如图所示,当起点A位于整数点之间时:AB 长度为1个单位,其覆盖了一个整数点;AC 长度为2个单位,其覆盖了两个整数点;AD 长度为3个单位,其覆盖了三个整数点;AE 长度为4个单位,其覆盖了四个整数点,以此类推:长为2020个单位长度的线段AB 放在数轴上,能覆盖2020个整数点.如图所示,当起点A 位于整数点上时:AB 长度为1个单位,其覆盖了两个整数点;AC 长度为2个单位,其覆盖了三个整数点;AD 长度为3个单位,其覆盖了四个整数点;AE 长度为4个单位,其覆盖了五个整数点,以此类推:长为2020个单位长度的线段AB 放在数轴上,能覆盖2021个整数点.综上:长为2020个单位长度的线段AB 放在数轴上,能覆盖2020或2021个整数点.故答案为:2020或2021.38.3或1-【分析】本题主要考查数轴和两点间的距离公式,根据题意分类讨论是解题的关键.分点B 在点A 的左侧和右侧两种情况,利用两点间的距离公式求解可得.【详解】解:当点B 在点A 左侧,相距2个单位长度时,点B 表示121-=-,当点B 在点A 右侧,相距2个单位长度时,点B 表示123+=,故答案为:3或1-.39.n ,p 或m ,p【分析】本题考查了有理数与数轴的对应关系以及相反数的概念,正确运用分类讨论思想是解决本题的关键.【详解】解:因为这四个数中有两个数和为0,则一定有一个负数和一个正数,因为0mnpq >,则这四个数为两个正数和两个负数,即0m n p q <<<<,。
七年级数轴随堂练习题一、填空题1. 数轴上的点表示的数是正数的是______,表示的数是负数的是______。
2. 数轴上,原点左边的点所表示的数比原点右边的点所表示的数______。
3. 在数轴上,点A表示的数是3,那么点A在原点的______侧。
4. 数轴上,点B到原点的距离是5,若点B在原点的左侧,则点B表示的数是______。
5. 若数轴上点C表示的数是2,那么点C到原点的距离是______。
二、判断题1. 数轴是一条直线,可以向两端无限延伸。
(____)2. 数轴上的点与实数是一一对应的。
(____)3. 数轴上,原点右边的点所表示的数一定比原点左边的点所表示的数大。
(____)4. 数轴上,距离原点越远的点所表示的数越大。
(____)5. 数轴上,点D表示的数是5,那么点D在原点的右侧。
(____)三、选择题1. 下列哪个点在数轴上表示的数是正数?()A. 原点左侧的点B. 原点C. 原点右侧的点2. 数轴上,点E表示的数是4,那么点E到原点的距离是()A. 4B. 4C. 23. 在数轴上,点F表示的数是3,那么点F在原点的()A. 左侧B. 右侧C. 重合4. 数轴上,点G到原点的距离是7,若点G在原点的左侧,则点G表示的数是()A. 7B. 7C. 05. 若数轴上点H表示的数是5,那么点H在原点的()A. 左侧B. 右侧C. 重合四、连线题将下列点与对应的数用线连接起来:A(2) B(3) C(0) D(5) E(1)五、作图题1. 在数轴上标出表示4、3、0、1、2的点。
2. 画出数轴,并在数轴上表示出绝对值等于3的所有点。
六、简答题1. 请简述数轴的定义及其三要素。
2. 如何在数轴上表示一个正整数和一个负整数?3. 数轴上的点与实数之间有什么关系?4. 说出数轴上距离原点相等的两个点表示的数的特点。
5. 如果数轴上两个点分别表示的数是2和3,它们之间的距离是多少?七、计算题1. 若点M在数轴上表示的数是7,点N表示的数是5,求点M和点N之间的距离。
数轴知识点以及专项训练知识点1:数轴1 定义:规定了原点、正方向和单位长度的直线叫做数轴.1.1 数轴是一条直线,所以可以向两边无限延长。
1.2 数轴的三要素:原点、正方向、单位长度。
1.3 正方向:通常我们习惯以向右为正方向,题目若无特别,数轴正方向均为向右。
2 特点:(1)从负方向到正方向,数字依次增大;(2)单位长度的间隔距离要相等;(3)数轴可以分为3个部分,分别是负半轴、原点0、正半轴,在数轴的正半轴和负半轴上都有无数个点,每个点都只表示一个数。
知识点2:数轴的画法(1)画一条直线(通常画成水平位置);(2)在这条直线上取一点作为原点,这点表示0;(3)规定直线上向右为正方向,画上箭头;(4)再选取适当的长度,从原点向右每隔一个单位长度取一点,依次标上1,2,3,…从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,…注意:(1)原点的位置、单位长度的大小可根据实际情况适当选取;(2)确定单位长度时根据实际情况,有时也可以每隔两个(或更多的)单位长度取一点;(3)画数轴时,一定要提前规划好距离,画出来的要美观,好看。
常见错误:没有方向、没有原点、数字排列错误、单位长度不统一等知识点3:数轴与有理数、无理数的关系1.任何一个有理数都可以用数轴上的点来表示,并且数轴上的点也不都是表示有理数,它还可以表示无理数,比如π.也就是说:也就是说所有的有理数和无理数都可以用数轴上的点去表示。
数轴上的一个点只能表示一个数,要么是有理数,要么是无理数。
知识点4:数轴上点的大小1.画出数轴,从左至右(从负方向到正方向)数字逐渐变大,例下图:-Q P 0 -P Q(1)-Q<P<0<-P<Q;P与-P、Q与-Q到原点的距离相等,只是分居原点两侧。
(0除外)(2)求线段的长度(两点间的距离):在数轴上求两个点之间线段的长度,我们只需要把表示数字比较大的点减去表示数字比较小的点,这个差就是两个点之间线段的长度。
数轴练习题(含答案)篇一:《数轴、相反数、绝对值》专题练习《数轴、相反数、绝对值》专题练习一、选择题(每小题3分,共30分)1.5的绝对值为A.5B.5c.15D.152.的相反数是A.8B.1818c..83.在下面所画的数轴中,你认为正确的数轴是4.下列说法正确的是A.正数与负数互为相反数B.符号不同的两个数互为相反数c.数轴上原点两旁的两个点所表示的数互为相反数D.任何一个有理数都有它的相反数5.数轴上的点A,B位置如图所示,则线段AB的长度为A.3B.5c.6D.76.若a=7,b=5,则ab的值为A.2c.2或12B.12D.2或12或12或27.实数a,b在数轴上的位置如图所示,以下说法正确的是()8.下列式子不正确的是A.?4?4B.11?22c.0?0D.???9.如果有理数a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于它本身的数,那么式子ab+c2d的值是A.2B.1c.0D.110.如果abcd0,那么这四个数中的负因数至少有A.4个B.3个c.2个D.1个二、填空题(每小题3分,共24分)11.数轴上最靠近2且比2大的负整数是______.12.111的相反数是______;2是______的相反数;_______与互为倒数.21013.数轴上表示2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A,B表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x的值,使x?1=x1成立,你写出的x的值是______.17.若x,y是两个负数,且xb>c,则该数轴的原点o的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:120.(5分)如图,根据数轴上各点的位置,写出它们所表示的数:31,,+(32),12,3.52用数轴上的点表示下列各数,并用“<”号把下列各数连接起来.311,?4,,0,1,,5,1.2221.(6分)七班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:50分;B队:150分;c队:300分;D队:0分;E队:100分.将5个队按由低分到高分的顺序排序;把每个队的得分标在数轴上,并标上代表该队的字母;从数轴上看A队与B队相差多少分?c队与E队呢?22.(6分)如图是一个长方体纸盒的展开图,请把5,3,5,1,3,1分别填入六个长方形中,使得按虚线折成长方体后,相对面上的两数互为相反数.23.(8分)在数轴上,表示数x的点与表示数1的点的距离等于1,其几何意义可表示为:x?=1,这样的数x可以是0或2.等式x?2=2的几何意义可仿上解释为:在数轴上____________________________,其中x的值可以是______________.等式x?3=2的几何意义可仿上解释为:在数轴上____________________________,其中x的值可以是______________.在数轴上,表示数x的点与表示数5的点的距离等于6,其中x 的值可以是_______,其几何意义可以表示为_______.24.(8分)5的相反数是5,5的相反数是5,那么x的相反数是_______,m+的相反数是_______.数轴上到点2和点6距离相等的点表示的数是4,有这样的关系4=1n21,那么2到点100和到点999距离相等的点表示的数是_______;到点m 和点n距离相等的点表示的数是_______.数轴上点4和点9之间的距离为5个单位,有这样的关系5=94,那么点10和点3之间的距离是_______;点m和点n之间的距离是_______.25.(6分)设a?b?c?0,abc?0,求b?cc?aa?b的值。
数轴课堂专项训练0311
1.在数轴上原点右侧的离原点越远的点表示的数___________;原点左侧的离原点越远的点表示的数_________.2.数轴上表示-2.5的点与表示3.1的点之间有____________个整数点,这些整数分别是______________.
3.指出如图所示的数轴上的点A、B、C、D所示的有理数分别是___________.
4.在数轴上与原点的距离等于4个单位长度的点有_____________个,这样的点表示的有理数是____________.
5.用“>”号或“<”号填空:(1)-1____0;(2)0.1_____-8;(3)-3.5____-4.5;(4)2/3___3/4.
6.数轴上表示―3的点记为A,表示2的点记为B,那么把A点向____边移动_____个单位长度得到B点.
7.下列说法错误的是()A.所有的有理数都可以用数轴上的点表示B.数轴上的原点用有理数0表示
C.数轴上表示-2/3的点在原点左边2/3个单位长度处D.在数轴上离开原点的距离越远的点表示的数越大
8.在数轴上表示-1与-4两点之间有理数的点有()A.3个B.2个C.1个D.无数个
9.到原点的距离小于4个单位长度的整数点有()A.8个B.7个C.6个D.5个
10.下图中表示数轴的是()
11.如图1-14所示A、B、C、D、四点在数轴上分别表示有理数a、b、c、d,则大小顺序正确的是()
A.a<b<c<d B.b<a<d<c C.a<b<d<c D.d<c<b<a
12.-9/10与-8/9这两个数在数轴上的位置描述正确的是()A.-9/10在-8/9的右边B.-8/9在-9/10在右边
C.-9/10离原点近D.-8/9离原点近
13.如图1-15,一滴墨水洒在一条数轴上,根据图中标出的数值判断墨迹盖住的整数的个数有多少个?
14.分别画出数轴,在数轴上画出表示下列各数的点,并用“<”连结起来
(1)-4000,-2000,1000,3500,-1500;(2)0.4,-0.1,0.2,-0.3,-0.5.
15.一个点从数轴上表示-1的点出发,按下列条件移动两次后到达终点,说出终点表示什么?
(1)向右移动3个单位长度,再向左移动5个单位长度;(2)向左移动4个单位长度,再向右移动1个单位长度.
16.已知有理数a、b、c在数轴上的位置如图1-16所示,试用“>”将有理数a,-a,b,-b,c,-c,0连接起来.
17.下表是我国几个城市的二月份的平均气温(℃) 上海
沈阳 昆明 北京 广州 兰州 4 -18 12 -5 15 -3
(1)在同一数轴上将6个数表示出来,并用“<”将6个数连接起来;
(2)根据数轴指出最高温度和最低温度分别是多少?并求出最低温度比最高温度低多少摄氏度?
18.为了使我国国民经济健康、持续发展,党中央对国民经济的增长率进行了宏观调控,图1-17是最近8年来我国经济增长率一览表,请按下列要求回答问题:
(1)1999年我国经济增长率与1993年相比__________,2000年与1999年相比_________.(数字填定要具体)
(2)用一句话概括这8年我国经济增长率的发展趋势(不得超过30字)
答:___________________________
中考题型
1、一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动.设该机器人每秒钟前进或后退1步,并且每步的距离是1个单位长,x n 表示第n 秒时机器人在数轴上的位置所对应的数.
给出下列结论:(1)x 3=3; (2)x 5=1; (3)x 108<x 104; (4)x 2007<x 2008;
其中,正确结论的序号是( )A 、(1)、(3) B 、(2)、(3) C 、(1)、(2)、(3) D 、(1)、(2)、(4)
2、如图,数轴上一点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数( )
A 、7
B 、3
C 、﹣3
D 、﹣2
3、2008年8月第29届奥运会将在北京开幕,5个城市的国标标准时间(单位:时)在数轴上表示如图所示,那么北京时间2008年8月8日20时应是( )
A 、伦敦时间2008年8月8日11时
B 、巴黎时间2008年8月8日13时
C 、纽约时间2008年8月8日5时
D 、汉城时间2008年8月8日19时
4、如图,数轴上所标出的点中,相邻两点间的距离相等,则点A 表示的数为( )
A 、30
B 、50
C 、60
D 、80
7、数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB ,则线段AB 盖住的整点的个数是( ) A 、2002或2003 B 、2003或2004 C 、2004或2005 D 、2005或2006
8、以下是四位同学画的数轴,其中正确的是( )
A 、
B 、
C 、
D 、
9、在数轴上,与表示数2的点的距离是2的点表示的数是( ) A 、0 B 、4 C 、±2 D 、0或4
10、已知如图:数轴上A ,B ,C ,D 四点对应的有理数分别是整数a ,b ,c ,d ,且有c ﹣2a=7,则原点应是( )
A 、A 点
B 、B 点
C 、C 点
D 、D 点
11、)已知数轴上的A 点到原点的距离是2,那么在数轴上到A 点的距离是3的点所表示的数有( )A 、1个 B 、2个 C 、3个 D 、4个
12、在数轴上与原点的距离等于2的点表示的数是( ) A 、2 B 、﹣2 C 、﹣1或3 D 、﹣2或2
13、数轴上点A 表示﹣4,点B 表示2,则表示A ,B 两点间的距离的算式是( ) A 、﹣4+2 B 、﹣4﹣2 C 、2﹣(﹣4) D 、2﹣4
14、如图,数轴上的点P 、O 、Q 、R 、S 表示某城市一条大街上的五个公交车站点,有一辆公交车距P 站点3km ,距Q 站点0.7km ,则这辆
公交车的位置在( )
A 、R 站点与S 站点之间
B 、P 站点与O 站点之间
C 、O 站点与Q 站点之间
D 、Q 站点与R 站点之间。