随机事件及其概率(数学)
- 格式:doc
- 大小:531.00 KB
- 文档页数:12
随机事件及其概率随机事件随机事件的概念随机试验E试验可以在相同的条件下重复进⾏(重复性);试验的可能结果不⽌⼀个,并且⼀切可能的结果都已知(多样性);在每次试验前,不能确定哪⼀个结果会出现(随机性)。
样本空间S随机试验E的所有可能结果组成的集合称为试验的样本空间随机事件随机试验E的样本空间S的⼦集称为E的随机事件随机事件的关系包含关系:B⊂A(B发⽣必导致A发⽣)相等关系:B⊂A且A⊂B,则A=B事件的和:A∪B(事件A发⽣或B发⽣,即A和B中⾄少有⼀发⽣)事件的积:A∩B=AB(事件A发⽣且事件B发⽣)事件的差:A-B(事件A发⽣且事件B不发⽣)互不相容(互斥关系):A∩B=Ø(事件A和事件B不可能同时发⽣)互逆关系(对⽴关系):若A∪B=S且A∩B=Ø,记为A=或B=运算规律交换律:A∪B=B∪A;A∩B=B∩A;结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C分配率:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C)对偶律:P(A∪B)=P(A)+P(B)-P(AB)(如果A、B互斥,则P(AB)=0)P(A-B)=P(A)-P(AB)(若B⊂A,则P(AB)=P(B))P(A)=1-P();P(A)=P(A)+P(AB)古典概率模型1. 试验的样本空间只含有有限个样本点,即基本事件数有限;2. 在每⼀次试验中,每个基本事件发⽣的可能性都相同。
3. 古典概率P(A) = A中的基本事件 / S中包含的基本事件排列A n m:从n个⼈中,有顺序地抽出m个⼈的抽法数;A n m=n(n-1)...(n-m+1)组合C n m:从n个⼈中,不计顺序地抽出m个⼈的抽法数;C n m=n!/m!(n-m)!条件概率、全概率公式与贝叶斯公式条件概率在事件A发⽣的条件下,事件B发⽣的条件概率:P(B|A)=P(AB)/P(A);P(B|A)=1-P(|A)乘法公式:若P(A)>0,则有P(AB)=P(A)P(B|A)假如事件A与B相互独⽴,则P(AB)=P(A)P(B)全概率公式全概率就是表⽰达到某个⽬的,有多种⽅式(或者造成某种结果,有多种原因),问达到⽬的的概率是多少(造成这种结果的概率是多少)?P(A)=P(B1)P(A|B1)+P(B2)P(A|B2)+...+P(B n)P(A|B n)贝叶斯公式当已知结果,问导致这个结果的第i原因的可能性是多少?执果索因!事件独⽴性和贝努利试验事件独⽴性事件B的发⽣与否,并没有影响到事件A发⽣的概率P(A|B)=P(A),即P(AB)=P(A)P(B)贝努利试验在同样的条件下重复地、相互独⽴地进⾏的⼀种随机试验,其特点是该随机试验只有两种可能结果:发⽣或者不发⽣。
数学随机概率教学计划(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学随机概率教学计划(优秀4篇)本文是本店铺本店铺给家人们收集的数学随机概率教学计划(优秀4篇)希望大家能够喜欢。
概率公式整理1.随机事件及其概率吸收律:AAB A AA A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)( )(AB A B A B A -==- 反演律:B A B A =⋃ B A AB ⋃=ni i ni i A A 11===ni i ni i A A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有)()()()(AB P B P A P B A P -+=⋃ )()()(B P A P B A P +≤⋃)()1()()()()(2111111n n nnk j i k j i nj i j ini ini i A A A P A A A P A AP AP A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率 ()=A B P )()(A P AB P乘法公式())0)(()()(>=A P A BP A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式∑==ni i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==ni i ik k B AP B P B A P B P 1)()()()(4.随机变量及其分布 分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量(1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P kk(2) 二项分布 ),(p n B 若P ( A ) = pn k p p C k X P kn kkn ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λn n np有,2,1,0!)1(lim ==---∞→k k ep p C kkn n k nk n n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k ek X P kλλ6.连续型随机变量 (1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a a b x f ⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b ax x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f xλλ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ(3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=x t t e x F d 21)(222)(σμσπ*N (0,1) — 标准正态分布+∞<<∞-=-x ex x2221)(πϕ+∞<<∞-=Φ⎰∞--x t ex xtd 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=yY dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(G y x Ay x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9. 二维随机变量的 条件分布0)()()(),(>=x f x y f x f y x f X XYX0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()( ⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X XYY )()(),()()(y x f Y X )(),(y f y x f Y =)()()(y f x f x y f Y X XY =)(x y f XY)(),(x f y x f X = )()()(x f y f y x f X Y Y X =10.随机变量的数字特征 数学期望∑+∞==1)(k k k p x X E⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望X 的 k 阶原点矩)(k X E X 的 k 阶绝对原点矩)|(|k X E X 的 k 阶中心矩)))(((k X E X E - X 的 方差)()))(((2X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩()lkY E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩)(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())((( X 的方差D (X ) =E ((X - E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -=())()()(21Y D X D Y X D --±±=相关系数)()(),cov(Y D X D Y X XY =ρ简单整理了一下,中心极限定理及数理统计部分多概念少公式故未详细列出,有问题可以给我来信,希望能与大家多交流。
随机事件及其概率一、随机事件1、必然事件在一定条件下,必然会发生的事件叫作必然事件.2、不可能事件在一定条件下,一定不会发生的事件叫作不可能事件.3、随机事件在一定条件下,可能发生,也可能不发生的事件叫作随机事件,一般用大写字母A,B,C来表示随机事件.4、确定事件必然事件和不可能事件统称为相对于随机事件的确定事件.5、试验为了探索随机现象发生的规律,就要对随机现象进行观察或模拟,这种观察或模拟的过程就叫作试验.【注】(1)在一定条件下,某种现象可能发生,也可能不发生,事先并不能判断将出现哪种结果,这种现象就叫作随机现象. 应当注意的是,随机现象绝不是杂乱无章的现象,这里的“随机”有两方面意思:①这种现象的结果不确定,发生之前不能预言;②这种现象的结果带有偶然性. 虽然随机现象的结果不确定,带有某种偶然性,但是这种现象的各种可能结果在数量上具有一定的稳定性和规律性,我们称这种规律性为统计规律性. 统计和概率就是从量的侧面去研究和揭示随机现象的这种规律性,从而实现随机性和确定性之间矛盾的统一.(2)必然事件与不可能事件反映的是在一定条件下的确定性现象,而随机事件反映的则是在一定条件下的随机现象.(3)随机试验满足的条件:可以在相同条件下重复进行;所有结果都是明确可知的,但不止一个;每一次试验的结果是可能结果中的一个,但不确定是哪一个. 随机事件也可以简称为事件,但有时为了叙述的简洁性,也可能包含不可能事件和必然事件.二、基本事件空间1、基本事件在试验中不能再分的最简单的随机事件,而其他事件都可以用它们进行描述,这样的事件称为基本事件.2、基本事件空间所有基本事件构成的集合称为基本事件空间,常用大写字母Ω来表示,Ω中的每一个元素都是一个基本事件,并且Ω中包含了所有的基本事件.【注】基本事件是试验中所有可能发生的结果的最小单位,它不能再分,其他的事件都可以用这些基本事件来表示;在写一个试验的基本事件空间时,应注意每个基本事件是否与顺序有关系;基本事件空间包含了所有的基本事件,在写时应注意不重复、不遗漏.三、频率与概率1、频数与频率在相同条件S 下进行了n 次试验,观察某一事件A 是否出现,则称在n 次试验中事件A 出现的次数A n 为事件A 出现的频数;事件A 出现的比例()A n n f A n=为事件A 出现的频率.对于给定的随机事件A ,如果随着试验次数n 的增加,事件A 发生的频率()n f A 稳定在某个常数上,则把这个常数称为事件A 的概率,简称为A 的概率,记作()P A .3、频率与概率的关系(1)频率虽然在一定程度上可以反映事件发生的可能性的大小,但频率并不是一个完全确定的数. 随着试验次数的不同,产生的频率也可能不同,所以频率无法从根本上刻画事件发生的可能性的大小,但人们从大量的重复试验中发现:随着试验次数的无限增加,事件发生的频率会稳定在某一固定的值上,即在无限次重复试验下,频率具有某种稳定性.(2)概率是一个常数,它是频率的科学抽象. 当试验次数无限多时,所得到的频率就会近似地等于概率. 另外,概率大,并不表示事件一定会发生,只能说明事件发生的可能性大,但在一次试验中却不一定会发生.四、事件的关系与运算1、包含关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,则我们称 事件B 包含事件A (或称事件A 包含于事件B ),记作B A ⊇(或A B ⊆).2、相等关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,并且如果事件B 发生时,事件A 一定发生,即若B A ⊇且A B ⊇,则我们称事件A 与事件B 相等,记作A B =.3、并事件如果某事件发生当且仅当事件A 或事件B 发生,则我们称该事件为事件A 与事件 B 的并事件(或和事件),记作A B ⋃(或A B +).如果某事件发生当且仅当事件A发生且事件B也发生,则我们称该事件为事件A 与事件B的交事件(或积事件),记作A B⋂(或A B⋅).5、互斥事件如果事件A与事件B的交事件A B⋂=∅),则我们称事⋂为不可能事件(即A B件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中都不会同时发生.6、对立事件如果事件A与事件B的交事件A B⋂=∅),而事件A与⋂为不可能事件(即A B事件B的并事件A B⋃=Ω),则我们称事件A与事件B互⋃为必然事件(即A B为对立事件,其含义是:事件A与事件B在任何一次试验中有且仅有一个发生.【注】事件的关系与运算可以类比集合的关系与运算. 例如,事件A包含事件B 类比集合A包含集合B;事件A与事件B相等类比集合A与集合B相等;事件A 与事件B的并事件类比集合A与集合B的并集;事件A与事件B的交事件类比集合A与集合B的交集……五、互斥事件与对立事件互斥事件与对立事件是今后考察的重点,因此关于互斥事件与对立事件,我们很有必要再作进一步的说明.1、互斥事件与对立事件的关系互斥事件与对立事件都反映的是两个事件之间的关系. 互斥事件是不可能同时发生的两个事件,而对立事件除了要求这两个事件不同时发生以外,还要求这两个事件必须有一个发生. 因此,对立事件一定是互斥事件,而互斥事件不一定是对立事件. 例如,掷一枚骰子,事件:“出现的点数是1”与事件:“出现的点数是偶数”是互斥事件,但不是对立事件;而事件:“出现的点数是奇数”与事件:“出现的点数是偶数”既是互斥事件,也是对立事件.2、互斥事件的概率加法公式(1)两个互斥事件的概率之和如果事件A 与事件B 互斥,那么()()()P A B P A P B ⋃=+;(2)有限多个互斥事件的概率之和一般地,如果事件1A ,2A ,…,n A 两两互斥,那么事件“12n A A A ⋃⋃⋃发生”(指事件1A ,2A ,…,n A 中至少有一个发生)的概率等于这n 个事件分别发生的概率之和,即1212()()()()n n P A A A P A P A P A ⋃⋃⋃=+++.【注】上述这两个公式叫作互斥事件的概率加法公式. 在运用互斥事件的概率加法公式时,一定要首先确定各事件是否彼此互斥(如果这个条件不满足,则公式不适用),然后求出各事件分别发生的概率,再求和.3、对立事件的概率加法公式对于对立的两个事件A 与B 而言,由于在一次试验中,事件A 与事件B 不会同时发生,因此事件A 与事件B 互斥,并且A B ⋃=Ω,即事件A 或事件B 必有一个发生,所以对立事件A 与B 的并事件A B ⋃发生的概率等于事件A 发生的概率与事件B 发生的概率之和,且和为1,即()()()()1P P A B P A P B Ω=⋃=+=,或()1()P A P B =-.【注】上述这个公式为我们求事件A 的概率()P A 提供了一种方法,当我们直接求()P A 有困难时,可以转化为先求其对立事件B 的概率()P B ,再运用公式()1()P A P B =-即可求出所要求的事件A 的概率()P A .4、求复杂事件的概率的方法求复杂事件的概率通常有两种方法:一种是将所求事件转化为彼此互斥的事件的和,然后再运用互斥事件的概率加法公式进行求解;另一种是先求其对立事件的概率,然后再运用对立事件的概率加法公式进行求解. 如果采用方法一,一定要准确地将所求事件拆分成若干个两两互斥的事件,不能有重复和遗漏;如果采用方法二,一定要找准所求事件的对立事件,并准确求出对立事件的概率.六、概率的基本性质1、任何事件的概率都在01之间,即对于任一事件A,都有0()1≤≤.P A2、必然事件的概率为1,不可能事件的概率为0.3、若事件A与事件B互斥,则()()()⋃=+.P A B P A P B4、两个对立事件的概率之和为1,即若事件A与事件B对立,则()()1+=.P A P B。
第4讲随机事件与概率1.了解随机事件发生的不确定性和频率的稳定性,理解概率的意义以及频率与概率的区别.2.理解事件间的关系与运算.1.样本空间和随机事件(1)样本点和有限样本空间①样本点:随机试验E 的每个可能的□1基本结果称为样本点,常用ω表示.全体样本点的集合称为试验E 的样本空间,常用Ω表示.②有限样本空间:如果一个随机试验有n 个可能结果ω1,ω2,…,ωn ,则称样本空间Ω={ω1,ω2,…,ωn }为有限样本空间.(2)随机事件①定义:将样本空间Ω的□2子集称为随机事件,简称事件.②表示:大写字母A ,B ,C ,….③随机事件的极端情形:必然事件、不可能事件.2.事件的关系定义表示法图示包含关系若事件A 发生,事件B □3一定发生,称事件B 包含事件A (或事件A 包含于事件B )□4B ⊇A (或A □5⊆B )互斥事件如果事件A 与事件B □6不能同时发生,称事件A 与事件B 互斥(或互不相容)若A ∩B =∅,则A 与B 互斥对立事件如果事件A 和事件B 在任何一次试验中□7有且仅有一个发生,称事件A 与事件B 互为对立,事件A 的对立事件记为A -若A ∩B =∅,且A ∪B =Ω,则A 与B 对立3.事件的运算定义表示法图示并事件事件A 与事件B 至少有一个发生,称这个事件为事件A 与事件B 的并事件(或和事件)□8A ∪B (或A +B )交事件事件A 与事件B 同时发生,称这样一个事件为事件A 与事件B 的交事件(或积事件)□9A ∩B (或AB )4.概率与频率(1)频率的稳定性:一般地,随着试验次数n 的增大,频率偏离概率的幅度会缩小,即事件A 发生的频率f n (A )会逐渐稳定于事件A 发生的□10概率P (A ).我们称频率的这个性质为频率的稳定性.(2)频率稳定性的作用:可以用频率f n (A )估计□11概率P (A ).常用结论1.从集合的角度理解互斥事件和对立事件(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.(2)事件A 的对立事件A -所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的补集.2.概率加法公式的推广当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法公式的推广,即P (A 1∪A 2∪…∪A n )=P (A 1)+P (A 2)+…+P (A n ).1.思考辨析(在括号内打“√”或“×”)(1)事件发生的频率与概率是相同的.()(2)在大量的重复试验中,概率是频率的稳定值.()(3)若随机事件A 发生的概率为P (A ),则0≤P (A )≤1.()(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.()答案:(1)×(2)√(3)√(4)×2.回源教材(1)某人打靶时连续射击两次,下列事件中与事件“至少一次中靶”互为对立的是()A.至多一次中靶B.两次都中靶C.只有一次中靶D.两次都没有中靶解析:D连续射击两次中靶的情况如下:①两次都中靶;②只有一次中靶;③两次都没有中靶,故选D.(2)一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是()A.至少有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶解析:B射击两次中“至多有一次中靶”即“有一次中靶或两次都不中靶”,与该事件不能同时发生的是“两次都中靶”.(3)把一枚质地均匀的硬币连续抛掷1000次,其中有496次正面朝上,504次反面朝上,则掷一次硬币正面朝上的概率为.解析:掷一次硬币正面朝上的概率是0.5.答案:0.5随机事件的关系运算例1(1)若干个人站成一排,其中为互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”解析:A根据互斥事件不能同时发生,判断A是互斥事件;B、C、D中两事件能同时发生,故不是互斥事件.故选A.(2)(多选)一批产品共有100件,其中5件是次品,95件是合格品.从这批产品中任意抽取5件,现给出以下四个事件:事件A:“恰有一件次品”;事件B:“至少有两件次品”;事件C:“至少有一件次品”;事件D:“至多有一件次品”.则下列说法正确的是()A.A∪B=CB.B∪D是必然事件C.A∩B=CD.A∩D=C解析:AB根据已知条件以及利用和事件、积事件的定义进行判断.事件A∪B 指至少有一件次品,即事件C,故A正确;事件B∪D指至少有两件次品或至多有一件次品,次品件数包含0到5,即代表了所有情况,故B正确;事件A和B 不可能同时发生,即事件A∩B=∅,故C错误;事件A∩D指恰有一件次品,即事件A,而事件A和C不同,故D错误.反思感悟1.事件的关系运算策略(1)互斥事件是不可能同时发生的事件,但也可以同时不发生.(2)进行事件的运算时,一是要紧扣运算的定义,二是要全面考虑同一条件下的试验可能出现的全部结果,必要时可列出全部的试验结果进行分析,也可类比集合的关系和运用Venn图分析事件.2.辨析互斥事件与对立事件的思路(1)在一次试验中,两个互斥事件有可能都不发生,也可能有一个发生,但不可能同时发生.(2)两个对立事件必有一个发生,但不可能同时发生.即两事件对立,必定互斥,但两事件互斥,未必对立.对立事件是互斥事件的一个特例.(3)互斥的概念适用于两个或多个事件,但对立的概念只适用于两个事件.训练1(1)把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四人,每个人分得一张,事件“甲分得红牌”与“乙分得红牌”()A.是对立事件B.是不可能事件C.是互斥但不对立事件D.不是互斥事件解析:C事件“甲分得红牌”与事件“乙分得红牌”不可能同时发生,故它们是互斥事件,但由于这两个事件的和事件不是必然事件,故这两个事件不对立.(2)(多选)口袋里装有1红,2白,3黄共6个除颜色外完全相同的小球,从中取出两个球,事件A=“取出的两个球同色”,B=“取出的两个球中至少有一个黄球”,C=“取出的两个球至少有一个白球”,D=“取出的两个球不同色”,E=“取出的两个球中至多有一个白球”.下列判断正确的是()A.A与D为对立事件B.B与C是互斥事件C.C与E是对立事件D.P(C∪E)=1解析:AD当取出的两个球为一黄一白时,B与C都发生,B不正确;当取出的两个球中恰有一个白球时,事件C与E都发生,C不正确;显然A与D是对立事件,A正确;C∪E为必然事件,P(C∪E)=1,D正确.互斥事件与对立事件的概率例2某商场进行有奖销售,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.解:(1)P(A)=11000,P(B)=101000=1100,P(C)=501000=1 20 .(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C.∵事件A,B,C两两互斥,∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)=1+10+501000=611000,故1张奖券的中奖概率为61 1000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,∴P(N)=1-P(A∪B)=1-(11000+1100)=9891000,故1张奖券不中特等奖且不中一等奖的概率为989 1000.反思感悟当所求概率的事件较为复杂时,可考虑把其分解为几个互斥的事件,利用互斥事件的概率公式求解,或求其对立事件的概率,利用对立事件的概率求解.训练2经统计,在某储蓄所一个营业窗口排队的人数相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.解:记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥.(1)记“至多2人排队等候”为事件G,则G=A∪B∪C,所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)法一:记“至少3人排队等候”为事件H,则H=D∪E∪F,所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.随机事件的频率与概率例3(经典高考题)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级A B C D频数40202020乙分厂产品等级的频数分布表等级A B C D频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?解:(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A级品的概率的估计值为40100=0.4;乙分厂加工出来的一件产品为A级品的概率的估计值为28100=0.28.(2)由数据知甲分厂加工出来的100件产品利润的频数分布表为利润6525-5-75频数40202020因此甲分厂加工出来的100件产品的平均利润为65×40+25×20-5×20-75×20100=15(元).由数据知乙分厂加工出来的100件产品利润的频数分布表为利润70300-70频数28173421因此乙分厂加工出来的100件产品的平均利润为70×28+30×17+0×34-70×21100=10(元).比较甲、乙两分厂加工的产品的平均利润,厂家应选甲分厂承接加工业务.反思感悟1.频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.2.利用概率的统计意义求事件的概率,即通过大量的重复试验,事件发生的频率会逐步趋近于某一个常数,这个常数就是概率.训练3某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40]天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.解:(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表中数据可知,最高气温低于25的频率为2+16+3690=0.6.所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6. (2)当这种酸奶一天的进货量为450瓶时,若最高气温低于20,则Y=200×6+(450-200)×2-450×4=-100;若最高气温位于区间[20,25),则Y=300×6+(450-300)×2-450×4=300;若最高气温不低于25,则Y=450×(6-4)=900,所以,利润Y的所有可能值为-100,300,900.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8.因此Y大于零的概率的估计值为0.8.限时规范训练(七十六)A级基础落实练1.在1,2,3,…,10这十个数字中,任取三个不同的数字,那么“这三个数字的和大于5”这一事件是()A.必然事件B.不可能事件C.随机事件D.以上选项均有可能解析:A从1,2,3,…,10这十个数字中任取三个不同的数字,那么这三个数字和的最小值为1+2+3=6,∴事件“这三个数字的和大于5”一定会发生,∴由必然事件的定义可以得知该事件是必然事件.2.同时抛掷两枚完全相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的样本点的个数是()A.3B.4C.5D.6解析:D事件A包含(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个样本点.3.下列说法正确的是()A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定解析:C不可能事件的概率为0,必然事件的概率为1,故A错误;频率是由试验的次数决定的,故B错误;概率是频率的稳定值,故C正确,D错误.4.(2024·太原模拟)已知随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,-)=()则P(AA.0.5B.0.1C.0.7D.0.8解析:A∵随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,∴P(A)=P(A∪B)-P(B)=0.7-0.2=0.5,∴P(A-)=1-P(A)=1-0.5=0.5.5.掷一枚质地均匀的骰子,“向上的点数是1或3”为事件A,“向上的点数是1或5”为事件B,则()A.A∪B表示向上的点数是1或3或5B.A=BC.A∪B表示向上的点数是1或3D.A∩B表示向上的点数是1或5解析:A设A={1,3},B={1,5},则A∩B={1},A∪B={1,3,5},∴A≠B,A∩B表示向上的点数是1,A∪B表示向上的点数为1或3或5.6.(多选)下列说法中正确的有()A.若事件A与事件B是互斥事件,则P(AB)=0B.若事件A与事件B是对立事件,则P(A+B)=1C.某人打靶时连续射击三次,则事件“至少有两次中靶”与事件“至多有一次中靶”是对立事件D.把红、橙、黄3张纸牌随机分给甲、乙、丙3人,每人分得1张,则事件“甲分得的不是红牌”与事件“乙分得的不是红牌”是互斥事件解析:ABC事件A与事件B互斥,则A,B不可能同时发生,所以P(AB)=0,故A正确;事件A与事件B是对立事件,则事件B即为事件A-,所以P(A+B)=1,故B 正确;事件“至少有两次中靶”与“至多有一次中靶”不可能同时发生,且二者必有一个发生,所以为对立事件,故C正确;事件“甲分得的不是红牌”与事件“乙分得的不是红牌”可能同时发生,即“丙分得的是红牌”,所以不是互斥事件,故D错误.7.商场在一周内共卖出某种品牌的皮鞋300双,商场经理为考察其中各种尺码皮鞋的销售情况,以这周内某天售出的40双皮鞋的尺码为一个样本,分为5组,已知第3组的频率为0.25,第1,2,4组的频数分别为6,7,9.若第5组表示的是尺码为40~42的皮鞋,则售出的这300双皮鞋中尺码为40~42的皮鞋约为双.解析:∵第1,2,4组的频数分别为6,7,9,∴第1,2,4组的频率分别为640=0.15,740=0.175,940=0.225.∵第3组的频率为0.25,∴第5组的频率是1-0.25-0.15-0.175-0.225=0.2,∴售出的这300双皮鞋中尺码为40~42的皮鞋约为0.2×300=60(双).答案:608.(2024·天津调研)某射击运动员平时100次训练成绩的统计结果如下:命中环数12345678910频数24569101826128如果这名运动员只射击一次,估计射击成绩是6环的概率为;不少于9环的概率为.解析:由题表得,如果这名运动员只射击一次,估计射击成绩是6环的概率为10100=110,不少于9环的概率为12+8100=15.答案:110159.我国西部一个地区的年降水量在下列区间内的概率如表所示:年降水量(mm)(100,150)(150,200)(200,250)(250,300)概率0.210.160.130.12则年降水量在(200,300)(mm)范围内的概率是.解析:设年降水量在(200,300),(200,250),(250,300)的事件分别为A,B,C,则A=B∪C,且B,C为互斥事件,所以P(A)=P(B)+P(C)=0.13+0.12=0.25.答案:0.2510.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.商品顾客人数甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解:(1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为200 1000=0.2.(2)从统计表可以看出,在这1000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+200 1000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1.所以如果顾客购买了甲,则该顾客同时购买丙的可能性最大.11.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234≥5保费0.85a a 1.25a 1.5a 1.75a2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数01234≥5频数605030302010(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度平均保费的估计值.解:(1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P(A)的估计值为0.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P(B)的估计值为0.3.(3)由所给数据得保费0.85a a 1.25a 1.5a 1.75a2a频率0.300.250.150.150.100.05调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.1925a.因此,续保人本年度平均保费的估计值为1.1925a.B级能力提升练12.(多选)(2023·枣庄调研)一个袋子中有大小和质地相同的4个球,其中有2个红色球(标号为1和2),2个绿色球(标号为3和4),从袋中不放回地随机摸出2个球,每次摸出一个球.设事件R1=“第一次摸到红球”,R=“两次都摸到红球”,G=“两次都摸到绿球”,M=“两球颜色相同”,N=“两球颜色不同”,则()A.R1⊆RB.R∩G=∅C.R∪G=MD.M=N-解析:BCD样本空间为{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(2,1),(3,1),(4,1),(3,2),(4,2),(4,3)},R1={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4)},R={(1,2),(2,1)},G={(3,4),(4,3)},M={(1,2),(2,1),(3,4),(4,3)},N={(1,3),(1,4),(2,3),(2,4),(3,1),(3,2),(4,1),(4,2)},由集合的包含关系可知B,C,D正确.13.如果事件A,B互斥,记A-,B-分别为事件A,B的对立事件,那么()A.A∪B是必然事件B.A-∪B-是必然事件C.A-与B-一定互斥D.A-与B-一定不互斥-∪B-是必然事件,A-与B-不解析:B如图①所示,A∪B不是必然事件,A互斥;如图②所示,A∪B是必然事件,A-∪B-是必然事件,A-与B-互斥.图①图②14.某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦·时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表降雨量70110140160200220频率120420220(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦·时)或超过530(万千瓦·时)的概率.解:(1)在所给数据中,降雨量为110毫米的有3个,降雨量为160毫米的有7个,降雨量为200毫米的有3个.故近20年六月份降雨量频率分布表为降雨量70110140160200220频率120320420720320220(2)根据题意,Y=460+X-7010×5=X2+425,故P(“发电量低于490万千瓦·时或超过530万千瓦·时”)=P(Y<490或Y>530)=P(X<130或X>210)=P(X=70)+P(X=110)+P(X=220)=120+320+220=310.故今年六月份该水力发电站的发电量低于490(万千瓦·时)或超过530(万千瓦·时)的概率为310 .。
一、随机事件和概率1、随机事件及其概率、随机变量及其分布1、分布函数性质P(X Eb)二F(b) P(a ::: X <b)二F(b) — F(a)2、散型随机变量3三、多维随机变量及其分布1、 离散型二维随机变量边缘分布 P i.=P(X=X j )=' P(X=X i ,Y=y j )=' pjP j=P(丫 = yj)=' P(X=X j ,Y=yj)=' pjjji i2、 离散型二维随机变量条件分布x y3、 连续型二维随机变量(X ,Y )的分布函数F (x, y)=匕打二f (u,v)dvdu4、 连续型二维随机变量边缘分布函数与边缘密度函数x ■: : ■::分布函数: Fx (x) f (u,v)dvdu y -beF Y (y) f (u,v)dudv5、二维随机变量的条件分布 s(yx)—XY (xy)fyp —四、随机变量的数字特征1、 数学期望■bo 鈕离散型随机变量: E(X) X k P k连续型随机变量: E(X ) = xf (x)dxk=1一北2、 数学期望的性质(1) E(C) =C,C 为常数 E[E(X)] =E(X) E(CX) =CE(X)pi j= P(X=xi 丫= yj)史二二上,i”P(Y =y j)P j.pj i= P(Y = yjX =x i)7 丫知P(X =X i )P i .密度函数:fx (x)二 f(x,v)dv_f?0■ho fY(y)二 f(u, y)du⑵ E(X _Y) =E(X) -E(Y) E(aX —b)二aE(X) _b EGX1 C n X n) ^汨*) C n E(X n)⑶若XY相互独立则:E(XY) =E(X)E(Y) (4)[E(XY)]2空 E2(X)E2(Y)3、方差:D(X) =E(X2) —E2(X)4、方差的性质2 2(1)D(C) =0 D[D(X)] =0 D(aX _b) =a2D(X) D(X) ::: E(X _C)2(2)D(X _Y) =D(X) D(Y) _2Cov(X,Y) 若 XY 相互独立则: D(X 二丫)= D(X) D(Y)5、协方差:Cov(X,Y) =E(X,Y) -E(X)E(Y) 若 XY 相互独立则: Cov(X,Y)=06、相关系数:P XY = P(X,丫) = Cov(X,Y)若XY相互独立则:P XY =0即XY不相关W(X)jD(Y)7、协方差和相关系数的性质(1) Cov(X,X) =D(X) Co VX,Y) =Co VY,X) ⑵ Cov(X i X2,Y) =Cov(X i,Y) C OV(X2,Y) Cov(aX c,bY d) =abCo%,Y) 8、常见数学分布的期望和方差五、大数定律和中心极限定理1、切比雪夫不等式若 E(X) ==D(X) =;「2,对于任意0 有 P{X -E(X) 一 } 一卫孚或 P{X -E(X) :: } 一1-卫冷91n1nXT X n相互独立且n T旳时,丄瓦Xi ― 丄瓦E(X i) n y nid2、大数定律:若⑸样本k 阶中心距:n1 _— k B k 二M k (X i -X)k,k =2,3…⑹次序统计量:设样本 (人必2…X n )的观察值 区也…冷),将“X ?…冷按照由小到大的次序重新排列,得到X (1)岂乂⑵乞…岂Xg ,记取值为X(Q 的样本分量为X(Q ,则称X (1)岂X (2) <<X (n)为样本以皿 X .)的次序统计 量。
随机事件及其概率(数学)
练习: 1. 判断正误
(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。
(B ) (2)事件的对立与互不相容是等价的。
(B ) (3)若()0,P A = 则A =∅。
(B )
(4)
()0.4,()0.5,()0.2P A P B P AB ===若则。
(B )
(5)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (
6
)
考
察
有
两
个
孩
子
的
家
庭
孩
子
的
性
别
,
{()Ω=两个男孩(,两个女孩),(一个男孩,
}一个女孩),则P {}1
=3
两个女孩。
(B ) (7)若
P(A)P(B)≤,则⊂A B 。
(B )
(8)n 个事件若满足,,()()()
i j i j i j P A A P A P A ∀=,则n 个事件相互独立。
(B )
(9)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A )
2. 选择题
(1)设A, B 两事件满足P(AB)=0,则C
A. A 与B 互斥
B. AB 是不可能事件
C. AB 未必是不可能事件
D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C )
A. P(A)-P(B)
B. P(A)-P(B)+P(AB)
C. P(A)-P(AB)
D. P(A)+P(B)-P(AB)
(3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D) A. “甲种产品滞销,乙种产品畅销”
B. “甲乙两种产品均畅销”
C. “甲种产品滞销”
D. “甲种产品滞销或乙种产品畅销”
(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A ) A. P(A ∪B)=P(A) B. P(AB)=P(A)
C. P(B|A)=P(B)
D. P(B-A)=P(B)-P(A) (5)设
(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B )
A.
()a c c + B . 1a c +-
C. a b c +-
D. (1)b c -
(6)假设事件A 和B 满足P(B|A)=1, 则(B)
A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D )
A. 事件A, B 互不相容
B. 事件A 和B 互相对立
C. 事件A, B 互不独立 D . 事件A, B 互相独立
8.,,.,,.D ,,.,,.,,141
9.(),(),(),(),()375
14131433.,.,.,.,37351535105
A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )
若则一定独立;若则一定独立;
若则有可能独立;若则一定不独立;已知则的值分别为:(D)
三解答题
1.(),(),(),(),(),(),().
P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:
解:由德摩根律有____
()()1()1;P A B P AB P AB r ⋃==-=-
()()()();P AB P B AB P B P AB q r =-=-=-
()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-
________
()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-
2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
解:设事件A A B 甲乙表示甲命中,表示乙命中,表示目标被命中。
()()0.6
()=0.75()()0.6+0.5-0.60.5
()=()()()()P A B P A P A B P B P A A A B A B A P B P A A P A A P A P A =
==⋃⨯⊂=⋃=甲甲甲甲乙甲甲甲甲乙甲乙甲乙(因为,所以),
目标被命中只要甲乙至少有一个命中即可,所以甲乙独立射击,所以。
3.设一枚深水炸弹击沉一潜艇的概率为0.6,求释放4枚深水炸弹能击沉潜艇的概率。
解:4枚深水炸弹只要有一枚射中就有击沉潜艇的可能,所以 设B 表示潜艇被击沉,,1,2,3,4i A i =为第i 枚深水炸弹击沉潜艇。
_______________________
123412344
12341234()()1()1()1()()()()10.4
P B P A A A A P A A A A P A A A A P A P A P A P A =⋃⋃⋃=-⋃⋃⋃=-=-=-
4.某卫生机构的资料表明:患肺癌的人中吸烟的占90%,不患肺癌的人中吸烟的占20%。
设患肺癌的人占人群的0.1%。
求在吸烟的人中患肺癌的概率。
解:设A 表示吸烟,B 表示患肺癌。
已知条件为()90%,()20%,()0.1%.
()()()
()()()()()()
0.0010.9
0.0010.90.9990.2
P A B P A B P B P B P A B P AB P B A P A P B P A B P B P A B =====
+⨯=
⨯+⨯ 5.设玻璃杯整箱出售,每箱20个,各箱含0,1,2只残次品的概率分别为0.8,0.1,0.1,一顾客欲购买一箱玻璃杯,由售货员任取一箱,经顾客开箱随机查看4只,若无残次品,则购买,否则不买,求
(1)顾客购买此箱玻璃杯的概率。
(2)在顾客购买的此箱玻璃杯中,确实没有残次品的概率。
解:参考书上24页例4 第二章随机变量及其分布 练习题: 1判断正误:
(1) 概率函数与密度函数是同一个概念。
(B ) (2) 超几何分布在一定条件下可近似成二项分布。
(A ) (3)()P λ中的λ是一个常数,它的概率含义是均值。
(A ) (4)()()P a X b P a X b <<=≤≤。
(B )
(5)若X 的密度函数为()f x =cos x ,则0
(0)cos .P X tdt π
π<<=⎰
(B )
2选择题
(1) 若X 的概率函数为
(),0,1,2,a ....k
D P X k a k k A B C e e λλ
λλλ-===-则的值为(D )
!
(2)设在区间[],a b 上,X 的密度函数()sin f x x =,而在[],a b 之外,()0f x =,则区间
[],a b 等于:(A)
[]
3.0,.0,.,0.0,222A B C D ππππ⎡⎤
⎡⎤⎡⎤-⎢⎥⎢⎥⎢⎥⎣⎦
⎣⎦⎣⎦。