三洋、双良、荏原溴化锂吸收式热泵产品
- 格式:xls
- 大小:704.00 KB
- 文档页数:22
溴化锂吸收式热泵原理溴化锂吸收式热泵是一种利用热力驱动的制冷和供暖系统。
它是基于热力学原理的工作循环,通过吸收剂溴化锂的吸收和脱吸收,能够实现热能的传递和转换。
溴化锂吸收式热泵由两个主要组成部分组成:吸收器和发生器。
其中吸收器负责溴化锂溶液的吸收过程,发生器负责溴化锂溶液的脱吸收过程。
当供应给溴化锂水溶液一定的热量时,溶液中的溴化锂和水将发生化学反应,使之转化为稳定的溴化锂水合物(LiBr·H2O)。
这个过程称为吸收。
吸收器中发生的化学反应一般由质子交换反应控制。
LiBr(aq) + H2O(l) ↔LiOHHr(aq) + Br-(aq)同时,在吸收过程中,蒸发器中的制冷剂(一般是水)会吸收热量,从而从低温环境中吸收热能。
当被吸收的溴化锂溶液通过循环泵从吸收器流向发生器时,供给给它一定的热量,将产生脱吸收的化学反应。
这个过程称为脱吸收。
脱吸收是一个吸收反应的反向过程。
LiBr(aq) + H2O(l) ←LiOHHr(aq) + Br-(aq)这个过程中,由于脱吸收过程需要吸收能量,因此会通过外界提供的热源将热量传递给溴化锂溶液,从而使之发生脱吸收反应。
同时,脱吸收过程会释放吸收过程中吸收的热量。
整个溴化锂吸收式热泵系统的运行主要依赖于循环泵、换热器和再生器等辅助设备。
其中循环泵负责将溴化锂溶液从吸收器送往发生器,换热器负责传输热能,再生器负责将冷却的溴化锂溶液重新加热使之达到新一轮的吸收。
溴化锂吸收式热泵的工作原理可以归结为以下几个步骤:1. 吸收器中,将热力源供给给溴化锂水溶液,引发化学反应,使之转化为溴化锂水合物。
2. 同时,蒸发器从外界吸收热量,将制冷剂从低温环境中吸收热能。
3. 吸收的溴化锂溶液经过循环泵流经换热器和发生器,发生脱吸收反应。
4. 脱吸收过程中,通过外界提供的热源将热量传递给溴化锂溶液,使之发生脱吸收反应并释放吸收过程中吸收的热量。
5. 冷却的溴化锂溶液再次通过再生器加热,实现新一轮的吸收。
溴化锂吸收式热泵原理溴化锂吸收式热泵是一种利用化学吸收原理实现热量传递的热泵系统。
该系统的工作原理是利用溴化锂和水之间的吸收作用,将低温环境中的热能通过吸收作用转移到高温环境中,从而实现冷热能的转换。
以下将详细介绍溴化锂吸收式热泵的工作原理及其应用。
一、溴化锂吸收式热泵的工作原理溴化锂吸收式热泵系统由蒸发器、冷凝器、吸收器和发生器四个主要部件组成。
其中,蒸发器和冷凝器分别用于吸收和释放热量,吸收器和发生器则用于控制溴化锂和水的浓度变化,从而实现热量的传递。
在溴化锂吸收式热泵系统中,工质主要由溴化锂和水组成。
当蒸发器中的工质被加热时,溴化锂与水分离,溴化锂蒸发成气体,吸收器中的水吸收这些气体,从而使吸收器中的水浓度增加。
此时,发生器中的热量会使溴化锂和水之间的化学反应逆转,将吸收器中的水蒸发成气体,溴化锂则被吸收,浓度变稀。
这些气体被冷凝器中的冷凝水吸收,从而释放出来的热量被带走,完成一个热力循环过程。
该过程中,热能由低温环境中的蒸发器向高温环境中的冷凝器传递,实现冷热能的转换。
二、溴化锂吸收式热泵的应用溴化锂吸收式热泵具有广泛的应用前景。
它主要应用于热能回收、空调制冷、供暖和热水供应等领域。
1.热能回收溴化锂吸收式热泵可以将废气、废水等低温热能转化为高温热能,从而实现热能回收。
利用该技术,可以将低温热能转化为高温热能,从而减少能源的浪费,提高能源利用效率。
2.空调制冷溴化锂吸收式热泵也可以用于空调制冷。
与传统的空调系统相比,它可以通过吸收冷凝的方式实现制冷,从而节约能源,降低运行成本。
此外,该系统还可以利用太阳能等可再生能源进行供能,从而实现绿色环保。
3.供暖溴化锂吸收式热泵还可以用于供暖。
该系统可以将低温的热水转化为高温热水,从而实现供暖。
与传统的锅炉供暖相比,该系统无需燃料,可以大大降低运行成本。
此外,该系统还可以利用太阳能等可再生能源进行供能,从而实现绿色环保。
4.热水供应溴化锂吸收式热泵还可以用于热水供应。
双良溴化锂吸收式参数理论说明1. 引言1.1 概述双良溴化锂吸收式参数是一种重要的研究领域,涉及溴化锂吸收式制冷系统中的关键参数。
本文旨在对双良溴化锂吸收式参数进行理论说明,并探讨其在工程系统和空调领域中的重要性和应用。
通过实验验证与结果分析,了解参数设计与优化方法,并给出结论和未来发展前景的展望。
1.2 文章结构本文共分为五个部分,每个部分都涵盖了双良溴化锂吸收式参数相关的重要内容。
首先是引言部分,介绍了文章的背景和目的,以及整体的文章结构。
然后是双良溴化锂吸收式参数理论说明,包括概述、基本原理和设计与优化方法。
接下来是参数的重要性及应用领域,主要涵盖了参数在工程系统中的重要性以及在空调领域和其他领域中的具体应用案例。
之后是实验验证与结果分析,在该部分将介绍实验建立与数据采集方法,并对实验结果进行深入分析和对比研究。
最后是结论与展望,总结所得的重要结论,并对双良溴化锂吸收式参数未来发展前景进行展望。
1.3 目的本文的主要目的是对双良溴化锂吸收式参数进行理论说明,探讨其在工程系统和空调领域中的重要性和应用。
通过实验验证与结果分析,加深对参数设计与优化方法的理解,并给出结论和未来发展前景的展望。
希望通过本文能够为相关研究者提供一定参考和指导,促进双良溴化锂吸收式参数领域的进一步发展。
2. 双良溴化锂吸收式参数理论说明:2.1 溴化锂吸收式参数概述:溴化锂吸收式参数是一种利用溴化锂作为工质的热泵循环系统。
该系统通过调节不同工质间的压力和温度,实现对空气中热能的吸收、存储和释放,达到空调和制冷的目的。
2.2 双良溴化锂吸收式参数基本原理:双良溴化锂吸收式参数采用溶液热力学性质实现制冷与加热功能。
系统包括蒸发器、冷凝器、吸收器和发生器四个主要部件。
首先,低压下的臭氧接触到活性碳上导致制冷剂蒸发并从室外空气中带走热量。
腐蚀抑制剂防止在这一过程中发生金属的部分直接接触并导致氧化。
其次,反应完成后产生次硝酸时再施加减压操作以去除挥发性物质,并同时进行水洗来降低下效应以及能耗。
吸收式热泵技术及其在火电厂的应用林海;岳建华【摘要】简述了溴化锂吸收式热泵的工作原理,介绍了国、内外吸收式热泵技术研究现状.通过应用实例说明了吸收式热泵具有的节能、环保、社会效益,认为吸收式热泵在火电厂湿冷、空冷机组上的应用前景广阔,节能减排潜力巨大.【期刊名称】《内蒙古电力技术》【年(卷),期】2012(030)004【总页数】5页(P84-87,91)【关键词】吸收式热泵;溴化锂;余热回收;供热;湿冷机组;空冷机组【作者】林海;岳建华【作者单位】内蒙古工业大学热能与动力工程学院,内蒙古呼和浩特010051;内蒙古电力(集团)有限责任公司,内蒙古呼和浩特010020【正文语种】中文0 引言为尽早实现国家“十二五”节能减排计划目标,充分发挥科技进步和技术创新对转变经济发展方式的重要作用,积极开展节能减排新技术的研发和推广应用具有十分重要的意义。
低品位余热回收利用可以提高能源的综合利用率,具有巨大的节能潜力,是当前可以大力开发利用的技术之一。
基于余热回收利用技术的吸收式热泵在火电厂的推广应用将会带来巨大的节能、环保及社会效益。
1 吸收式热泵技术介绍吸收式热泵是以水为换热介质,以特殊工质溶液为吸收剂(如溴化锂溶液),将低温余热中的热量提取、转移,进而得到较高品位热媒的设备[1]。
1.1 分类吸收式热泵按制热目的可分为2类:第1类吸收式热泵(Absorption Heat Pumps,简称AHP)。
该类热泵将蒸汽、燃气以及工业废热水等作为驱动热源,把热能提升到中高品位,从而达到提高能源利用率和回收余热的目的;第二类吸收式热泵又称吸收式热变换器(Absorption Heat Hransformer,简称AHT)。
主要利用中温废热和低温热源的热势差,制取温度高于中间废热的热媒,从而提高废热品质。
本文仅针对第1类吸收式热泵进行分析。
此外,吸收式热泵还有其他分类方式,如按驱动热源可分为蒸汽型、直燃型、烟气型;按吸收工质可以分为溴化锂吸收、氨水吸收及其他工质吸收型;按循环结构可分为单效、双效、多级、开式等[2-3]。