硫化氢对钻具的腐蚀机理及防护的研究
- 格式:ppt
- 大小:1.55 MB
- 文档页数:28
钻井试气中硫化氢的腐蚀及防治钻井试气中硫化氢的腐蚀及防治张照鸿(陕西延长石油集团油气勘探公司天然气勘探开发部,陕西延安716000)【摘要】针对气田钻井试气中钢材在湿硫化氢环境中的腐蚀现象,通过对硫化氢腐蚀机理的探讨,分析了气田钢材在制造、使用中腐蚀的影响因素,提出了气田钢材腐蚀防治的一些措施,确保气田钢材的安全正常使用。
关键词:硫化氢腐蚀防治1 引言近年,在鄂尔多斯盆地油气勘探中,在某些层位或多或少的有硫化氢显示,硫化氢是一种无色、臭鸡蛋气味的有毒气体,在钻井作业时循环的钻井液中一旦发生H2S气侵,就会对钻井液组成产生严重污染,导致钻井液的流变性能变差,如影响携带岩屑、井壁稳定、造成起下钻压力激动等,增加钻井成本[1]。
而硫化氢对钻具的副作用,则引起氢脆和金属变质的危害更是不可忽视。
由腐蚀造成的经济损失很大,据统计,全国钻杆的平均耗量为4kg/m以上,即每钻进1m,损耗钻杆4kg以上[2]。
2 钻井过程中硫化氢来源2.1 油气井中H2S的来源石油中的有机硫化物热作用分解产生H2S气体,H2S含量将随地层埋深增加而增加,在井深2600米,H2S含量在0.1-0.5%之间,而超过2600米时含量超过2-23%,当地温超过200-250℃时,热化学作用将加剧而产生大量H2S。
石油中的烃类和有机质通过储集层水中的硫酸盐的高温还原作用而产生H2S,下部地层中硫酸盐层通过裂缝等通道,使H2S上窜而来,含硫的地层流体(油、气、水)流入井内。
而在非热采区,因底水运移,将含H2S地层水推入生产井而产生H2S。
还有某些深井泥浆处理剂高温热分解和厌氧菌作用于有机硫或无机硫产生H2S。
2.2 钻井泥浆高温分解磺化酚醛树脂100℃分解,三磺(丹煤、褐煤、环氧树脂)150℃分解,磺化褐煤130℃分解,本质素硫酸铁铬盐180℃分解,丝扣油高温与游离硫反应,某些含硫原油或含硫水被用于泥浆系统。
3 硫化氢的腐蚀机理、危害及影响因素3.1 硫化氢腐蚀机理硫化氢的水溶液是弱酸,其作为弱酸离解为离子:H2S=HS-+ H+,HS-=S2-+2H+。
硫化氢-H2S的腐蚀原理与防护技术的研究(特别是对金属材料)文金属腐蚀基础知识1.腐蚀的定义金属与周围介质发生化学或电化学作用而导致的变质和破坏。
金属材料和环境介质共同作用的体系。
腐蚀速度的定义:单位时间内单位质量的物质金属腐蚀的分类2.1 按腐蚀机理:(1) 化学腐蚀—金属与周围介质直接发生化学反应而引起的变质和损坏的现象。
如钢铁在高温下的氧化脱皮现象。
这是一种氧化-还原的纯化学变化过程,即腐蚀介质中的氧化剂直接同金属表面的原子相互作用而形成腐蚀产物。
腐蚀过程中,电子的传递是在金属与介质间直接进行的,因而没有腐蚀微电流的产生。
按腐蚀形态:钢材1. 全面腐蚀:腐蚀作用发生在整个金属表面上,它可能是均匀的,也可能是不均匀的。
其特征是腐蚀分布在整个金属表面,结果使金属构件截面尺寸减小,直至完全破坏。
2.局部腐蚀: 腐蚀集中在金属的局部区域,而其它部分几乎没有腐蚀或腐蚀很轻微。
局部腐蚀是设备腐蚀破坏的一种重要形式,工程中的重大突发腐蚀事故多是由于局部腐蚀造成的。
8种腐蚀形态即:电偶腐蚀、孔蚀(点蚀)、缝隙腐蚀、沿晶腐蚀、选择性腐蚀、应力腐蚀开裂、腐蚀疲劳、磨损腐蚀。
三、硫化氢(H2S)的特性及来源1.硫化氢的特性硫化氢的分子量为34.08,密度为1.539mg/m3。
而且是一种无色、有臭鸡蛋味的、易燃、易爆、有毒和腐蚀性的酸性气体。
H2S在水中的溶解度很大,水溶液具有弱酸性,如在1大气压下,30℃水溶液中H2S饱和浓度大约是300mg/L,溶液的pH值约是4。
3. 石化工业中的来源石油加工过程中的硫化氢主要来源于含硫原油中的有机硫化物如硫醇和硫醚等,这些有机硫化物在原油加工过程进行中受热会转化分解出相应的硫化氢。
干燥的H2S对金属材料无腐蚀破坏作用,H2S只有溶解在水中才具有腐蚀性。
五、硫化氢引起氢损伤的腐蚀类型反应产物氢一般认为有两种去向,一是氢原子之间有较大的亲和力,易相互结合形成氢分子排出;另一个去向就是由于原子半径极小的氢原子获得足够的能量后变成扩散氢[H]而渗入钢的内部并溶入晶格中,溶于晶格中的氢有很强的游离性,在一定条件下将导致材料的脆化(氢脆)和氢损伤1. 。
硫化氢腐蚀的机理及影响因素作者:安全管理网来源:安全管理网1. H2S腐蚀机理自20世纪50年代以来,含有H2S气体的油气田中,钢在H2S介质中的腐蚀破坏现象即被看成开发过程中的重大安全隐患,各国学者为此进行了大量的研究工作。
虽然现已普遍承认H2S不仅对钢材具有很强的腐蚀性,而且H2S本身还是一种很强的渗氢介质,H2S腐蚀破裂是由氢引起的;但是,关于H2S促进渗氢过程的机制,氢在钢中存在的状态、运行过程以及氢脆本质等至今看法仍不统一。
关于这方面的文献资料虽然不少,但以假说推论占多,而真正的试验依据却仍显不足。
因此,在开发含H2S酸性油气田过程中,为了防止H2S腐蚀,了解H2S腐蚀的基本机理是非常必要的。
(1) 硫化氢电化学腐蚀过程硫化氢(H2S)的相对分子质量为34.08,密度为1.539kg/m3。
硫化氢在水中的溶解度随着温度升高而降低。
在760mmHg,30℃时,硫化氢在水中的饱和浓度大约3580mg/L。
1在油气工业中,含H2S溶液中钢材的各种腐蚀(包括硫化氢腐蚀、应力腐蚀开裂、氢致开裂)已引起了足够重视,并展开了众多的研究。
其中包括Armstrong和Henderson对电极反应分两步进行的理论描述;Keddamt等提出的H2S04中铁溶解的反应模型;Bai和Conway对一种产物到另一种产物进行的还原反应机理进行了系统的研究。
研究表明,阳极反应是铁作为离子铁进入溶液的,而阴极反应,特别是无氧环境中的阴极反应是源于H2S中的H+的还原反应。
总的腐蚀速率随着pH的降低而增加,这归于金属表面硫化铁活性的不同而产生。
Sardisco,Wright和Greco研究了30℃时H2S-C02-H20系统中碳钢的腐蚀,结果表明,在H2S分压低于0.1Pa时,金属表面会形成包括FeS2,FeS,Fe1-X S在内的具有保护性的硫化物膜。
然而,当H2S分压介于0.1~4Pa时,会形成以Fe1-X S为主的包括FeS,FeS2在内的非保护性膜。
一、分析 H2S 的危害谈到 H2S 的危害,我们必需先了解 H2S 的特性,由于 H2S 自身特殊的性质,使得它对钻井工作人员及设备造成很大的危害。
下面着重阐述H2S 的特性、H2S 对人体的危害及中毒病症以及 H2S 对设备的腐蚀危害。
(一)H2S 的特性H2S 是一种可燃性气体, H2S 燃点为 260℃,燃烧时为蓝色火焰,并生成危及人眼睛和肺部的二氧化硫;H2S 也是一种极易爆炸的气体,当 H2S在空气中浓度到达 4.3~46%时,形成的混合气体,遇火将产生剧烈的爆炸; H2S 还具有剧烈的腐蚀性,人体吸入 H2S 后,可致人眼、喉、呼吸道发炎; H2S 易溶于水和油, H2S 及其水溶液对金属有剧烈的腐蚀作用,假如溶液中同时含有 CO2 或者 O2,其腐蚀作用更快; H2S 及其水溶液还能加速橡胶、油浸石墨等非金属材料的老化;最重要的是H2S 剧毒性, H2S的毒性比 CO 大 5—6 倍,可与氰化物相比,是一种致命的气体。
它对人体的致死浓度为 500ppm,在正常条件下,对人的安全临界浓度是不能超过30PPm。
(二)H2S 对人体的危害及中毒病症1、H2S 对人体的危害。
H2S 是一种神经毒剂,也是窒息性和刺激性气体。
主要作用于中枢神经系统和呼吸系统,亦可造成心脏等多个器官伤害,对其作用最敏感的部位是脑和粘膜。
H2S 被吸入人体,通过呼吸道,经肺部,由血液运送到人体各个器官。
首先刺激呼吸道,使嗅觉钝化、咳嗽,眼睛被刺痛,严峻时将失明;刺激各个神经系统,导致头晕,丢失平衡,呼吸艰难;心脏加速跳动,严峻时,心脏缺氧死亡。
H2S 进入人体,将与血液中的溶解氧发生化学反响,当H2S 浓度极低时,对人体威逼不大,当浓度较高时,将夺去血液中的氧,使人体器官缺氧中毒,甚至死亡。
2、H2S 中毒时的病症H2S 中毒普通有两种,急性中毒和慢性中毒。
• 第一,急性中毒。
• 吸入高浓度的 H2S 气体味导致气喘,脸色苍白,肌肉痉挛;当H2S 浓度大于 700ppm时,人很快失去知觉,几秒钟后就会窒息,呼吸和心脏停顿工作,假如未准时抢救,会快速死亡。
1. 选用抗硫化氢材料抗硫化氢材料主要是指对硫化氢应力腐蚀开裂和氢损伤有一定抗力或对这种开裂不敏感的材料。
同时采用低硬度(强度)和完全淬火+回火处理工艺对材料抗硫化氢腐蚀是有利的。
美国国家腐蚀工程师学会(NACE)标准MR-01-75(1980年修订)中规定:含硫化氢环境中使用的钻杆、钻杆接头、钻铤和其它管材的最大硬度不许高于HRC22;钻杆接头与钻杆的焊接及热影响区应进行淬火+595℃以上温度的回火处理;对于最小屈服强度大于655MPa的钢材应进行淬火+回火处理,以获得抗硫化物应力腐蚀开裂的最佳能力抗H2S腐蚀钢材的基本要求:⑴成分设计合理:材料的抗H2S应力断裂性能主要与材料的晶界强度有关,因此常常加入Cr、Mo、Nb、Ti、Cu等合金元素细化原始奥氏体晶粒度。
超细晶粒原始奥氏体经淬火后,形成超细晶粒铁素体和分布良好的超细碳化物组织,是开发抗硫化物应力腐蚀的高强度钢最有效的途径。
⑵采用有害元素(包括氢, 氧, 氮等)含量很低纯净钢;⑶良好的淬透性和均匀细小的回火组织,硬度波动尽可能小;⑷回火稳定性好,回火温度高(>600℃);⑸良好的韧性;⑹消除残余拉应力。
2.添加缓蚀剂实践证明合理添加缓蚀剂是防止含H2S酸性油气对碳钢和低合金钢设施腐蚀的一种有效方法。
缓蚀剂对应用条件的选择性要求很高,针对性很强。
不同介质或材料往往要求的缓蚀剂也不同,甚至同一种介质,当操作条件(如温度、压力、浓度、流速等)改变时,所采用的缓蚀剂可能也需要改变。
用于含H2S酸性环境中的缓蚀剂,通常为含氧的有机缓蚀剂(成膜型缓蚀剂),有胺类、米唑啉、酰胺类和季胺盐,也包括含硫、磷的化合物。
如四川石油管理局天然气研究所研制的CT2-l和CT2-4油气井缓蚀剂及CT2—2输送管道缓蚀剂,在四川及其他含硫化氢油气田上应用均取得良好的效果。
3.控制溶液pH值提高溶液pH值降低溶液中H+含量可提高钢材对硫化氢的耐蚀能力,维持pH值在9~11之间,这样不仅可有效预防硫化氢腐蚀,又可同时提高钢材疲劳寿命。
硫化氢腐蚀机理及H2S对注采输生产系统的危害防治技术研究摘要:克拉玛依重油开发公司克浅10井区稠油由于高含H2S,为防止其在环境中扩散,采取全密闭集输。
高含水条件下,原油附着管壁对金属防护作用降低,在H2S作用下产生腐蚀,腐蚀和磨损的交互作用,使得抽油管、杆腐蚀磨损状况愈加恶化,特别是对油田经常而普遍使用的泵阀等在用金属构件的腐蚀更加严重。
关键词:硫化氢、腐蚀、抗腐蚀、涂层1 背景通过连续对克浅井区计量站、转油站、原油处理站以及单井的硫化氢含量的监测,反应该区硫化氢含量高、气量大、分布不均,且波动性较大,个别单井硫化氢超过10000PPm,改密闭后计量站有时超过10000PPm;在集输过程中原油处理站污水罐罐内硫化氢较为集中,浓度高达5760PPm。
硫化氢含量与单井及邻井生产方式密切相关,注汽后随着地层温度升高,硫化氢含量相应增加。
储罐及集输管线中硫化氢含量与集输方式(开式、密闭)密切相关,密闭生产后硫化氢集中在转油站罐口,测量值大幅增加。
2 硫化氢腐蚀研究利用20#碳钢作为测试对象在50℃挂片,向三角瓶中加入400和1000ppm的H2S含量的油田采出水(克浅集输处---污水样)中暴露7天研究H2S的腐蚀机制。
实验结束后通过X-Ray与SEM分析硫化氢腐蚀机理。
2.1腐蚀评价方法由于腐蚀作用,材料的重量会发生相当大的变化,此即重量法测定材料抗腐蚀能的理论基础。
重量法是最基本的定量评定腐蚀的方法,简单而直观,主要分为增重和失重法两种。
增重法用于腐蚀产物牢固附着在试样上的情形,多用于评定全面腐蚀和晶间腐蚀,然而往往需要分析腐蚀产物化学组成来做支撑,由此使用范围受限。
失重法则更为直接,它是通过精确测定金属试样在腐蚀前后的材料重量损失来确定金属在指定环境下的腐蚀速度,适用于腐蚀产物容易或者能够清除的情况,应用更为广泛。
本实验采用静态全浸悬挂法,将挂片悬挂于有腐蚀介质的锥形瓶中,要求挂片上端与液面的距离应大于5cm,挂片间距在2cm以上,每个实验点三个平行。