低温湿H2S腐蚀与防护措施
- 格式:pdf
- 大小:103.25 KB
- 文档页数:2
Internal Combustion Engine & Parts• 129 •化工设备在湿硫化氢环境中的腐蚀问题及防护方式研究袁景(济钢集团检修工程公司,济南250100)摘要:本文首先针对化工设备在湿硫化氢环境中产生腐蚀和损坏的原因进行论述,并从科学的角度,分析了造成化工设备腐蚀 现象的机理,并对其中影响化工设备腐蚀程度的因素进行论述,最后结合工作经验,建设性地提出了化工设备在湿硫化氢环境中的有 效防腐措施。
关键词:化工设备;腐蚀原因;因素;防范措施1化工设备在湿硫化氢环境中的腐蚀原因分析以济钢化工厂作为例子,经检测,在该企业所使用的 焦炉煤气中,硫元素含量相对较高。
从企业对化工设备的 使用数据分析后可以发现,发生腐蚀现象的化工设备介质 当中,都或多或少含有硫元素。
尽管焦炉煤气在提炼环节 已经进行过脱硫处理,但是整体效果并不显著。
所以,湿硫 化氢环境(即硫化氢和水融合型腐蚀环境)大量存在于该 化工厂的回收车间、焦油车间等区域。
按照相关资料并综 合该化工企业的实际状况,可以分析出在设备介质当中,大量含有硫化氢分子是造成以上化工设备极易发生腐蚀 现象的主要原因。
同时,在这些化工设备使用过程当中,还存在有很多 导致局部应力加大的因素,涵盖物理损伤(例如磨损、磨蚀 等)、化学损伤(例如晶间腐蚀、电池腐蚀、缝隙腐蚀等);化 工设备部件各部分温度存在较大差异而产生温度应力;含作者简介:袁景(1987-)男,山东菏泽人,中级职称,本科,研究 方向为钢铁化工企业的设备维修与管理。
务器往上一层提供调用数据,向用户反馈信息,并显示在 Web浏览器上。
各层之间不具有依赖性,各模块相对独立,每层实现的功能不同,应用方法也存在差异。
B/S结构的 安全性高,节约系统开发成本,方便系统和软件的更新与 升级,提升系统整体性能。
并且还可以实现远程访问,大大 便利了实验室管理和教学工作。
3.5系统的数据库设计由于实验室自动管理系统中需要存储大量的信息,因此,应该设计系统数据库,要求该数据库具有人机对话简 易、操作简便、功能完备、安全性强的特点。
1. 选用抗硫化氢材料抗硫化氢材料主要是指对硫化氢应力腐蚀开裂和氢损伤有一定抗力或对这种开裂不敏感的材料。
同时采用低硬度(强度)和完全淬火+回火处理工艺对材料抗硫化氢腐蚀是有利的。
美国国家腐蚀工程师学会(NACE)标准MR-01-75(1980年修订)中规定:含硫化氢环境中使用的钻杆、钻杆接头、钻铤和其它管材的最大硬度不许高于HRC22;钻杆接头与钻杆的焊接及热影响区应进行淬火+595℃以上温度的回火处理;对于最小屈服强度大于655MPa的钢材应进行淬火+回火处理,以获得抗硫化物应力腐蚀开裂的最佳能力抗H2S腐蚀钢材的基本要求:⑴成分设计合理:材料的抗H2S应力断裂性能主要与材料的晶界强度有关,因此常常加入Cr、Mo、Nb、Ti、Cu等合金元素细化原始奥氏体晶粒度。
超细晶粒原始奥氏体经淬火后,形成超细晶粒铁素体和分布良好的超细碳化物组织,是开发抗硫化物应力腐蚀的高强度钢最有效的途径。
⑵采用有害元素(包括氢, 氧, 氮等)含量很低纯净钢;⑶良好的淬透性和均匀细小的回火组织,硬度波动尽可能小;⑷回火稳定性好,回火温度高(>600℃);⑸良好的韧性;⑹消除残余拉应力。
2.添加缓蚀剂实践证明合理添加缓蚀剂是防止含H2S酸性油气对碳钢和低合金钢设施腐蚀的一种有效方法。
缓蚀剂对应用条件的选择性要求很高,针对性很强。
不同介质或材料往往要求的缓蚀剂也不同,甚至同一种介质,当操作条件(如温度、压力、浓度、流速等)改变时,所采用的缓蚀剂可能也需要改变。
用于含H2S酸性环境中的缓蚀剂,通常为含氧的有机缓蚀剂(成膜型缓蚀剂),有胺类、米唑啉、酰胺类和季胺盐,也包括含硫、磷的化合物。
如四川石油管理局天然气研究所研制的CT2-l和CT2-4油气井缓蚀剂及CT2—2输送管道缓蚀剂,在四川及其他含硫化氢油气田上应用均取得良好的效果。
3.控制溶液pH值提高溶液pH值降低溶液中H+含量可提高钢材对硫化氢的耐蚀能力,维持pH值在9~11之间,这样不仅可有效预防硫化氢腐蚀,又可同时提高钢材疲劳寿命。
硫化氢腐蚀与防护相关知识1. 硫化氢腐蚀的预防措施1.1. 选用抗硫化氢材料抗硫化氢材料主要是指对硫化氢应力腐蚀开裂和氢损伤有一定抗力或对这种开裂不敏感的材料。
同时采用低硬度(强度)和“完全淬火+回火”处理工艺对材料抗硫化氢腐蚀是有利的。
美国国家腐蚀工程师学会(NACE)标准MR-01-75(1980年修订)中规定:含硫化氢环境中使用的钻杆、钻杆接头、钻铤和其它管材的最大硬度不许高于HRC22;钻杆接头与钻杆的焊接及热影响区应进行“淬火+595℃以上温度的回火”处理;对于最小屈服强度大于655MPa的钢材应进行“淬火+回火”处理,以获得抗硫化物应力腐蚀开裂的最佳能力。
1.2. 抗H2S腐蚀钢材的基本要求⑴成分设计合理:材料的抗H2S应力断裂性能主要与材料的晶界强度有关,因此常常加入Cr、Mo、Nb、Ti、Cu等合金元素细化原始奥氏体晶粒度。
超细晶粒原始奥氏体经淬火后,形成超细晶粒铁素体和分布良好的超细碳化物组织,是开发抗硫化物应力腐蚀的高强度钢最有效的途径。
⑵采用有害元素(包括氢,氧,氮等)含量很低纯净钢;⑶良好的淬透性和均匀细小的回火组织,硬度波动尽可能小;⑷回火稳定性好,回火温度高(>600℃);⑸良好的韧性;⑹消除残余拉应力。
1.3. 添加缓蚀剂实践证明合理添加缓蚀剂是防止含H2S酸性油气对碳钢和低合金钢设施腐蚀的一种有效方法。
缓蚀剂对应用条件的选择性要求很高,针对性很强。
不同介质或材料往往要求的缓蚀剂也不同,甚至同一种介质,当操作条件(如温度、压力、浓度、流速等)改变时,所采用的缓蚀剂可能也需要改变。
用于含H2S酸性环境中的缓蚀剂,通常为含氧的有机缓蚀剂(成膜型缓蚀剂),有胺类、米唑啉、酰胺类和季胺盐,也包括含硫、磷的化合物。
如四川石油管理局天然气研究所研制的CT2-l和CT2-4油气井缓蚀剂及CT2—2输送管道缓蚀剂,在四川及其他含硫化氢油气田上应用均取得良好的效果。
1.4. 控制溶液pH值提高溶液pH值降低溶液中H+含量可提高钢材对硫化氢的耐蚀能力,维持pH值在9~11之间,这样不仅可有效预防硫化氢腐蚀,又可同时提高钢材疲劳寿命。
硫化氢腐蚀与防护相关知识硫化氢腐蚀与防护相关知识1. 硫化氢腐蚀的预防措施1.1. 选⽤抗硫化氢材料抗硫化氢材料主要是指对硫化氢应⼒腐蚀开裂和氢损伤有⼀定抗⼒或对这种开裂不敏感的材料。
同时采⽤低硬度(强度)和“完全淬⽕+回⽕”处理⼯艺对材料抗硫化氢腐蚀是有利的。
美国国家腐蚀⼯程师学会(NACE)标准MR-01-75(1980年修订)中规定:含硫化氢环境中使⽤的钻杆、钻杆接头、钻铤和其它管材的最⼤硬度不许⾼于HRC22;钻杆接头与钻杆的焊接及热影响区应进⾏“淬⽕+595℃以上温度的回⽕”处理;对于最⼩屈服强度⼤于655MPa的钢材应进⾏“淬⽕+回⽕”处理,以获得抗硫化物应⼒腐蚀开裂的最佳能⼒。
1.2. 抗H2S腐蚀钢材的基本要求⑴成分设计合理:材料的抗H2S应⼒断裂性能主要与材料的晶界强度有关,因此常常加⼊Cr、Mo、Nb、Ti、Cu等合⾦元素细化原始奥⽒体晶粒度。
超细晶粒原始奥⽒体经淬⽕后,形成超细晶粒铁素体和分布良好的超细碳化物组织,是开发抗硫化物应⼒腐蚀的⾼强度钢最有效的途径。
⑵采⽤有害元素(包括氢,氧,氮等)含量很低纯净钢;⑶良好的淬透性和均匀细⼩的回⽕组织,硬度波动尽可能⼩;⑷回⽕稳定性好,回⽕温度⾼(>600℃);⑸良好的韧性;⑹消除残余拉应⼒。
1.3. 添加缓蚀剂实践证明合理添加缓蚀剂是防⽌含H2S酸性油⽓对碳钢和低合⾦钢设施腐蚀的⼀种有效⽅法。
缓蚀剂对应⽤条件的选择性要求很⾼,针对性很强。
不同介质或材料往往要求的缓蚀剂也不同,甚⾄同⼀种介质,当操作条件(如温度、压⼒、浓度、流速等)改变时,所采⽤的缓蚀剂可能也需要改变。
⽤于含H2S酸性环境中的缓蚀剂,通常为含氧的有机缓蚀剂(成膜型缓蚀剂),有胺类、⽶唑啉、酰胺类和季胺盐,也包括含硫、磷的化合物。
如四川⽯油管理局天然⽓研究所研制的CT2-l和CT2-4油⽓井缓蚀剂及CT2—2输送管道缓蚀剂,在四川及其他含硫化氢油⽓⽥上应⽤均取得良好的效果。
柴油加氢装置的低温湿硫化氢腐蚀与防护作者:李航杨国颂来源:《中国科技博览》2018年第32期[摘要]考虑到柴油加氢装置在柴油生产过程中的重要意义,本文将论述的主题确定为柴油加氢装置的低温湿硫化氢腐蚀与防护情况。
在本篇文章中,笔者首先就柴油加氢装置生产过程中,容易出现的低温湿硫化氢腐蚀类型进行了分析,接着便以上述类型产生的原因进行探索,并在此基础上,针对性提出了有助于缓解柴油加氢装置低温湿硫化氢腐蚀情况的防护策略,希望能够为行业相关人士提供有价值的信息。
[关键词]柴油加氢装置;低温湿硫化氢腐蚀;注射减缓蚀剂中图分类号:TS566 文献标识码:A 文章编号:1009-914X(2018)32-0074-01引言随着我国石油产业的飞速发展,作为轻质石油产品的柴油在市场上开始具有广阔的发展前景,使得柴油加氢装置性能的稳定性成为了人们关注的焦点。
在柴油的加氢过程中,通常会产生一系列的化学反应,同时排放出硫化氢等一系列具有高度腐蚀性的化学物质,使得柴油加氢装置在长期的生产过程中面临着被腐蚀的风险,一旦柴油加氢装置的生产性能下降,会影响柴油生产工艺的顺利进行。
一、浅析柴油加氢装置的低温湿硫化氢腐蚀类型(一)反应产物及应力腐蚀在石油化工生产中,加氢工艺能够对柴油产品进行精细化的制造与加工,促使柴油的加工深度得以提高,继而显著提高柴油的使用性能,保障机械的运行安全。
柴油加氢装置产生腐蚀现象的原因大多来源于腐蚀介质,通常一种是高压氢,另一种则是在脱硫工艺当中,产生了大量硫化氢与氯化铵,这些介质对柴油加氢装置具有不同程度的腐蚀性。
就像汽提塔、冷凝冷却系统,以及循环氢脱硫等系统的反应产物中,就会产生低温湿硫化氢腐蚀,或者是氯化物腐蚀应力开裂等情况,使得柴油加氢装置受到不同程度的腐蚀危害。
而且,在加氢工艺的停工期间,柴油加氢装置中存在的连多硫酸等介质,会对加氢装置造成应力、腐蚀等影响,导致加氢装置出现开裂的情况,继而影响到柴油加氢装置的使用性能[1]。
论述炼油设备的湿硫化氢腐蚀与防治方法近年来,石油公司大幅度的增加了对含硫或者高含硫原油的加工数量,因而炼油设备也出现比较严重的腐蚀现象。
而在各个种类的腐蚀中,最为严重或者说对设备伤害最大的是高温硫腐蚀以及湿硫化氢造成的设备损坏。
对于高温硫腐蚀只要更换采用适当的耐高温硫腐蚀的设备材料即可大大的缓解此类腐蚀,但是对湿硫化氢所造成的腐蚀进行防治就会有较大的困难。
含硫原油对设备进行腐蚀从而产生硫铁化合物,而硫铁化合物一旦与空气中的氧气接触,它们就会迅速的发生化学反应,也会产生大量的热。
如果这些热量不能够及时的向周边消散,就会导致设备局部迅速升温,而原油属于可燃物质,这就很可能引起具有可怕后果的自燃事故,也会对人类的正常生活及经济活动带来巨大的损失。
下面我们将会着重讨论引起这类事故主要原理及相应的预防治理措施。
1 湿硫化氢对设备的腐蚀机理湿硫化氢在水中极易发生离解,它的腐蚀过程就是一个化学反应,在阳极会出现一般性腐蚀,结果为产生FeS的膜。
从而使金属表面遭到破坏,形成腐蚀坑而出现回路电池的作用,是破坏程度进一步加深。
而在阴极处会出现因化学反应而生成的活性很强的氢,它会在金属比较脆弱的部位比如金属的缺陷处、焊接缺陷处聚集,产生氢鼓包导致金属结构遭到破坏,即使是高强钢也难逃其魔爪。
这种现象我们通常称其为湿硫化氢应力腐蚀开裂。
一般来说,强度越高的钢越容易因此应力而受到损坏,因为强度越高,钢对应力的腐蚀也就越敏感。
碳酸盐或者是湿硫化氢还有氢氧化物等许多无机物质都是我们生产当中比较常见的应力腐蚀环境。
在我国的炼油企业中,大多数都是采用的低合金高强度钢作为其压力容器的主要材料,而之前我们也明确的表述了湿硫化氢对高强度钢的腐蚀是较为厉害的。
湿硫化氢造成的腐蚀最早出现在油田设备和管道设施上,由于近几年出现的几起重大事故,湿硫化氢也自然而然的走进了我们的视野当中,而这几起事故当中发生在1984年的雷蒙特三号炼油厂的事故就是一个最典型的案例。
石油化工设备在湿硫化氢环境中的腐蚀与防护措施作者:张彦杰来源:《环球市场》2019年第33期摘要:本文在全面了解腐蚀原理的基础上,对湿硫化氢环境下石油化工设备腐蚀情况、影响因素进行了分析,并提出了几点防护措施。
关键词:湿硫化氢;石油化工设备;腐蚀原理一、腐蚀原理在湿硫化氢环境中,石油化工设备多会出现四种腐蚀情况,即氢鼓包(HB)、氢致开裂(HIC)、硫化氢应力腐蚀开裂(sscc)和应力导向氢致开裂(SOHIC),四种腐蚀机理各有不同,如应力导向氢致开裂(SOHIC),此类开裂裂缝较为细小,多处于夹杂物和缺陷出,裂纹方向基本相同,是较为常见的一种腐蚀开裂情况。
硫化氢应力腐蚀开裂(SSCC)则是指湿硫化氢分子会形成氢原子,当钢内进入氢原子之后,便会对钢内部造成影响,从而产生钢脆弱,导致应力开裂。
氢致开裂(I-IIC)是指有氢气泡存于钢材内部,在压力增加的同时,较小的氢气泡则会逐步产生裂纹,随着时间的延长,裂纹将呈阶梯状连在一起,此时在表面的裂纹将呈带状分布,开裂程度越来越严重,危害越来越大,最终影响设备正常运行。
氢鼓泡(HB)是指设备在被含硫化物腐蚀的过程中,将会有氢原子被分解出来,且涌入钢材内,并形成氢气,具有较大膨胀力,当分子聚集到一定程度时,将大大增加对外界的压力,并由此构成氢鼓泡,产生裂纹。
一般情况下,这种裂纹多出现于设备内壁。
一般情况下,这种腐蚀很难恢复,检修难度较大。
在机械设备腐蚀过程中,设备的腐蚀反应过程如下:硫化氢在水中发生电离:渗透到钢材内)通过上述反应过程,在水溶液内硫化氢内的氢离子将被分解出来,由钢内获取电子之后,可还原为氢原子。
氢原子的亲和力较强,极易结合起来并构成氢分子排出。
若由硫化物、氰化物等存于环境内,将会影响氢原子的亲和力,甚至破坏氢分子产生的反应。
这种情况下,钢内部极易渗入氢原子,并在晶格内溶解。
氢原子溶解后,游离性极强,将会对钢材的流动性、断裂行为等产生不利影响,甚至出现氢脆情况。
湿硫化氢环境腐蚀与防护第一章总则1.1 为规范湿硫化氢环境腐蚀与防护工作,防止发生安全事故,依据国家有关法规、标准,制定本指导意见。
1.2石油化工装置在湿硫化氢环境(含有气相或溶解在液相水中,不论是否有氢气存在的酸性工艺环境)使用的静设备,为抵抗硫化物应力腐蚀开裂(SSC)、氢诱导开裂(HIC)和应力导向氢诱导开裂(SOHIC),在设计、材料、试验、制造、检验等方面的要求。
生产、技术、设计、工程、检修、科研等部门应积极参与和配合设备管理部门做好相关工作。
1.3对处于湿硫化氢腐蚀环境中的设备抗 SSC、HIC/SWC 和 SOHIC 损伤的最低要求,其中包括碳钢和低合金钢,以及碳钢及低合金钢加不锈钢的复合钢板制造的设备。
但不包括采用在金属表面(接触介质侧)增加涂层(如喷铝等)防止基体材料腐蚀开裂的设备。
1.4凡处于湿硫化氢环境中的设备在材料选择、设备制造与检验均应满足本标准的要求,否则可能导致设备 SSC、HIC/SWC 和 SOHIC 的破坏。
1.5不包括湿硫化氢引起的电化学失重腐蚀和其他类型的开裂。
1.7 湿硫化氢腐蚀环境的定义与分类:1.7.1 介质在液相中存在游离水,且具备下列条件之一时称为湿硫化氢腐蚀环境:(1)在液相水中总硫化物含量大于 50ppmw;或(2)液相水中 PH 小于 4 且总硫化物含量大于等于 1ppmw;或(3)液相水中 PH 大于 7.6 及氢氰酸(HCN)大于等于 20ppmw,且总硫化物含量大于等于 1ppmw;或(4)气相中含有硫化氢分压大于 0.0003MPa(0.05psia)。
1.7.2 根据湿硫化氢腐蚀环境引起碳钢和低合金钢材料开裂的严重程度以及对设备安全性影响的大小,把湿硫化氢腐蚀环境分为 2 类,在第I 类环境中主要关注 SSC,而在第Ⅱ类环境中,除关注 SSC 外,还要关注HIC 和 SOHIC 等损伤。
具体划分类别如下:第 I 类环境(1)操作介质温度≤ 120℃;(2)游离水中硫化氢含量大于 50ppmw;或(3)游离水的 PH < 4,且含有少量的硫化氢;或(4)气相中硫化氢分压大于 0.0003MPa(绝压);或(5)游离水中含有少量硫化氢,溶解的 HCN 小于 20ppmw,且 PH >7.6。
湿硫化氢环境腐蚀与防护第一章总则1.1 为规范湿硫化氢环境腐蚀与防护工作,防止发生安全事故,依据国家有关法规、标准,制定本指导意见。
1.2石油化工装置在湿硫化氢环境(含有气相或溶解在液相水中,不论是否有氢气存在的酸性工艺环境)使用的静设备,为抵抗硫化物应力腐蚀开裂(SSC)、氢诱导开裂(HIC)和应力导向氢诱导开裂(SOHIC),在设计、材料、试验、制造、检验等方面的要求。
生产、技术、设计、工程、检修、科研等部门应积极参与和配合设备管理部门做好相关工作。
1.3对处于湿硫化氢腐蚀环境中的设备抗 SSC、HIC/SWC 和 SOHIC 损伤的最低要求,其中包括碳钢和低合金钢,以及碳钢及低合金钢加不锈钢的复合钢板制造的设备。
但不包括采用在金属表面(接触介质侧)增加涂层(如喷铝等)防止基体材料腐蚀开裂的设备。
1.4凡处于湿硫化氢环境中的设备在材料选择、设备制造与检验均应满足本标准的要求,否则可能导致设备 SSC、HIC/SWC 和 SOHIC 的破坏。
1.5不包括湿硫化氢引起的电化学失重腐蚀和其他类型的开裂。
1.7 湿硫化氢腐蚀环境的定义与分类:1.7.1 介质在液相中存在游离水,且具备下列条件之一时称为湿硫化氢腐蚀环境:(1)在液相水中总硫化物含量大于 50ppmw;或(2)液相水中 PH 小于 4 且总硫化物含量大于等于 1ppmw;或(3)液相水中 PH 大于 7.6 及氢氰酸(HCN)大于等于 20ppmw,且总硫化物含量大于等于 1ppmw;或(4)气相中含有硫化氢分压大于 0.0003MPa(0.05psia)。
1.7.2 根据湿硫化氢腐蚀环境引起碳钢和低合金钢材料开裂的严重程度以及对设备安全性影响的大小,把湿硫化氢腐蚀环境分为 2 类,在第I 类环境中主要关注 SSC,而在第Ⅱ类环境中,除关注 SSC 外,还要关注HIC 和 SOHIC 等损伤。
具体划分类别如下:第 I 类环境(1)操作介质温度≤ 120℃;(2)游离水中硫化氢含量大于 50ppmw;或(3)游离水的 PH < 4,且含有少量的硫化氢;或(4)气相中硫化氢分压大于 0.0003MPa(绝压);或(5)游离水中含有少量硫化氢,溶解的 HCN 小于 20ppmw,且 PH >7.6。