废水脱氮理论与技术
- 格式:ppt
- 大小:4.05 MB
- 文档页数:70
废水中氨氮的去除废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在.生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。
目前采用的除氮工艺有生物硝化与反硝化、沸石选择交换吸附、空气吹脱及折点氯化等四种。
一、生物硝化与反硝化(生物陈氮法)(一)生物硝化在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。
生物硝化的反应过程为:由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4。
57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 7。
lg。
影响硝化过程的主要因素有:(1)pH值当pH值为8。
0~8。
4时(20℃),硝化作用速度最快。
由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;(2)温度温度高时,硝化速度快。
亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d—1(温度20℃,pH8.0~8。
4)。
为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间 .在实际运行中,一般应取>2 ,或>2 ;(4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。
一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;(5)BOD 负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌.若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。
所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。
(二)生物反硝化在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2—-N和NO3——N还原成N2的过程,称为反硝化。
反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。
生物脱氮除磷原理及工艺 1 引言氮和磷是生物的重要营养源,随着化肥、洗涤剂和农药普遍使用,天然水体中氮、磷含量急剧增加,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大的危害;然而, 我国现有的城市污水处理厂主要集中于有机物的去除,污废水一级处理只是除去水中的沙砾及悬浮固体;在好氧生物处理中,生活污水经生物降解,大部分的可溶性含碳有机物被去除;同时产生N NH -3、N NO --3和-34PO 和-24SO ,其中25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除;二级生物处理则是去除水中的可溶性有机物,能有效地降低污水中的5BOD 和SS , 但对N 、P 等营养物只能去除10%~ 20% , 其结果远不能达到二级排放标准;因此研究开发经济、高效的, 适于现有污水处理厂改造的脱氮除磷工艺显得尤为重要;2 生物脱氮除磷机理生物脱氮机理污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝态氮,即,将3NH 转化为N NO --2和N NO --3;在缺氧条件下通过反硝化作用将硝氮转化为氮气,即,将N NO --2经反亚硝化和N NO --3经反硝化还原为氮气,溢出水面释放到大气,参与自然界氮的循环;水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的1;错误!硝化——短程硝化:O H HNO O NH 22235.1+→+硝化——全程硝化亚硝化+硝化:O H HNO O NH 22235.1+−−−→−+亚硝酸菌错误!反硝化——反硝化脱氮:O H H CO N OH CH CH HNO 2222333][222+++→+ 反硝化——厌氧氨氧化脱氮:O H N HNO NH 22232+→+反硝化——厌氧氨反硫化脱氮:O H S N SO H NH 2242342++→+废水中氮的去除还包括靠微生物的同化作用将氮转化为细胞原生质成分;主要过程如下:氨化作用是有机氮在氨化菌的作用下转化为氨氮;硝化作用是在硝化菌的作用下进一步转化为硝酸盐氮;其中亚硝酸菌和硝酸菌为好氧自养菌,以无机碳化合物为碳源,从+4NH 或-2NO 的氧化反应中获取能量;其中硝化的最佳温度在纯培养中为25-35 ℃,在土壤中为30-40 ℃,最佳pH 值偏碱性;反硝化作用是反硝化菌大多数是异养型兼性厌氧菌,DO< mg/L 在缺氧的条件下,以硝酸盐氮为电子受体,以有机物为电子供体进行厌氧呼吸,将硝酸盐氮还原为2N 或-2NO ,同时降解有机物2;生物除磷原理磷在自然界以2 种状态存在:可溶态或颗粒态;所谓的除磷就是把水中溶解性磷转化为颗粒性磷,达到磷水分离;废水在生物处理中,在厌氧条件下,聚磷菌的生长受到抑制,为了自身的生长便释放出其细胞中的聚磷酸盐,同时产生利用废水中简单的溶解性有机基质所需的能量,称该过程为磷的释放;进入好氧环境后,活力得到充分恢复,在充分利用基质的同时,从废水中摄取大量溶解态的正磷酸盐,从而完成聚磷的过程;将这些摄取大量磷的微生物从废水中去除,即可达到除磷的目的3;聚磷菌在厌氧条件下,分解体内的多聚磷酸盐产生ATP,利用ATP 以主动运输方式吸收产酸菌提供的三类基质进入细胞内合成PHB;与此同时释放出-34PO 于环境中1; 好氧吸磷过程聚磷菌在好氧条件下,分解机体内的PHB 和外源基质,产生质子驱动力将体外的-34PO 输送到体内合成ATP 和核酸,将过剩的 -34PO 聚合成细胞贮存物:多聚磷酸盐异染颗粒; 3 生物脱氮除磷工艺从生物脱氮除磷的机理分析来看,生物脱氮除磷工艺基本上包括厌氧、缺氧、好氧3 种状态,这3个不同的工作状态可以在空间上进行分离,也可以在时间上进行分离;近年来,随着对生物脱氮除磷的机理研究不断深入,以及各种新材料、新技术、新设备的不断运用,衍生出了许多新的生物脱氮除磷工艺,其中典型的几种处理工艺如下;SBR 工艺SBR 工艺是一种新近发展起来的新型处理废水的工艺,即为序批式好氧生物处理工艺,其去除有机物的机理在于充氧时与普通活性污泥法相同,不同点是其在运行时,进水、反应、沉淀、排水及空载5个工序,依次在一个反应池中周期性运行,所以该法不需要专门设置二沉池和污泥回流系统,系统自动运行及污泥培养、驯化均比较容易;该法处理焦化废水有着独有的优势:一是不要空间分割,时序上就能创造出缺氧和好氧的环境,即具有A /O 的功能,十分有利于氨氮和COD 的去除;二是该法的沉淀是一种静止的沉淀,对污泥沉淀性能不好的废水,固液分离效果非常明显;三是该法可以省去二沉池,其占地面积相对要小一些;自动控制系统的发展和完善,为SBR 工艺的应用提供的物质基础;但因为SBR 是间歇运行的,为了解决连续进水问题,至少需要设置两套SBR 设施,进行切换运行;SBR 工艺流程图见图14;CAST 工艺CAST 实际上是一种循环SBR 活性污泥法,应器中活性污泥不断重复曝气和非曝气过程,生物反应和泥水分离在同一池内完成,与SBR 同样使用滗水器;污水首先进入选择器,污水中溶解性的有机物通过生物作用得到去除,回流污泥中硝酸盐也此时得到反硝化;然后进入厌氧区,此时为微生物释磷提供条件;第三区为主曝气区,主要进行BOD 降解,同时硝化反硝化;CAST 选择器设置在池首,防止了污泥膨胀; 3.3 MSBR 工艺连续流序批式活性污泥法工艺ModifiedSequencing Batch Reactor,简称MSBR;首先,污水进入厌氧池,回流活性污泥中的聚磷菌在此充分释磷,然后混合液进入缺氧池反硝化;反硝化后的污水进入好氧池,有机物在好氧条件下被降解,活性污泥充分吸磷后再进入起沉淀作用的SBR,澄清后上清液排放;此时另一边的SBR 在回流量的条件下进行反硝化、硝化或静置预沉;回流污泥首先进入浓缩池浓缩,上清液直接进入好氧池,而浓缩污泥进入缺氧池;这样,一方面可以进行反硝化,另一方面可先消耗掉回流浓缩污泥中的溶解氧和硝酸盐,为随后进行的厌氧释磷提供更为有利的条件;CAST 综合了以往除磷脱氮工艺的优点,保证了各污染物质降解的最大速率环境,去除有机污染物效率更高,脱氮除磷效果更好A/2工艺OA/2工艺传统OA/2工艺或称AAO工艺,在一个处理系统中同时具有厌氧区、缺氧区、好氧区,能够同时作到脱氮、O除磷和有机物的降解,其工艺流程见图2;污水进入厌氧反应区,同时进入的还有从二沉池回流的活性污泥,聚磷菌在厌氧条件下释磷,同时转化易降解COD、VFA为PHB,部分含氮有机物进行氨化;污水经过第一个厌氧反应器以后进入缺氧反应器,本反应器的首要功能是进行脱氮;硝态氮通过混合液内循环由好氧反应器传输过来,通常内回流量为2~4倍原污水流量,部分有机物在反硝化菌的作用下利用硝酸盐作为电子受体而得到降解去除;混合液从缺氧反应区进入好氧反应区,混合液中的COD浓度已基本接近排放标准,在好氧反应区除进一不降解有机物外,主要进行氨氮的硝化和磷的吸收,混合液中硝态氮回流至缺氧反应区,污泥中过量吸收的磷通过剩余污泥排除;该工艺流程简洁,污泥在厌氧、缺氧、好氧环境中交替运行,丝状菌不能大量繁殖,污泥沉降性能好5;它将厌氧段、缺氧段放在工艺的第一级, 充分发挥了厌氧菌群承受高浓度、高有机负荷能力的优势, 处理效果较好, 产生的污泥较一般的生物法少;可用于处理工业废水比重较大城市污水, 另外, 由于它是在普通活性污泥法的基础上发展起来的, 因而也较容易用于生物法处理的老污水厂的改造;A/2工艺改良O改良O A /2工艺是中国市政工程华北设计研究院提出的,工艺综合了A/O 工艺和改良UCT 工艺的优点,即在厌氧池之前增设厌氧/缺氧池;首先回流污泥和10%的污水进入厌氧/缺氧池进行反硝化以去除回流污泥中的硝酸盐;90%的污水进入厌氧区与回流污泥混合,在兼性厌氧发酵菌的作用下将部分易生物降解的大分子有机物转化为VFA ;聚磷菌释磷,同时吸收VFA 以PHB 的形式贮存于胞内;在缺氧区,反硝化菌利用污水中的有机物和经混合液回流而带来的硝酸盐进行反硝化,同时去碳脱氮;在好氧区,有机物浓度相当低,有利于自养硝化菌生长繁殖,进行硝化反应,同时聚磷菌过量摄磷;通过沉淀、排除剩余污泥达到除磷的目的;该工艺降低回流污泥中硝态氮对后续厌氧池的不利影响,有利于厌氧池的聚磷菌释磷,改善了泥水分离性能6;3.5 UCT 改良工艺改良的UCT 工艺University of Cape Town 脱氮除磷工艺由厌氧池、缺氧1 池、缺氧2 池、好氧池、沉淀池系统组成,有2 个缺氧池;缺氧1 池只接受沉淀池的回流污泥,同时缺氧1 池有混合液回流至厌氧池,以补充厌氧池中污泥的流失;回流污泥携带的硝态氮在缺氧1 池中经反硝化被完全去除;在缺氧2池中接受来自好氧池的混合液回流,同时进行反硝化,缺氧1 池出水中的N NO --3 带进厌氧池使之保持较为严格的厌氧环境,从而提高系统的除磷效率7;立体循环一体化氧化沟氧化沟是一种而有效的污水处理技术,具有稳定的处理效果,是污水生物处理技术之一;特别是用于污水脱氮,氧化沟比其它生物脱氮工艺费用低、TN 去除效率高;然而,与活性污泥法相比,氧化沟占地面积较大,在土地紧张的城市或地区,氧化沟的应用受到限制8;针对常规氧化沟存在的问题,成功地研究出立体循环一体化氧化沟;其特点是:① 氧化沟采用立体循环,在循环过程中完成降解有机物和脱氮过程;与现有氧化沟相比,占地面积可减少约50%;② 沉淀区与氧化沟合建,沉淀的污泥可自动回流到氧化沟内,可节省投资和能耗;③ 结构紧凑,运行操作简便;新型立体循环一体化氧化沟既保留氧化沟设备和运行操作简单等优点,又可减少占地面积; 4 结语污水生物脱氮除磷是当今水处理的热点与难点;新的脱氮除磷理论的提出,为生物脱氮除磷工艺指引了方向;如:SND 同时硝化反硝化工艺、SHARON 工艺、氧限制自氧硝化—反硝化工艺、厌氧氨氧化工艺以及短程硝化—厌氧氨氧化组合工艺等;但是,生物脱氮除磷工艺的发展已不仅仅要求对N,P 去除率,而且要求处理效果稳定,可靠的运行工艺;今后对此技术的研究应集中在以下方面:第一、加深除磷机理的研究;反硝化聚磷菌的出现解决了硝化菌与聚磷菌争夺碳源,污泥龄不同等主要矛盾;为新型同步脱氮除磷工艺提供了理论依据;但是对于反硝化聚磷菌的了解还不够全面,尤其是其除磷机理还待于进一步研究;应突破传统理论,从微生物的角度来调控工艺;第二、随着脱氮除磷工艺的进一步发展,许多研究者在进行小试时,都驯化出颗粒污泥,而颗粒污泥的出现改善了污泥膨胀这一难题;同时发现颗粒污泥对N,P 的去除要远远优于絮状污泥;今后在对颗粒污泥的研究上应更加深入,研究了解颗粒污泥外部的胞外聚合物是否对N,P 有吸附作用,并进一步研究颗粒污泥的形成机理,调整现有反应器的运行参数,从而加速颗粒污泥的形成,提高脱氮除磷效率;。
叙述污水脱氮原理
污水脱氮是指通过一系列的工艺方法,将污水中的氮污染物转化为无害的形式,以减少对水环境的污染。
污水中的氮主要以氨态氮(NH3-N)和硝态氮(NO3-N)的形式存在。
污水脱氮的原理主要包括生物脱氮和化学脱氮两种方法。
生物脱氮主要通过厌氧和好氧微生物的共同作用来完成。
在厌氧条件下,污水中的氨态氮由厌氧菌转化为氮气(N2)的形式,此过程称为反硝化;而在好氧条件下,厌氧转化成的亚硝酸盐(NO2-)会被其他好氧菌进一步氧化为硝酸盐(NO3-),这一过程称为硝化。
通过合理控制好氧和厌氧环境的转换,可以达到高效的脱氮效果。
化学脱氮主要通过化学方法将氨态氮转化为氮气的形式。
其中最常用的方法是硝化-反硝化法,使用硫酸盐还原剂和硫化盐
来催化氨态氮的氧化和反硝化,进而将氮气排放到大气中。
此外,还有其他一些化学方法,如曝气亚硝酸盐氧化法、生物Chemcan污水处理技术等。
除了生物脱氮和化学脱氮,还有一些辅助措施可以提高脱氮效果。
例如,在生物脱氮过程中,可以通过调节温度、pH值和
溶解氧浓度等操作条件来改善微生物的生长环境;在化学脱氮过程中,可以优化还原剂的投加量和反应时间,以提高脱氮的效率。
总之,污水脱氮是通过生物和化学方法将污水中的氮污染物转
化为无害形式的过程。
通过合理选择和组合脱氮方法,可以达到高效、环保的污水处理效果。
工艺方法——生物脱氮除磷技术工艺简介一、传统生物脱氮除磷技术1、传统生物脱氮原理污水经二级生化处理,在好氧条件下去除以BOD5为主的碳源污染物的同时,在氨化细菌的参与下完成脱氨基作用,并在硝化和亚硝化细菌的参与下完成硝化作用;在厌氧或缺氧条件下经反硝化细菌的参与完成反硝化作用。
2、传统生物除磷原理在厌氧条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量形成ADP;在好氧条件下,聚磷菌有氧呼吸,不断地放出能量,聚磷菌在透膜酶的催化作用下利用能量、通过主动运输从外部摄取H3PO4,其中一部分与ADP结合形成ATP,另一部分合成聚磷酸盐(PHB)储存在细胞内,实现过量吸磷。
通过排除剩余污泥或侧流富集厌氧上清液将磷从系统内排除,在生物除磷过程中,碳源微生物也得到分解。
3、常用工艺及升级改造具有代表性的常用工艺有A/O工艺、A2/O工艺、UCT工艺、SBR 工艺、Bardenpho工艺、生物转盘工艺等,这些工艺都是通过调节工况,利用各阶段的优势菌群,尽可能的消除各影响因素间的干扰,以达到适应各阶段菌群生长条件,实现水处理效果。
近年来随着研究的深入,对常用工艺有了一些改进,目前应用最广泛、水厂升级改造难度较低的是分段进水工艺。
与传统A/O工艺、A2/O工艺、UCT工艺等相比,分段进水工艺可以充分利用碳源并能较好的维持好氧、厌氧(或缺氧)环境,具有脱氮除磷效率高、无需内循环、污泥浓度高、污泥龄长等优点。
分段进水工艺适用于对A/O工艺、A2/O工艺、UCT工艺等的升级改造,通过将生化反应池分隔并使进水按一定比例分段进入各段反应池,以充分利用碳源,解决目前污水处理厂普遍存在的碳源不足和剩余污泥量过大的问题。
分段进水工艺虽然对提高出水水质有较好的效果,但该工艺并不能提高处理能力,当水厂处于超负荷运行时,分段进水改造也不能达到良好的处理效果。
二、新型生物脱氮除磷技术近年来,科学研究发现,生物脱氮除磷过程中出现了超出传统生物脱氮除磷理论的现象,据此提出了一些新的脱氮除磷工艺,如:短程硝化反硝化工艺、同步硝化反硝化工艺、厌氧氨氧化工艺、反硝化除磷工艺。
污水去除氨氮的方法物化法1.吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与温度、PH、气液比有关。
2.沸石脱氨法利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。
应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。
采用焚烧法时,产生的氨气必须进行处理,此法适合于低浓度的氨氮废水处理,氨氮的含量应在10-20mg∕1.o3.膜分离技术利用膜的选择透过性进行氨氮脱除的一种方法。
这种方法操作方便,氨氮回收率高,无二次污染。
例如:气水分离膜脱除氨氮。
氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。
根据化学平衡移动的原理即吕.查德里(A.1..1.EChatelier)原理。
在自然界中一切平衡都是相对的和暂时的。
化学平衡只是在一定条件下才能保持"假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。
”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。
当左侧温度Tl>20o C,PHl>9,Pl>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铁盐。
4.MAP沉淀法主要是利用以下化学反应:Mg2++NH4++P043-=MgNH4P04理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,⅛[Mg2+][NH4+][P043-]>2.5×10-13时可生成磷酸铁镁(MAP),除去废水中的氨氮。
5.化学氧化法利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。
折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
污水处理工艺脱氮引言概述:污水处理是一项重要的环境保护工作,其中脱氮是其中一个关键的工艺。
脱氮工艺的目的是去除污水中的氮元素,以减少对水体的污染。
本文将从五个大点来详细阐述污水处理工艺脱氮的方法和原理。
正文内容:1. 生物脱氮工艺1.1 传统的硝化-反硝化工艺:通过好氧菌将氨氮转化成硝态氮,再通过厌氧菌将硝态氮还原成氮气释放。
1.2 间歇式生物脱氮工艺:通过控制好氧和厌氧条件的切换,使得污水中的氨氮在不同环境中转化为氮气释放。
1.3 碳源添加工艺:在污水处理过程中添加适量的碳源,促进好氧菌的生长和硝化反应,从而实现脱氮效果。
2. 物化脱氮工艺2.1 化学沉淀法:通过添加化学药剂,使污水中的氮元素与药剂发生反应生成不溶于水的沉淀物,从而实现脱氮效果。
2.2 气浮法:将污水中的氮元素转化成气态,通过气浮设备将气态氮排出,从而实现脱氮效果。
2.3 膜分离法:利用特殊的膜材料,将污水中的氮元素与其他物质分离,从而实现脱氮效果。
3. 吸附脱氮工艺3.1 活性炭吸附法:利用活性炭的大比表面积和吸附性能,将污水中的氮元素吸附到活性炭表面,从而实现脱氮效果。
3.2 生物负载吸附法:将具有高氮吸附能力的微生物负载在特定的载体上,通过微生物的代谢作用将污水中的氮元素吸附和转化为无害物质。
4. 电化学脱氮工艺4.1 电解法:通过电解污水,利用电极上的化学反应将污水中的氮元素转化为氮气释放,从而实现脱氮效果。
4.2 电化学氧化法:利用电化学氧化反应将污水中的氮元素氧化为无害物质,从而实现脱氮效果。
5. 植物脱氮工艺5.1 水生植物法:利用水生植物的吸收作用,将污水中的氮元素吸收并转化为植物组织中的有机物。
5.2 人工湿地法:通过构建人工湿地,利用湿地植物和微生物的共同作用,将污水中的氮元素去除和转化。
总结:污水处理工艺脱氮是一项关键的环境保护工作。
通过生物脱氮工艺、物化脱氮工艺、吸附脱氮工艺、电化学脱氮工艺和植物脱氮工艺等不同方法,可以有效去除污水中的氮元素,减少对水体的污染。
污水处理脱氮除磷工艺介绍及对比分析2020年9月6日星期日目录一、生物脱氮 (3)1、硝化过程 (3)2、反硝化过程 (4)3、生物脱氮的基本条件 (5)4、废水生物脱氮处理方法 (6)二、化学脱氮 (7)1、吹脱法 (7)2、化学沉淀法(磷酸铵镁沉淀法) (8)3、低浓度氨氮工业废水处理技术 (9)4、不同浓度工业含氨氮废水的处理方法比较 (11)三、化学法除磷 (11)1、石灰除磷 (12)2、铝盐除磷 (12)3、铁盐除磷 (13)四、生物除磷 (13)1、生物除磷的原理 (13)2、生物除磷的影响因素: (14)3、废水生物除磷的方法有哪些 (15)4、除磷设施运行管理的注意事项 (15)一、生物脱氮脱氮技术包括化学法和生物法,由于化学法会产生二次污染,而且成本高,所以一般使用生物脱氮技术。
污水生物处理脱氮主要是靠一些专性细菌实现氮形式的转化。
含氮有机化合物在微生物的作用下首先分解转化为氨态氮NH4+或NH3,这一过程称为“氨化反应”。
硝化菌把氨氮转化为硝酸盐,这一过程称为“硝化反应”;反硝化菌把硝酸盐转化为氮气,这一反应称为“反硝化反应”。
含氮有机化合物最终转化为氮气,从污水中去除。
1、硝化过程硝化菌把氨氮转化为硝酸盐的过程称为硝化过程,硝化是一个两步过程,分别利用了两类微生物——亚硝酸盐菌和硝酸盐菌。
这两类细菌统称为硝化菌,这些细菌所利用的碳源是CO32-、HCO3-和CO2等无机碳。
第一步由亚硝酸盐菌把氨氮转化为亚硝酸盐,第二步由硝酸盐菌把亚硝酸盐转化为硝酸盐。
这两个过程释放能量,硝化菌就是利用这些能量合成新细胞和维持正常的生命活动,氨氮转化为硝态氮并不是去除氮而是减少了它的需氧量。
氧化1g氨氮大约需要消耗4.3gO2和8.64gHCO3-(相当于7.14gCaCO3碱度)。
硝化过程的影响因素:1)温度:硝化反应最适宜的温度范围是30~35℃,温度不但影响硝化菌的比增长速率,而且会影响硝化菌的活性。
氨氮去除方法及原理cdpulin LV.0 2楼根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。
然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。
故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。
物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术。
目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。
1.折点氯化法去除氨氮折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。
当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。
当氯气通入量超过该点时,水中的游离氯就会增多。
因此该点称为折点,该状态下的氯化称为折点氯化。
处理氨氮污水所需的实际氯气量取决于温度、pH值及氨氮浓度。
氧化每克氨氮需要9~10mg氯气。
pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。
折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。
1mg残留氯大约需要0.9~1.0mg的二氧化硫。
在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。
折点氯化法除氨机理如下:Cl2+H2O→HOCl+H++Cl-NH4++HOCl→NH2Cl+H++H2ONHCl2+H2O→NOH+2H++2Cl-NHCl2+NaOH→N2+HOCl+H++Cl-折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。
氨氮废水处理工艺技术最全总结氨氮废水处理有折点氯化法、化学沉淀法、离子交换法、吹脱法和生物脱氨法等多种方法,这些技术可分为物理化学法和生物脱氮技术两大类。
一、生物脱氮法微生物去除氨氮过程需经两个阶段。
第一阶段为硝化过程,亚硝化菌和硝化菌在有氧条件下将氨态氮转化为亚硝态氮和硝态氮的过程。
第二阶段为反硝化过程,污水中的硝态氮和亚硝态氮在无氧或低氧条件下,被反硝化菌(异养、自养微生物均有发现且种类很多)还原转化为氮气。
在此过程中,有机物(甲醇、乙酸、葡萄糖等)作为电子供体被氧化而提供能量。
常见的生物脱氮流程可以分为3类,分别是多级污泥系统、单级污泥系统和生物膜系统。
1、多级污泥系统多级污泥系统可以得到相当好的BOD5去除效果和脱氮效果,其缺点是流程长、构筑物多、基建费用高、需要外加碳源、运行费用高、出水中残留一定量甲醇等。
2、单级污泥系统单级污泥系统的形式包括前置反硝化系统、后置反硝化系统及交替工作系统。
前置反硝化的生物脱氮流程,通常称为A/O流程与传统的生物脱氮工艺流程相比,A/O工艺具有流程简单、构筑物少、基建费用低、不需外加碳源、出水水质高等优点。
后置式反硝化系统,因为混合液缺乏有机物,一般还需要人工投加碳源,但脱氮的效果可高于前置式,理论上可接近100%的脱氮。
交替工作的生物脱氮流程主要由两个串联池子组成,通过改换进水和出水的方向,两个池子交替在缺氧和好氧的条件下运行。
该系统本质上仍是A/O系统,但其利用交替工作的方式,避免了混合液的回流,因而脱氮效果优于一般A/O流程。
其缺点是运行管理费用较高,且一般必须配置计算机控制自动操作系统。
3、生物膜系统将上述A/O系统中的缺氧池和好氧池改为固定生物膜反应器,即形成生物膜脱氮系统。
此系统中应有混合液回流,但不需污泥回流,在缺氧的好氧反应器中保存了适应于反硝化和好氧氧化及硝化反应的两个污泥系统。
二、物化除氮物化除氮常用的物理化学方法有折点氯化法、化学沉淀法、离子交换法、吹脱法、液膜法、电渗析法和催化湿式氧化法等。
生物脱氮新技术★废水物化脱氮技术1.空气吹脱法:利用废水中所含氨氮的实际浓度和平衡浓度之间存在的差异,在碱性条件下用空气吹脱,使废水中的氨氮不断地由液相转移到气相中,达到从废水中去除氨氮目的。
2.折点氯化法:将氯气或次氯酸钠投入污水,将废水中的氨氮氧化成N2的化学脱氮工艺。
可作单独工艺,也可对生物脱氮工艺的出水进行深度处理。
出水可控制氨氮在0.1mg/L。
3.选择性离子交换法:离子交换中固相交换剂和废水中NH4+间进行化学置换反应。
设备简单、易于操作,效率高;离子交换剂用量大,需频繁再生。
对废水预处理要求高,运行成本高。
4.化学沉淀法:投加Mg2+和PO43+,使之与氨氮生成难溶复盐MgNH4PO4·6H2O沉淀物,从而达到脱氮目的。
可以处理各种浓度的氨氮废水,特别是高浓度氨氮废水。
5.化学中和法:浓度大于2%-3%的氨的碱性废水要先考虑回收利用,制成硫铵。
不易回收的可与酸性水或废气(CO、CO2、SO2)中和,若中和后达不到要求,补加化学药剂再中和。
6.乳化液膜分离法:含氨废水以选择透过液膜为分离介质,在液膜两侧通过被选择透过物质(NH3)浓度差和扩散传递为推动力,使透过物质(NH3)进入膜内,达到分离的目的。
第一部分★传统废水生物脱氮过程和原理1.2.3.素矿化。
微生物:细菌、各种霉菌。
硝化作用指微生物将NH4+氧化成NO2-,再进一步氧化成NO3-的过程。
微生物:亚硝化菌:亚硝化单胞菌(Nitrosomonas),将NH4+氧化成NO2-;硝化菌:硝化杆菌(Nitrobacter),将NO2-氧化成NO3-。
(自养型微生物)反硝化作用将NO3-或NO2-还原成N2或N2O的过程。
微生物:硝化菌(异养型微生物)二、影响因素⑴ pH:通常把硝化段运行的pH控制在7.2-8.2,反硝化段pH控制在7.5-9.2 。
⑵温度:硝化反应适宜温度为30~35℃,在此范围反应速率随温度升高而加快。