【高中化学奥林匹克竞赛辅导资料】第十七章 立体化学基础
- 格式:docx
- 大小:569.28 KB
- 文档页数:31
高中化学竞赛辅导专题讲座——三维化学近年来,无论是高考,还是全国竞赛,涉及空间结构的试题日趋增多,成为目前的热点之一。
本文将从最简单的五种空间正多面体开始,及大家一同探讨中学化学竞赛中及空间结构有关的内容。
在小学里,我们就已经系统地学习了正方体,正方体(立方体或正六面体)有六个完全相同的正方形面,八个顶点和十二条棱,每八个完全相同的正方体可构成一个大正方体。
正四面体是我们在高中立体几何中学习的,它有四个完全相同的正三角形面,四个顶点和六条棱。
那么正方体和正四面体间是否有内在的联系呢?请先让我们看下面一个例题吧:【例题1】常见有机分子甲烷的结构是正四面体型的,请计算分子中碳氢键的键角(用反三角函数表示)【分析】在化学中不少分子是正四面体型的,如CH4、CCl4、NH4+、 SO42-……它们的键角都是109º28’,那么这个值是否能计算出来呢?如果从数学的角度来看,这是一个并不太难的立体几何题,首先我们把它抽象成一个立体几何图形(如图1-1所示),取CD中点E,截取面ABE(如图1-2所示),过A、B做AF⊥BE,BG⊥AE,AF交BG于O,那么∠AOB就是所求的键角。
我们只要找出AO(=BO)及AB的关系,再用余弦定理,就能圆满地解决例题1。
当然找出AO和AB的关系还是有一定难度的。
先把该题放下,来看一题初中化学竞赛题:【例题2】CH4分子在空间呈四面体形状,1个C原子及4个H原子各共用一对电子对形成4条共价键,如图1-3所示为一个正方体,已画出1个C原子(在正方体中心)、1个H原子(在正方体顶点)和1条共价键(实线表示),请画出另3个H原子的合适位置和3条共价键,任意两条共价键夹角的余弦值为①【分析】由于碳原子在正方体中心,一个氢原子在顶点,因为碳氢键是等长的,那么另三个氢原子也应在正方体的顶点上,正方体余下的七个顶点可分成三类,三个为棱的对侧,三个为面对角线的对侧,一个为体对角线的对侧。
高中化学奥林匹克竞赛辅导讲座 第16讲 立体化学基础【竞赛要求】有机立体化学基本概念。
构型与构象。
顺反异构(trans -、cis -和Z -、E -构型)。
手性异构。
endo -和exo -。
D,L 构型。
【知识梳理】从三维空间结构研究分子的立体结构,及其立体结构对其物理性质和化学性质的影响的科学叫立体化学。
一、异构体的分类按结构不同,同分异构现象分为两大类。
一类是由于分子中原子或原子团的连接次序不同而产生的异构,称为构造异构。
构造异构包括碳链异构、官能团异构、位置异构及互变异构等。
另一类是由于分子中原子或原子团在空间的排列位置不同而引起的异构,称为立体异构。
立体异构包括顺反异构、对映异构和构象异构。
二、立体异构 (一)顺反异构分子中存在双键或环等限制旋转的因素,使分子中某些原子或基团在空间位置不同,产生顺反异构现象。
双键可以是C=C 、C=N 、N=N 。
双键产生顺反异构体的条件是双键两端每个原子所连二基团或原子不同。
如:顺反异构的构型以前用顺– 和反– 表示。
如:但顺反异构体的两个双键碳原子上没有两个相同的取代基用这种命名法就无能为力。
如:系统命名法规定将双键碳链上连接的取代基按次序规则的顺序比较,高序位基在双键同侧的称Z 型,ab c b cab c dcab c dcH HC = CH 3CH 3C 顺 – 2 – 丁烯H CH 3 C = CH 3HC 反 – 2 – 丁烯H 3CCH 2CH 3 C =H CH(CH 3)2 C反之称E 型。
如上化合物按此规定应为E 型。
命名为E – 4 – 甲基 – 3 – 已基 – 2 – 戊烯。
所谓“次序规则”,就是把各种取代基按先后次序排列的规则。
(1)原子序数大的优先,如I >Br >Cl >S >P >F >O >N >C >H ,未共用电子对为最小; (2)同位素质量数大的优先,如D >H ;(3)二个基团中第一个原子相同时,依次比较第二、第三个原子; (4)重键,如:分别可看作:(5)当取代基的结构完全相同,只是构型不同时,则R >S ,Z >E 。
高中化学竞赛辅导专题讲座——三维化学第二节规则晶体的密度计算在第一节中,我们学习了空间正方体与正四面体的关系,能把四面体型的碳化硅原子晶体(或金刚石)用正方体模型表示出来。
本节我们将着重讨论如何来计算其密度。
先来了解一下有关密度的问题吧。
【讨论】在初中物理中,我们学习了密度概念。
密度是某一物质单位体积的质量,就是某一物质质量与体积的比值。
密度是物质的一种属性,我们无限分割某一物质,密度是不变的(初中老师说过)。
这儿请注意几个问题:其一,密度受环境因素,如温度、压强的影响。
“热胀冷缩”引起物质体积变化,同时也改变了密度。
在气体问题上,更是显而易见。
其二,从宏观角度上来看,无限分割的确不改变物质的密度;但从微观角度来看呢,当把物质分割到原子级别时,我们拿出一个原子和一块原子间的空隙,或在一个原子中拿出原子核与核外部分,其密度显然都是不一样的。
在化学中有关晶体密度的求算,我们是从微观角度来考虑的。
宏观物质分到何时不应再分了呢?我们只要在微观角度找到一种能代表该宏观物质的密度的重复单位。
一般我们都是选取正方体型的重复单位,它在三维空间里有规则地堆积(未留空隙),就构成宏观物质了,也就是说这个正方体重复单位的密度代表了该物质的密度。
我们只要求出该正方体的质量和体积,不就是可以求出其密度了吗?现在,我们先主要来探讨一下正方体重复单位的质量计算。
【例题1】如图2-1所示为高温超导领域里的一种化合物——钙钛矿的结构。
该结构是具有代表性的最小重复单元。
确定该晶体结构中,元素钙、钛、氧的个数比及该结构单元的质量。
(相对原子质量:Ca 40.1 Ti 47.9 O 16.0;阿佛加德罗常数:6.02×1023)【分析】我们以右图2-1所示的正方体结构单元为研究对象,讨论钙、钛、氧这三种元素属于这个正方体结构单元的原子(或离子)各有几个。
首先看钙原子,它位于正方体的体心,自然是1;再看位于顶点上的钛原子,属于这个正方体是1/8吗?在第一节中,我们曾将一个大正方体分割成八个小正方体,原来在大正方体的一个原子被分割成了八个,成为小正方体的顶点。
第17讲有机化合物的合成学号姓名得分1、由指定原料及其他必要的无机及有机试剂合成下列化合物:(1)由丙烯合成甘油。
(2)由丙酮合成叔丁醇。
(3)由1-戊醇合成2-戊炔。
(4)由乙炔合成CH3CH2CH2CH2CH2CH2CH3。
(5)由CH3CH2CH2CHO合成2、试用化学方程式表示以乙烯、为主要原料制备肉桂醛()的过程。
3、用一步或几步反应完成下列甾体化合物的转化。
4、已知苯磺酸在稀硫酸中可以水解而除去磺酸基:又知苯酚与浓硫酸易发生磺化反应:请用化学方程式表示苯、水、溴、铁、浓硫酸及烧碱等为原料,合成的过程。
5、由甲苯为原料,加入必要的有机、无机试剂合成6、以C2H5OH为原料,加入必要的无机试剂合成CH3CH2CH2CH2OH。
7、以BrCH2CH(CH3)2为原料制取2-甲基-1,2-丙二醇。
8、环氧树脂(一种黏合剂)的重要原料是环氧氯丙烷(),试以丙烯为原料加必要的试剂合成之。
9、用你掌握的苯及其衍生物性质的有关知识,写出以最短的流程制备苯甲酸乙酯以及o–、m–、p–氨基苯甲酸反应的化学方程式。
10、请用苯及任选无机试剂合成3,5-二溴硝基苯。
11、以丙二酸二乙酯制备2-苄基丁二酸。
12、请使用不超过4个碳原子的开链有机化合物及任选无机试剂合成2,4-甲基戊酸。
13、(1)写出(CH3)2CHOCH2CH3的两种合成方法,并解释哪种合成法较好;(2)今需合成甲基叔丁基醚 [CH3OC(CH3)3],有人用甲醇钠 [CH3ONa] 加到叔丁基氯[(CH3)3CCl] 中来制备,未能得到所需产物。
指出在此反应中得到了什么产物?应该怎样合成甲基叔丁基醚?14、动物之间的信息传递除了声音、光电信号外,在低等动物中,如昆虫,还能分泌化学物质作为种群个体之间的通讯工具,这就是所谓“化学通讯”。
棉铃象(一种象鼻虫)的性引诱剂就是这类化学物质。
它是混合物,含有单环萜烯醇E和萜烯醛F和H。
人工合成棉铃象性引诱剂是杀灭这种棉花害虫的绿色农药。
1
第十七章 立体化学基础
【竞赛要求】
有机立体化学基本概念。
构型与构象。
顺反异构(trans -、cis -和Z -、E -构型)。
手性异构。
endo -和exo -。
D,L 构型。
【知识梳理】
从三维空间结构研究分子的立体结构,及其立体结构对其物理性质和化学性质的影响的科学叫立体化学。
一、异构体的分类
按结构不同,同分异构现象分为两大类。
一类是由于分子中原子或原子团的连接次序不同而产生的异构,称为构造异构。
构造异构包括碳链异构、官能团异构、位置异构及互变异构等。
另一类是由于分子中原子或原子团在空间的排列位置不同而引起的异构,称为立体异构。
立体异构包括顺反异构、对映异构和构象异构。
二、立体异构 (一)顺反异构
分子中存在双键或环等限制旋转的因素,使分子中某些原子或基团在空间位置不同,产生顺反异构现象。
双键可以是C=C 、C=N 、N=N 。
双键产生顺反异构体的条件是双键两端每个
原子所连二基团或原子不同。
如:
a b
c
a b
c a b c a d
c a b c c
c
2
顺反异构的构型以前用顺– 和反– 表示。
如:
但顺反异构体的两个双键碳原子上没有两个相同的取代基用这种命名法就无能为力。
如:
系统命名法规定将双键碳链上连接的取代基按次序规则的顺序比较,高序位基在双键同侧的称Z 型,反之称E 型。
如上化合物按此规定应为E 型。
命名为E – 4 – 甲基 – 3 – 已基 – 2 – 戊烯。
所谓“次序规则”,就是把各种取代基按先后次序排列的规则。
(1)原子序数大的优先,如I >Br >Cl >S >P >F >O >N >C >H ,未共用电子对为最小;
(2)同位素质量数大的优先,如D >H ;
(3)二个基团中第一个原子相同时,依次比较第二、第三个原子; (4)重键,如:
H H C = CH 3 CH 3
C 顺 – 2 – 丁烯 H CH 3
C = CH 3
H
C 反 – 2 – 丁烯
H 3C CH 2CH 3
C = 3)2
C
3
分别可看作:
(5)当取代基的结构完全相同,只是构型不同时,则R >S ,Z >E 。
常见基团排序如下:
–I >–Br >–Cl >–SO 2R >–SOR >–SR >–SH >–F >RCOO –>–OR >–OH >–NO 2>NR 2>–NHCOR >–NHR >–NH 2>–CCl 3>–COCl >–COOR >–COOH >RCO –>–CHO >–CR 2OH >–CHROH >–CH 2OH >–C 6H 5>–C ≡CH >–CR 3>–CH=CH 2>–CHR 2>–CH 2R >–CH 3>–D >–H >未公用电子对
按次序规则可以对下列化合物进行标记:
(2Z ,4E) – 庚二烯
对于环状化合物,由于环的存在阻止了碳碳单键的自由旋转,所以也有顺反异构体。
H H C = CH 3
C 2 3
1
H
C = H CH 2CH 3
C
4
2 5
6
7
CH 3
CH 3
CH 3
H
(二)对映异构
1、分子的对称性、手性与旋光性
(1)分子的对称因素:对称因素可以是一个点、一个轴或一个面。
对称面:把分子分成互为实物和镜像关系两半的假想平面,称为对称面。
对称中心:分子中任意原子或原子团与P点连线的延长线上等距离处,仍是相同的原子或原子团时,P点就称为对称中心。
凡具有对称面或对称中心任何一种对称因素的分子,称为对称分子,凡不具有任何对称因素的分子,称为不对称分子。
(2)分子的手性和旋光性
象人的两只手,由于五指的构型不同,左手和右手互为实物和镜像关系,但不能完全重叠,称为手性。
具有手性的分子,称为手性分子或手征性分子。
判断一个化合物是不是手性分子,一般可考查它是否有对称面或对称中心等对称因素。
而判断一个化合物是否有旋光性,则要看该化合物是否是手性分子。
如果是手性分子,则该化合物一定有旋光性。
如果是非手性分子,则没有旋光性。
所以化合物分子的手性是产生旋光性的
4
充分和必要的条件。
2、含一个手性碳原子的化合物
(1)对映异构体
当分子中只含一个手性碳原子时,这个分子就一定有手性。
如乳酸分子,其第二个碳原子上连有– OH、– COOH、– CH3和– H四个不相同原子或原子团,即含有手性碳原子(一般用C* 表示)故乳酸有手性。
其分子模型可表示如下:
像乳酸分子这样存在构造相同,但构型不同,彼此互为实物和镜像关系,相互对映而不能完全重合的现象,叫做对映异构体。
(+)–乳酸和(-)–乳酸是互为镜像关系的异构体,称对映异构体,简称对映体。
因其对映体的旋光性不同,因此又称旋光性异构体或光学异构体。
在实验室合成乳酸时,得到的是等量的左旋体和右旋体混合物,这种由等量的对映体所组成的混合物称为外消旋体。
因这两种组分比旋光度相同,旋光方向相反。
所以旋光性正好互相抵消不显旋光性。
(2)费歇尔投影式
因对映异构属于构型异构,分子的构型最好用分子模型或立体结构式表示,但书写时相当不方便。
一般用费歇尔投影式表示。
其投影规则如下:一般将分子中含有碳原子的基团放在竖
5。