当前位置:文档之家› (完整)大学高等数学重点绝密通用复习资料,绝对有用

(完整)大学高等数学重点绝密通用复习资料,绝对有用

(完整)大学高等数学重点绝密通用复习资料,绝对有用
(完整)大学高等数学重点绝密通用复习资料,绝对有用

高等数学(通用复习)

师兄的忠告:记住我们只复习重点,不需要学得太多,这些是每年必须的重点,希望注意

第一章 函数与极限

函数

○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★)

(){},|U a x x a δδ=-<

(

,U a o

1.由n x ∴N =2.即对?∴x ∞

→lim ○x →1.由(f ∴δ=2.即对?∴x x →0

lim ○→x 1.由(f ∴X =2.即对?∴x ∞

→lim 第三节 无穷小与无穷大

○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f

函数()x f 无穷大?()∞=x f lim

○无穷小与无穷大的相关定理与推论(★★)

(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=????

(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且

()0f x ≠,则()x f 1-为无穷大

【题型示例】计算:()()0

lim x x f x g x →?????(或∞→x )

1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U ο

内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.

→x 即函数x g 是(→x 3(x 0lim x x →

3

x →【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23

333311

lim lim lim 93336

x x x x x x x x x →→→--====-+-+ 其中3x =为函数()2

3

9

x f x x -=

-的可去间断点 倘若运用罗比达法则求解(详见第三章第二节):

解:()()00

2

33323311lim lim lim 926

9x L x x x x x x x '→→→'--===-'

- ○连续函数穿越定理(复合函数的极限求解)(★★)

(定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ??→→??=???????? 【题型示例】求值:

9

3

lim 23

--→x x x

22121lim

212

21lim lim 2lim 121x x x x x x →∞+→∞

+→∞++→∞=??

??

?

?

?

??

???=+

???+????

解:()()12lim 121

21212

121

22lim 121x x x x x x x x x e

e

e e

+→∞??

?+??

+??+→∞+→∞???+??

+??

+??

?

+?

?

====第六节 无穷小量的阶(无穷小的比较)

○等价无穷小(★★)

1.

()

~sin ~tan ~arcsin ~arctan ~ln(1)~1U

U U U U U U e +-

2.U U cos 1~2

12

-

(乘除可替,加减不行)

【题型示例】求值:()()x

x x x x x 31ln 1ln lim 20++++→ 【求解示例】

lim 0=→x

12123.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξ?,即()()0f g C ξξ--=(10<<ξ)

4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分

第一节 导数概念

○高等数学中导数的定义及几何意义(P83)(★★)

【题型示例】已知函数()???++=b

ax e x f x 1 ,00>≤x x 在0=x 处可导,求a ,b

【求解示例】

1.∵()()0

010f e f a -+'?==??'=??,()()()00001120012f e e f b f e -

-+?=+=+=??=?

?

=+=??

2.由函数可导定义()()()()

()001

0002f f a f f f b -+-+

''===???====??

∴1,2a b ==

arcsi e e =

??

? =

??

=

? ?

第四节 高阶导数

○()

()()

()1n n f

x f

x -'??=??(或()()11n n n n d y d y dx dx --'??=????

)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1

111y x x

-'=

=++, ()()()12

111y x x --'??''=+=-?+??

, (

y ?'''=?……

()(n

y =-即y '=∴y =

'dy 【题型示例】现假设函数f x 在0,π上连续,在0,π 上可导,试证明:0,ξπ?∈, 使得()()cos sin 0f

f ξξξξ'+=成立

【证明示例】

1.(建立辅助函数)令()()sin x f x x ?=

显然函数()x ?在闭区间[]0,π上连续,在开区间()0,π上可导; 2.又∵()()00sin00f ?==

()()sin 0f ?πππ==

即()()00??π==

3.∴由罗尔定理知

()0,ξπ?∈,使得()()cos sin 0f f ξξξξ'+=成立

○拉格朗日中值定理(★)

【题型示例】证明不等式:当1x >时,x

e e x >? 【证明示例】

1.

x )x 上可导,并且f '2又∵e ξ

化简得x e 1.()0,π上2化简得∴(f ξ'第二节 1.☆

2A B .☆

⑴0?∞()1000020

1

ln ln lim ln lim lim lim 111

lim 0

x x L x x x x x x x x x x x x x a ααααααα∞∞

-'→→→→→'

?===?'??- ???

=-=解:

(一般地,()0

lim ln 0x x x β

α

→?=,其中,R αβ∈)

⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:01

1lim sin x x x →??-

??

?

【求解示例】 200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--??????-== ? ? ???

?????解:

()

()00

sin 1cos 1cos sin L x x x x x x

'→'

'---=0x →=0

00

ln lim L x x '→→=对⑸

()

tan 00

2000211,ln tan ln ,

1ln 0lim ln lim tan ln 1ln ln lim

lim

lim 1sec 1tan tan x

x x x L x x y y x x x y x y x x x x

x x x x

→→∞

'→→→??

??

==? ?

???

??

??

??→=? ???

????'

=-=-=-??'??-

? ???解:令两边取对数得对求时的极限,

【题型示例】证明:当0x >时,1x

e x >+ 【证明示例】

1.(构建辅助函数)设()1x x e x ?=--,(0x >)

2.()10x

x e ?'=->,(0x >)

∴()()00x ??>=

3.既证:当0x >时,1x

e x >+

【题型示例】证明:当0x >时,()ln 1x x +<

【证明示例】

1.(构建辅助函数)设()()ln 1x x x ?=+-,(0x >)

2.()1

101x x

?'=

-<+,

(0x >) ∴()()00x ??<=

3.既证:当0x >时,()ln 1x x +<

○连续函数凹凸性(★★★)

【题型示例】试讨论函数2

3

13y x x =+-的单调性、极值、凹凸性及拐点

【证明示例】

1.()()2

36326661y x x x x y x x '?=-+=--??''=-+=--?? 2.令()()320610y x x y x '=--=???''=--=??

解得:120,21x x x ==??=?

3.(四行表)

x (,0)-∞ 0 (0,1) 1 (1,2) 2 (2,)+∞ y ' - 0 + + 0 - y '' + + - - y 1 (1,3) 5

4.⑴函数23

13y x x =+-单调递增区间为(0,1),(1,2) 单调递增区间为(,0)-∞,(2,)+∞; ⑵函数2

3

13y x x =+-的极小值在0x =时取到,为()01f =,

极大值在2x =时取到,为()25f =;

⑶函数2

3

13y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸; ⑷函数2

3

13y x x =+-的拐点坐标为()1,3

第五节 函数的极值和最大、最小值 ○函数的极值与最值的关系(★★★)

⑴设函数()f x 的定义域为D ,如果M x ?的某个邻域()M U x D ?,使得对()M x U x ?∈o

,都适合不等式

()()M f x f x <,

我们则称函数()f x 在点(),M M x f x ????处有极大值()M f x ; 令{}123,,,...,M M M M Mn x x x x x ∈

则函数()f x 在闭区间[],a b 上的最大值M 满足:

{}123max ,,,,...,,M M M Mn M f a x x x x f b =;

⑵设函数()f x 的定义域为D ,如果m x ?的某个邻域()m U x D ?,使得对()m x U x ?∈o

,都适合不等式

()()m f x f x >,

我们则称函数()f x 在点(),m m x f x ????处有极小值()m f x ; 令{}123,,,...,m m m m mn x x x x x ∈

则函数()f x 在闭区间[],a b 上的最小值m 满足:

()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;

【题型示例】求函数()33f x x x =-在[]1,3-上的最值 【求解示例】

1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+

2.令(f '

解得:3.4.又∵f ∴()max f x 第六节 第七节 第八节 第四章 第一节 )或

()dF x 即表示为:

()f x ?(?(1

k f ?

??第二节 换元积分法

○第一类换元法(凑微分)(★★★) (()dx x f dy ?'=的逆向应用)

()()()()f x x dx f x d x ????'?=??

????????????? 【题型示例】求2

2

1

dx a x

+?

【求解示例】

22221

1

111arctan 11x x dx dx d C a x a a a

a x x a a ??===+ ?+??????++ ? ?????

??

?解:

【题型示例】求

【求解示例】

(

)(

)121212x x C

=+=+=

○第二类换元法(去根式)(★★)

=??

第三节 分部积分法 ○分部积分法(★★)

⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-??

⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '?=)

⑶使用分部积分公式:udv uv vdu =-??

⑷展开尾项vdu v u dx '=???

,判断

a .若v u dx '??

是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可

以轻易求解出结果);

b .若v u dx '??

依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积

分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C

2x 22x x x e x e x e ?=-=-?解:cos cos cos x x x x e e e e ?=-=-=-?解:x e ??即:∴x

e ??

()Q x ()k

x a -;而另一个多项式可以表示为二次质因式()2l

x px q ++,

(2

40p q -<); 即:()()()12Q x Q x Q x =?

一般地:n mx n m x m ??+=+

??

?,则参数n

a m =- 22

b

c ax bx c a x x a a ?

?++=++ ??

?

则参数,b c p q a a

=

= ⑵则设有理函数

()

()

P x Q x 的分拆和式为:

()()()()()

()

122k l P x P x P x Q x x a x px q =+-++ 其中

[],a b ⑴

a

a

f x dx f u du =?

?

⑵()0a a

f x dx =? ⑶()()b

b

a a

kf x dx k f x dx =??????

⑷(线性性质)

()()()()1212b

b b

a

a a k f x k g x dx k f x dx k g x dx +=+?????

??

⑸(积分区间的可加性)

()()()b

c b

a

a

c

f x dx f x dx f x dx =+?

??

⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0b

a

f x dx >?;

(推论一)

若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b

b

a

a

f x dx

g x dx ≤?

?;

(推论二)

()()b

b

a

a

f x dx f x dx ≤?

?

b

a

f ?d dx

?x 00

1

212x L x x x →'→→=====?⑴(第一换元法)

()()()()b b

a a f x x dx f x d x ????'?=??

????????????? 【题型示例】求201

21

dx x +? 【求解示例】

()[]2

220001111

21ln 212122121ln 5ln 5ln122

解:dx d x x x x =+=?+??

?++=-=?

? ⑵(第二换元法)

设函数()[],f x C a b ∈,函数()x t ?=满足:

a .,αβ?,使得()(),a

b ?α?β==;

b .在区间[],αβ或[],βα上,()(),f t t ??'????连续

129==?

如:不定积分公式

21

arctan 1dx x C x =++?的证明。很多同学上课时无法证明,那么在学期结束时,我给出这样一种

证明方法以说明问题:

()tan 2

2arctan 222

22211tan 11tan 111cos sec cos cos arctan x t t t x dx t dt x t dt t dt dt t t t t C x C

π

π??

=-<< ???='??????→??++=??=??==+=+????? 如此,不定积分公式2211arctan x

dx C a x a a

=++?也就很容易证明了,希望大家仔细揣摩,认真理解。

最后,限于编者水平的限制,资料中错误和疏漏在所难免,希望同学们积极指出,以便互相学习改进。

2016上海交通大学期末 高数试卷(A类)

2016级第一学期《高等数学》期末考试试卷 (A 类) 一、单项选择题(本题共15分,每小题3分) 1. 若3222lim 12 x ax bx x →∞++=+(其中,a b 为常数),则 ( ) (A )0a =,b ∈R ; (B )0a =,1b =; (C )a ∈R ,1b =; (D )a ∈R ,b ∈R 。 2. 若函数()f x 的一个原函数是(2)e x x -,则'(1)f x += ( ) (A )e x x ; (B )1e x x +; (C )1(1)e x x ++; (D )(1)e x x +。 3. 反常积分1 0ln[(1)]d x x x -? ( ) (A )2=-; (B )1=-; (C )0=; (D )发散。 4. 设OA a =和OB b =是两个不共线的非零向量,AOB ∠是向量a 与b 的夹角, 则AOB ∠的角平分线上的单位向量为 ( ) (A )||||||||||||a b a b a a b b a a b b ---; (B )||||||||||||a b a b a a b b a a b b +++; (C )||||||||||||b a a b b a a b b a a b ---; (D )||||||||||||b a a b b a a b b a a b +++。 5. 设函数()f x 为连续函数,对于两个命题: (I )若()00()(()())d d x u F x f t f t t u =--??,则()F x 为奇函数; (II )若()f x 为奇函数,则()3 0()()d d x y x G x f t t y =??为奇函数, 下列选项正确的是 ( ) (A )(I )和(II )均正确; (B )(I )和(II )均错误。 (C )仅(I )正确; (D )仅(II )正确; 二、填空题(每小题3分,共15分) 6. 已知函数()y f x =由参数方程3cos 2sin x t y t =??=? (0t <<π)所确定,则 ''()f x =___________________。 7. 一平面通过y 轴,且点)2,4,4(-到该平面的距离等于点)2,4,4(-到平面0z =的距离,则该平面方程是:_________________________。 8. 已知321e e x x y x =-,22e e x x y x =-,23e x y x =-是某二阶常系数非齐次线性微

大学微积分l知识点总结 二

【第五部分】不定积分 1.书本知识(包含一些补充知识) (1)原函数:F ’(x )=f (x ),x ∈I ,则称F (x )是f (x )的一个“原函数”。 (2)若F (x )是f (x )在区间上的一个原函数,则f (x )在区间上的全体函数为F (x )+c (其中c 为常数) (3)基本积分表 c x dx x +?+?=?+???11 1(α≠1,α为常数) (4)零函数的所有原函数都是c (5)C 代表所有的常数函数 (6)运算法则 []??????±?=?±??=??dx x g dx x f dx x g x f dx x f a dx x f a )()()()()()(②① (7)[][]c x F dx x x f +=??)()(')(???复合函数的积分: c b x F dx b x f c b ax F a b ax d b ax f a dx b ax f ++=?+++?=+?+?=?+???)()()(1)()(1)(一般地, (9)连续函数一定有原函数,但是有原函数的函数不一定连续,没有原函数的函数一定不连续。 (10)不定积分的计算方法 ①凑微分法(第一换元法),利用复合函数的求导法则 ②变量代换法(第二换元法),利用一阶微分形式不变性 ③分部积分法: 【解释:一阶微分形式不变性】 数乘运算 加减运线性运 (8

释义:函数 对应:y=f(u) 说明: (11)c x dx a x a x ++??++?22ln 1 22 (12)分段函数的积分 例题说明:{} dx x ??2,1max (13)在做不定积分问题时,若遇到求三角函数奇次方的积分,最好的方法是将其中的一 (16)隐函数求不定积分 例题说明: (17)三角有理函数积分的万能变换公式 (18)某些无理函数的不定积分 ②欧拉变换 (19)其他形式的不定积分 2.补充知识(课外补充) ☆【例谈不定积分的计算方法】☆ 1、不定积分的定义及一般积分方法 2、特殊类型不定积分求解方法汇总 1、不定积分的定义及一般积分方法 (1)定义:若函数f(x)在区间I 上连续,则f(x)在区间I 上存在原函数。其中Φ(x)=F(x)+c 0,(c 0为某个常数),则Φ(x)=F(x)+c 0属于函数族F(x)+c (2)一般积分方法 值得注意的问题:

【重磅】同济大学高等数学上第七版教学大纲(64学时)

福建警察学院 《高等数学一》课程教学大纲 课程名称:高等数学一 课程编号: 学分:4 适用对象: 一、课程的地位、教学目标和基本要求 (一)课程地位 高等数学是各专业必修的一门重要的基础理论课程,它具有高度的抽象性、严密的逻辑性和应用的广泛性,对培养和提高学生的思维素质、创新能力、科学精神、治学态度以及用数学解决实际问题的能力都有着非常重要的作用。高等数学课程不仅仅是学习后继课程必不可少的基础,也是培养理性思维的重要载体,在培养学生数学素养、创新意识、创新精神和能力方面将会发挥其独特作用。 (二)教学目标 通过本课程的学习,逐步培养学生使其具有数学运算能力、抽象思维能力、空间想象能力、科学创新能力,尤其具有综合运用数学知识、数学方法结合所学专业知识去分析和解决实际问题的能力,一是为后继课程提供必需的基础数学知识;二是传授数学思想,培养学生的创新意识,逐步提高学生的数学素养、数学思维能力和应用数学的能力。 (三)基本要求 1、基本知识、基本理论方面:掌握理解极限和连续的基本概念及其应用;熟

悉导数与微分的基本公式与运算法则;掌握中值定理及导数的应用;掌握不定积分的概念和积分方法;掌握定积分的概念与性质;掌握定积分在几何上的应用。 2、能力、技能培养方面:掌握一元微积分的基本概念、基本理论、基本运算技能和常用的数学方法,培养学生利用微积分解决实际问题的能力。 二、教学内容与要求 第一章函数与极限 【教学目的】 通过本章学习 1、理解函数的概念,了解函数的几种特性(有界性),掌握复合函数的概念及其分 解,掌握基本初等函数的性质及其图形,理解初等函数的概念。 2、理解数列极限的概念、掌握数列极限的证明方法、了解收敛数列的性质。 3、理解函数极限和单侧极限的概念,掌握函数极限的证明方法、理解极限存在与 左、右极限之间的关系,了解函数极限的性质。 4、理解无穷小和无穷大的概念、掌握无穷大和无穷小的证明方法。 5、掌握极限运算法则。 6、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极 限的方法。 7、掌握无穷小的比较方法,会用等价无穷小求极限。 8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 9、了解连续函数的运算和初等函数的连续性, 10、了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),

工科高等数学试卷05-07AB

1 河南农业大学2005-2006学年第二学期 《高等数学》(工科)期末考试试卷(A ) 一、判断题(每小题2分,共计20分) ( R )1、两个单位向量的数量积一定等于1. ( W )2、设有向量,,a b c ,则()()a b c a b c ?=? . (R )4、沿梯度方向时,方向导数取得最大值. ( R )5、若σ为D 的面积,则 D dxdy σ =??. ( W )6、设平面闭区}{(,),D x y a x a x y a =-≤≤≤≤,}{ 1(,)0,D x y x a x y a =≤≤≤≤, 则 1 4D D xydxdy xydxdy =????. ( R )7、设L 是任意一条分段光滑的曲线,则 2 20L xydx x dy +=? . ( W )8、若级数 1 n n u ∞=∑收敛, 1 n n v ∞ =∑发散,则级数 ()1 n n n u v ∞ =+∑可能发散,也可能收敛. ( R )9、对级数 1 n n u ∞ =∑,lim 0n n u →∞ =是该级数收敛的必要非充分条件. ( R )10、若级数1 n n n a x ∞ =∑在2x =-处收敛,该级数的收敛半径一定大于等于2. 二、填空题(每空2分,共计20分). 1、已知两点(4,0,5),(7,1,3)A B ,则与向量AB 方向一致的单位向量为______________. 2、曲面2 2 2 231x y z +-=在点(1,1,1)处的法线方程为________________________. 3、向量(2,1,1),(2,3,)a k β==- ,且a β⊥ ,则k =______________. 4、交换积分次序1122 3y o I dy x y dx -= =? ? ____________________________. 5、设2 x z y ??= ??? ,则z x ?=?_______________________. 6、级数 1 1(2)n n x n ∞ =-∑ 的收敛区间为______________. 7、设L 为圆周22 1x y +=,则22 ()L x y ds +=? __________________. 8、设cos ,cos ,cos αβγ是有向曲面∑在点(,,)x y z 处的法向量的单位余弦,则两类曲面积分间关系是 Pdydz Q dzdx Rdxdy ∑ ++??=_____________________.

大学高等数学重点绝密通用复习资料,绝对有用

高等数学(通用复习) 师兄的忠告:记住我们只复习重点,不需要学得太多,这些是每年必须的重点,希望注意 第一章 函数与极限 函数 ○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) (){},|U a x x a δ δ=-< (U a 1.由n x ∴N 2.即对?∴x ∞ →lim ○x →1.由(f ∴δ=2.即对?∴x x →0 lim ○→x 1.由(f ∴X 2.即对?∴x ∞ →lim 第三节 无穷小与无穷大 ○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ○无穷小与无穷大的相关定理与推论(★★) (定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=????

(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1 f x -为无穷小;反之,若()x f 为无穷小,且 ()0f x ≠,则()x f 1 -为无穷大 【题型示例】计算:()()0 lim x x f x g x →?????(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U 内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2. →x (→x 3(x →0lim x x → 3 9 x x →-【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()() 2 3 3 3 33 11lim lim lim 9 333 6 x x x x x x x x x →→→--==== -+-+ 其中3x =为函数()2 39 x f x x -= -的可去间断点 倘若运用罗比达法则求解(详见第三章第二节):

同济大学高等数学教学大纲

《高等数学A》课程教学大纲 (216学时,12学分) 一、课程的性质、目的和任务 高等数学A是理科(非数学)本科个专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。 通过本课程的学习,要使学生获得:1、函数与极限;2、一元函数微积分学;3、向量代数与空间解析几何;4、多元函数微积分学; 5、无穷级数(包括傅立叶级数); 6、微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。 在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题 的能力。 二、总学时与学分 本课程的安排三学期授课,分为高等数学A(一)、(二)、(三),总学时为90+72+54,学分为5+4+3。 三、课程教学基本要求及基本内容 说明:教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”等词表述。 高等数学A(一) 一、函数、极限、连续、 1. 理解函数的概念及函数奇偶性、单调性、周期性、有界性。 2. 理解复合函数和反函数的概念。 3. 熟悉基本初等函数的性质及其图形。 4. 会建立简单实际问题中的函数关系式。 5. 理解极限的概念,掌握极限四则运算法则及换元法则。 6. 理解子数列的概念,掌握数列的极限与其子数列的极限之间的关系。

7. 理解极限存在的夹逼准则,了解实数域的完备性(确界原理、单界有界数列必有极限的原理,柯西(Cauchy),审敛原理、区间套定理、致密性定理)。会用两个重要极限求极限。 8. 理解无穷小、无穷大、以及无穷小的阶的概念。会用等价无穷小求极限。 9. 理解函数在一点连续和在一个区间上连续的概念,了解间断点的概念,并会判别间断点的类型。 10.了解初等函数的连续性和闭区间上连续函数的性质(介值定理,最大最小值定理,一致连续性)。 二、一元函数微分学 1.理解导数和微分的概念,理解导数的几何意义及函数的可导性与连续性之间的关系。会用导数描述一些物理量。 2.掌握导数的四则运算法则和复合函数的求导法,掌握基本初等函数、双曲函数的导数公式。了解微分的四则运算法则和一阶微分形式不变性。 3.了解高阶导数的概念。 4.掌握初等函数一阶、二阶导数的求法。 5.会求隐函数和参数式所确定的函数的一阶、二阶导数。会求反函数的导数。 6.理解罗尔(Ro lle)定理和拉格朗日(Lagrange)定理,了解柯西(Cauchy)定理和泰勒(Taylo r)定理。 7.会用洛必达(L’Ho sp ital)法则求不定式的极限。 8.理解函数的极值概念,掌握用导数判断函数的单调性和求极值的方法。会求解较简单的最大值和最小值的应用问题。 9.会用导数判断函数图形的凹凸性,会求拐点,会描绘函数的图形(包括水平和铅直渐进线)。 10.了解有向弧与弧微分的概念。了解曲率和曲率半径的概念并会计算曲率和曲率半径。 11.了解求方程近似解的二分法和切线法。 三、一元函数积分学 1.理解原函数与不定积分的概念及性质,掌握不定积分的基本公式、换元法和分步积分法。会求简单的有理函数及三角函数有理式的积分。 2.理解定积分的概念及性质,了解函数可积的充分必要条件。

大学高等数学知识点

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =;*1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞;*lim ()x f x →∞ (含x →±∞);*0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

高等数学考试知识点

《高等数学》考试知识点 一、函数、极限、连续 考试内容: 1.函数的概念及表示法;函数的有界性、单调性、周期性和奇偶性;复合函数、反函数、分段函数和隐函数;基本初等函数的性质及其图形;初等函数简单应用问题的函数关系的建立; 2.数列极限与函数极限的定义以及它们的性质;函数的左极限与右极限; 3.无穷小和无穷大的概念及其关系;无穷小的性质及无穷小的比较; 4.极限的四则运算;极限存在的两个准则:单调有界准则和夹逼准则两个重要极限,; 5.函数连续的概念;函数间断点的类型;初等函数的连续性;闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理);考试要求: 1.理解函数的概念,掌握函数的表示方法; 2.了解函数的奇偶性、单调性、周期性和有界性; 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念; 4.掌握基本初等函数的性质及其图形; 5.会建立简单应用问题中的函数关系式; 6.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系; 7.掌握极限的性质及四则运算法则; 8.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法; 9.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限;

10.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型; 11.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质; 二、一元函数微分学 考试内容: 1.导数和微分的概念;导数的几何意义和物理意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;基本初等函数的导数; 2.导数和微分的四则运算;复合函数、反函数、隐函数以及参数方程所确定的函数的微分法; 3.高阶导数的概念;某些简单函数的n阶导数; 4.一阶微分形式的不变性; 5.罗尔(Roll)定理;拉格朗日(Lagrange)中值定理;柯西(Cauchy)中值定理;泰勒(Taylor)定理; 6.洛必达(L’Hospital)法则; 7.函数的极值及其求法;函数单调性函数;图形的凹凸性、拐点及渐近线;函数最大值和最小值的求法及简单应用; 8.弧微分、曲率的概念;曲率半径; 考试要求: 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系; 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分; 3.了解高阶导数的概念,会求简单函数的n阶导数; 4.会求分段函数的一阶、二阶导数;

同济大学高等数学习题答案共49页

习题一解答 1.在1,2,3,4,四个数中可重复地先后取两个数,写出这个随机事件的样本空间及事件A=“一个数是另一个数的2倍”,B=“两个数组成既约分数”中的样本点。 解Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1)(4,2),(4,3),(4,4)}; A={(1,2),(2,1),(2,4),(4,2)}; B={(1,2),(1,3},(1,4),(2,1),(2,3),(3,1),(3,2),(3,4),(4,1)(4,3)} 2. 在数学系学生中任选一名学生.设事件A={选出的学生是男生},B={选出的学生是三年级学生},C={选出的学生是科普队的}. (1)叙述事件ABC的含义. (2)在什么条件下,ABC=C成立? (3)在什么条件下,C?B成立? 解 (1)事件ABC的含义是,选出的学生是三年级的男生,不是科普队员. (2)由于ABC?C,故ABC=C当且仅当C?ABC.这又当且仅当C?AB,即科普队员都是三年级的男生. (3)当科普队员全是三年级学生时,C是B的子事件,即C?B成立. 3.将下列事件用A,B,C表示出来: (1)只有C发生;

(2)A 发生而B ,C 都不发生; (3)三个事件都不发生; (4)三个事件至少有一个不发生; (5)三个事件至少有一套(二个不发生)发生; (6)三个事件恰有二个不发生; (7)三个事件至多有二个发生; (8)三个事件中不少于一个发生。 解 (1)ABC ; (2)ABC : (3)ABC (4)A B C U U ; (5)AB BC AC U U ; (6)ABC ABC ABC U U ; (7)ABC ; (8)A B C U U 。 4.设 A , B , C 是三个随机事件,且 =====)()(,4 1)()()(CB P AB P C P B P A p 0,81 )(=AC P ,求A ,B ,C 中至少有 一个发生的概率. 解 设D ={A ,B ,C 中至少有一个发生},则D =A +B +C ,于是 P (D )=P (A +B +C ) =P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ). 又因为

(完整word版)河南农业大学高等数学2010考试题

- 1 - 河南农业大学2009-2010学年第二学期 《高等数学》(工科)期末考试试卷(A) 一、判断题(每题2分,共20分,正确的打√,错误的打×) ( )1、设,,a b c r r r 为非零向量,且 a c b c ?=?r r r r 则a b =r r . ( )2、方程z = 表示一个开口向z 轴正方向的锥面. ( )3、若),(y x f z =在),(000y x P 处的两个偏导数存在,则函数必在该点连续. ( )4、如果级数 ∑∞ =1 n n a 收敛,级数 ∑∞ =1 n n b 发散,则级数 )(1 n n n b a +∑∞ =也发散. ( )5、若在区域D 上 (,)0D f x y d σ≤??,则(,)0f x y ≤. ( )6、若),(y x f 在有界闭区域D 上连续,则 ?? ??≤D D d y x f d y x f σσ),(),(. ( )7、多元初等函数在其定义域内的极值点是驻点. ( )8、设C 为圆周2 2 1x y +=,定向为正向,记C 所围平面区域为D ,则 2222222222220()()C D xdy ydx y x y x d x y x y x y σ?? ---=-= ? +++?? ????. ( )9、正项级数 1 n n u ∞ =∑,若lim 0n n u →∞ =,则级数 1 n n u ∞ =∑一定收敛. ( )10、级数∑∞ =??? ??++-1 3322)1(n n n n n 是绝对收敛. 二、填空题(每空2分,共计20分) 1、设}1,0,1{=a ρ ,}0,1,0{=b ρ,则=?b a ρρ _________. 院、系 班级 姓名 学号 座号 密 封 线

2019年上海交通大学国际本科生入学考试大纲数学

2019年上海交通大学国际本科生入学考试大纲 数学 一、考试目的 上海交通大学留学生本科入学数学考试,是以报考我校的具有高中毕业学历的外国学生为对象而进行的选拔考试。数学考试旨在测试考查考生的数学素养,包括数学基础知识与基本技能、逻辑推理能力、运算能力、空间想象能力、数学应用与探究能力。 二、考试基本要求 留学生本科入学数学考试测试考生各项数学素养如下: 1.记忆。能识别或记住有关的数学事实材料,使之再认或再现;能在标准 的情景中作简单的套用,或按照示例进行模仿; 2.解释性理解。明了知识的来龙去脉,领会知识的本质,能用自己的语言 或转换方式正确表达知识内容;在一定的变式情境中能区分知识的本质属性与非本质属性,会把简单变式转换为标准式,并解决有关的问题; 3.探究性理解。能把握知识的本质及其内容、形式的变化;能从实际问题 中抽象出数学模型或作归纳假设进行探索,能把具体现象上升为本质联系,从而解决问题;会对数学内容进行拓展或对数学问题进行延伸,会对解决问题过程的合理性、完整性、简捷性作有效的思考。 三、试卷结构 数学考试釆用笔试的方式进行。笔试共25题,满分100分。数学笔试要求考生在90分钟内完成。答案必须写在答题纸上,写在试卷上无效。对进入考场的计算器品牌和型号不作规定,但附带计算器功能的无线通讯工具、记忆存储等设备和附带无线通讯功能、记忆存储功能、具有图像功能的计算器不得带入考场。

按测量目标划分: 四、考试内容和要求 文理科共同考试内容: 一、集合与命题:集合及其表示、子集、交集、并集、补集;命题的四种形 式;充分条件、必要条件、充分必要条件;子集推出关系。 二、不等式:不等式的基本性质及其证明;基本不等式;一元二次不等式(组) 的解法;分式不等式的解法;含有绝对值的不等式的解法。 三、数列与数学归纳法:数列的有关概念;等差数列;等比数列;简单的递 推数列;数列的极限;无穷等比数列各项的和;数列的实际应用问题;数学归纳法;归纳-猜测-论证。 四、函数及其基本性质:函数的有关概念;函数的运算;函数关系的建立; 函数的基本性质;简单的幂函数、二次函数的性质;指数函数的性质与图像;

河南省高等教学名师奖获奖教师名单

河南省第一届2003年高等学校教学名师奖获得者(14) 郑州大学石杰男 53 仪器分析 周文顺男 51 毛泽东思想概论 吴爱群女 46 人体解剖学 河南大学王宝童男 63 英国文学选读 李蕴才男 58 量子力学 王崇喜男 57 足球教学理论与方法河南科技大学罗传伟女 59 日语精读 河南师范大学陈广文男 40 动物学 新乡医学院李东亮男 52 生理学 焦作工学院景国勋男 40 安全工程学 中原工学院李海峰男 59 高等数学 郑州工程学院赵予新男 45 西方经济学 华北水利水电学院赵顺波男 39 混凝土结构 河南职业技术师范学院吴国梁男 48 土壤肥料学 河南省第二届高等学校教学名师奖获得者(16) 关绍康郑州大学 杨天宇郑州大学 师黎郑州大学 樊洛平郑州大学 秦耀辰河南大学 王立群河南大学 宁长申河南农业大学 渠桂荣河南师范大学 李化敏河南理工大学 杨万才河南科技大学 王晏河南工业大学 甘勇郑州轻工业学院 黄志全华北水利水电学院 董秀洁中原工学院 王辉新乡医学院 时明德信阳师范学院 河南省第三届高等学校教学名师奖获奖教师名单(20)07 张子戌河南理工大学 陈家海河南大学

刘立新郑州大学 曾令宜黄河水利职业技术学院 边传周郑州牧业工程高等专科学校 宋纯鹏河南大学 王经武郑州大学 夏百根河南农业大学 盛光耀郑州大学 李敬玺河南科技学院 申素芳新乡医学院 王永华郑州轻工业学院 王文臣信阳师范学院 余丽郑州大学 戚新波河南机电高等专科学校 张桂香郑州铁路职业技术学院 梁南丁平顶山工业职业技术学院 余英良漯河职业技术学院 苗志毅河南职业技术学院 潘自舒商丘职业技术学院 河南省第四届高等学校教学名师奖获奖教师名单(20)08蒋登高郑州大学 周英河南理工大学 孟彩云河南大学 毛多斌郑州轻工业学院 郭桂义信阳农业高等专科学校 朱吉顶河南工业职业技术学院 王军河南科技大学 卓克垒河南师范大学 董广安郑州大学 司林胜河南工业大学 杨振中华北水利水电学院

(完整)上海交通大学_2007-2008学年_高等数学(高数)_期末考试_解答

1、解 22 ()()()0xy xx yy B AC f ab f ab f ab -=-≥,排除A 、B. (,)f x b 在点x a =处取得极小值:(,)0xx f a b ≥,同理:(,)0yy f a b ≥. 答案:C 2、解 0[()()()]C W F dr yzx t xzy t zz t dt π '''=?=-++??u r r 22200[sin cos ]2t t t t t dt tdt π π π=++==?? 答案:B 3、解 22 :1(1)S z x y =+≤,方向为下侧, [221]S S S I y y dv dxdy - + + Ω ∑+=+=--+-?????????ò 32251133 πππ=-?-?=- 答案:A 4、解 1 |(1)|n n n n a ∞ ∞ ==-=∑∑ ――A 错 11||n n n n n a a ∞∞ ∞ +====≥∑∑ ∑ ,发散 ――B 错 1111||| |n n n n n n n a a +∞ ∞ ∞ +===-=- ≥∑∑∑ ,发散 ――C 错 111 1 ||| |n n n n n n n a a +∞ ∞ ∞ +===+=+ =∑∑∑ n n ∞ ∞ ===≈∑ ∑ ,收敛 ――D 对 答案:D 5、解 (0)(0) (3)()02 S S S S ππππ-+-+== = 答案:D 6、解1 2{(,)|cos 2}D r r θθ=≤,2 .......D xy dxdy =?? 解2 *** 22***D xy dxdy dy xy dx +-==????0 7、解 ()()() 2 22222 552323222 c c c x xy y ds x y ds x y ds π-+=+=+=?=???蜒 ?5π

同济大学___高数上册知识点

高等数学上册复习要点 一、 函数与极限 (一) 函数 1、 函数定义及性质(有界性、单调性、奇偶性、周期性); 2、 反函数、复合函数、函数的运算; 3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数; 4、 函数的连续性与间断点; 函数)(x f 在0x 连续)()(lim 00 x f x f x x =→ 第一类:左右极限均存在. 间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在. 无穷间断点、振荡间断点 5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定 理及其推论. (二) 极限 1、 定义 1) 数列极限 εε<->?N ∈?>??=∞ →a x N n N a x n n n , , ,0lim 2) 函数极限 εδδε<-<-?>??=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00 时,当 左极限:)(lim )(0 0x f x f x x -→-= 右极限:)(lim )(0 0x f x f x x + →+=

)()( )(lim 000 + -→=?=x f x f A x f x x 存在 2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤ 2) a z y n n n n ==→∞ →∞lim lim a x n n =∞→lim 2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量 1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=?; Th2 αβαβαβββαα' ' =''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则; 3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→x x x b) e x x x x x x =+=++∞→→)11(lim )1(lim 1 0 5) 无穷小代换:(0→x ) a) x x x x x arctan ~arcsin ~tan ~sin ~ b) 2 2 1~cos 1x x -

同济大学高等数学2

同济大学高等数学(下)期中考试试卷2 一.简答题(每小题8分) 1.求曲线?????+=+=-=t z t y t t x 3cos 12sin 3cos 在点??? ??1,3,2 π处的切线方程. 2.方程1ln =+-xz e y z xy 在点)1,1,0(的某邻域内可否确定导数连续的隐函数),(y x z z =或),(x z y y =或),(z y x x =?为什么? 3.不需要具体求解,指出解决下列问题的两条不同的解题思路: 设椭球面1222222 =++c z b y a x 与平面0=+++D Cz By Ax 没有交点,求椭球面与平面 之间的最小距离. 4.设函数),(y x f z =具有二阶连续的偏导数,3x y =是f 的一条等高线,若 1)1,1(-=y f ,求)1,1(x f . 二.(8分)设函数f 具有二阶连续的偏导数,),(y x xy f u +=求y x u ???2 . 三.(8分)设变量z y x ,,满足方程),(y x f z =及0),,(=z y x g ,其中f 与g 均具有连续的偏导数,求dx dy . 四.(8分)求曲线 ???=--=01, 02y x xyz 在点)110(,,处的切线与法平面的方程. 五.(8分)计算积分) ??D y dxdy e 2,其中D 是顶点分别为)0,0(.)1,1(.)1,0(的 三角形区域. 六.(8分)求函数22y x z +=在圆9)2()2(22≤- +-y x 上的最大值和最小值. 七.(14分)设一座山的方程为2221000y x z --=,),(y x M 是山脚0=z 即等量线 1000222=+y x 上的点. (1)问:z 在点),(y x M 处沿什么方向的增长率最大,并求出此增长率; (2)攀岩活动要山脚处找一最陡的位置作为攀岩的起点,即在该等量线上找一点M 使得上述增长率最大,请写出该点的坐标. 八.(14分) 设曲面∑是双曲线2422=-y z (0>z 的一支)绕z 轴旋转而成,曲面上一点M 处的切平面∏与平面0=++z y x 平行. (1)写出曲面∑的方程并求出点M 的坐标; (2)若Ω是∑.∏和柱面122=+y x 围成的立体,求Ω的体积.

(完整word版)河南农业大学工科类高等数学A_16-17-1

河南农业大学2016-2017学年第一学期 《工科类高等数学A 》期末考试试卷(A ) 一、判断题(每小题2分,共计20分.请在正确命题前打“√”,错误命题前打“×”) ( )1、收敛数列必有界. ( )2、方程01sin =++x x 在开区间?? ? ??-2,2ππ内至少有一个根. ( )3、闭区间上无最大值的函数在该闭区间上必不连续. ( )4、函数32x y =在点0=x 处不可微. ( )5、 01 11 =? -dx x . ( )6、积分中值定理中的ξ是唯一的. ( )7、极值点一定是函数的驻点,驻点也一定是极值点. ( )8、初等函数在其定义域内可积. ( )9、如果0)0()0(='=f f ,则0) (lim =→x x f x . ( )10、如果)(1x y 和)(2x y 是0)()(=+'+''y x Q y x P y 的两个解,那么 )()(2211x y C x y C +是此方程的通解(其中1C ,2C 是任意常数). 二、填空题(每空2分,共计20分) 1、______) 31(lim 20 =+→x x x . 2、设)(x f y =在0x 处可导,则000 ()()lim x f x x f x x x ?→+?--??? = ???? ___________. 3、曲线sin()ln()xy y x x +-=在点 (0,1)的切线方程为 . 4、设x e y 2=,则0 ) 20(=x y . 院、系 班级 姓名 学号 密 封 线

5、函数23 23 +-=x x y 的单调减少区间为_______________________. 6、极限n i n n i n + ? ∑=∞ →11 lim 1 的定积分的形式是___________________. 7 、 =? ________________. 8、心形线)cos 1(θρ+=a 的全长为_______ . 9、 dx xe x ? ∞ +-0 2=________________________. 10、微分方程02=+'-''y y y 的通解为_______ . 三、计算题(每题8分,共计40分) 1、求) 1ln()arctan(lim 4 30 3 x dt t x x +? →. 2、设函数)(x y y =由参数方程? ??-=-=)cos 1()sin (t a y t t a x 确定,求22d y dx .

上海交通大学_2007-2008学年_高等数学(高数)_期末考试_试卷_(180学时)

2007级第二学期高等数学期末试题解答与评分标准(180A 卷) 一、单项选择题(每小题3分,共15分) 1. 若二阶连续可微函数(,)f x y 在点(,)a b 处取得极小值,则有 ( ). (A )(,)0,(,)0xx yy f a b f a b ≥≤ (B )(,)0,(,)0xx yy f a b f a b ≤≥ (C )(,)0,(,)0xx yy f a b f a b ≥≥ (D )(,)0,(,)0xx yy f a b f a b ≤≤ 2. 质点在变力F yzi xzj zk =-++ 作用下沿螺旋线:cos ,sin ,C x t y t z t ===从 点()11,0,0M 运动到点2(1,0,)M π-,则变力F 所做的功为 ( ). (A )π (B )2π (C )212π (D )313π 3. 设有向曲面∑:222(1)1(1)x y z z ++-=≥,方向为上侧,则 22x y d y d z y d z d x z d x d y ∑--=?? ( ). (A )53π- (B )23π - (C )3π- (D )3π 4. 设n n a =,则下列级数中,绝对收敛的级数是 ( ). (A )1(1)n n n a ∞=-∑ (B )11n n n a a ∞+=∑ (C )11()n n n a a ∞+=-∑ (D )11()n n n a a ∞+=+∑ 5. 设三角级数1sin n n b nx ∞ =∑在(0,)π内收敛到函数()1f x x =+,则此三角级数 在3x π= 处收敛于 ( ). (A )1+π (B )1+2π (C )1+3π (D )0 二、填空题(每小题3分,共15分) 6. 设区域22222{(,)|(),,R }D x y x y x y x y =+≤-∈,则2D xy dxdy =?? . 7. 设平面曲线C 为圆221x y +=,则曲线积分()2223C x xy y ds -+=? . 8. 微分方程2(2sin )(cos )0x x xy e y dx x e y dy +++=的通解为: . 9. 设23F yzi xzj xyk =-+ , 则()div rot F = .

上海交通大学2014-2中高数试卷(A类)

2014级第二学期《高等数学》期中考试试卷(A 类) 一、单项选择题(每小题3分,共15分) 1.设24 222(,)x y f x y x y -=+,则00 lim (,)x y f x y →→= ( ) (A )等于0; (B )等于1; (C )等于2; (D )不存在。 2.函数e ,0(,)1, 0x y xy f x y xy +?≠=?=?在点)0,0(处指向点(1,1)的方向导数为 ( ) (A )0; (B )1; (C ; (D )2。 3.设有二元方程2sin()0x y xy ++=,则在(0,0)点的某邻域内,此方程 ( ) (A )仅可确定一个具有连续导数的隐函数()x x y =; (B )仅可确定一个具有连续导数的隐函数()y y x =; (C )可确定两个具有连续导数的隐函数()y y x =和()x x y =; (D )以上(A )、(B )、(C )都不正确。 4 .设()d t F t f V Ω=???,其中t Ω :0z ≤≤0t >),()f u 为连续函数,则()F t '= ( ) (A )22π()tf t ; (B )22π()t f t ; (C )24π()t f t ; (D )24π()tf t 。 5.考虑以下命题,其中正确命题的个数为 ( ) ① 若可微函数(,)f x y 在区域D 内满足(,)0x f x y ≡,则有)(),(y y x f ?=; ② 若00(,)f x y 是函数),(y x f 在区域D 内的唯一极值,且为极大值,则),(00y x f 必为),(y x f 在D 内的最大值; ③ 若函数),(y x f 在00((,),)U x y δ内可偏导,且),(y x f 在点),(00y x 间断,则),(y x f x 与),(y x f y 中至少有一个在00((,),)U x y δ内无界。(其中0δ>。) (A )0; (B )1; (C )2; (D )3。 二、填空题(每小题3分,共15分) 6.设y z x =,则(e,1)d |z = 。 7.设{}22(,)1E x y x y =+<\0E ,其中{}0(,)0(11)E x y y x ==-<<,则E 的边 界E ?= 。 8.交换二次积分的次序: 0111000d (,)d d (,)d x x f x y y x f x y y --+=???? 。 9.设,0x y ≥,且满足条件2248x y +=,则u xy =的最大值为: 。 10.设{}22(,)1,0D x y x y x =+≤≥ ,则22ln(1e )d d x y D y x y +?+=? ?? 。

高数部分知识点总结

1 高数部分 1.1 高数第一章《函数、极限、连续》 求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法 则,对于00型和∞ ∞型的题目直接用洛必达法则,对于∞0、0∞、∞ 1型 的题目则是先转化为00 型或∞ ∞ 型,再使用洛比达法则;3.利用重要极限,包括1sin lim =→x x x 、e x x x =+→1 )1(lim 、e x x x =+∞→)1(1lim ;4.夹逼定理。 1.2 高数第二章《导数与微分》、第三章《不定积分》、第四 章《定积分》 第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。 对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。在此只提醒一点:不定积分 ?+=C x F dx x f )()(中的积分常数C 容易被忽略,而考试时如果在答 案中少写这个C 会失一分。所以可以这样建立起二者之间的联系以加深印象:定积分?dx x f )(的结果可以写为F(x)+1,1指的就是那一分,

把它折弯后就是?+=C x F dx x f )()(中的那个C,漏掉了C 也就漏掉了这1分。 第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章:对于?-a a dx x f )(型定积分,若f(x)是奇函数则有 ?-a a dx x f )(=0;若f(x)为偶函数则有?-a a dx x f )(=2?a dx x f 0)(;对于 ? 2 )(π dx x f 型积分,f(x)一般含三角函数,此时用x t -= 2 π 的代换是常 用方法。所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u 和利用性质0=?-a a 奇函数 、??=-a a a 02偶函数偶函数。在处理完积分上下限的问题后就使用第三章不定积分的套路化方法求解。这种思路对于证明定积分等式的题目也同样有效。

相关主题
文本预览
相关文档 最新文档