平面向量方法总结(带例题)【大全】
- 格式:doc
- 大小:415.50 KB
- 文档页数:10
平面向量知识点小结及常用解题方法一、平面向量两个定理1。
平面向量的基本定理 2.共线向量定理.二、平面向量的数量积1.向量b 在向量a 上的投影:||cos b θ,它是一个实数,但不一定大于0.2。
a b ⋅的几何意义:数量积a b ⋅等于a 的模||a 与b 在a 上的投影的积。
三坐标运算:设11(,)a x y =,22(,)b x y =,则(1)向量的加减法运算:1212(,)a b x x y y +=++,1212(,)a b x x y y -=--。
(2)实数与向量的积:1111(,)(,)a x y x y λλλλ==。
(3)若11(,)A x y ,22(,)B x y ,则2121(,)AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。
(4)平面向量数量积:1212a b x x y y ⋅=+.(5)向量的模:222222||||a a x y a x y ==+⇔=+。
四、向量平行(共线)的充要条件221212//(0)()(||||)0a b a b b a b a b x y y x λ⇔=≠⇔⋅=⇔-=.五、向量垂直的充要条件12120||||0a b a b a b a b x x y y ⊥⇔⋅=⇔+=-⇔+=。
六.121211222221(,),(,)cos ,.x x y y a x y b x y a b x y x +===+七、向量中一些常用的结论1.三角形重心公式在ABC △中,若11(,)A x y ,22(,)B x y ,33(,)C x y ,则重心坐标为123123(,)33x x x y y y G ++++。
2.三角形“三心"的向量表示(1)0GA GB GC G ++=⇔为△ABC 的重心。
(2)PA PB PB PC PC PA P ⋅=⋅=⋅⇔为△ABC 的垂心.(3)||||||0AB PC BC PA CA PB P ++=⇔为△ABC 的内心;3. 向量,,PA PB PC 中三终点,,A B C 共线⇔存在实数,αβ,使得PA PB PC αβ=+且1αβ+=.4. 在ABC △中若D 为BC 边中点则1()2AD AB AC =+5.与AB 共线的单位向量是||AB AB ±七.向量问题中常用的方法(一)基本结论的应用1。
高中数学第六章平面向量及其应用考点题型与解题方法单选题1、在△ABC 中,若AB⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ <0,则△ABC -定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 答案:C分析:根据向量的数量积的运算公式,求得cosA <0,得到A 为钝角,即可求解. 由向量的数量积的运算公式,可得AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |⋅|AC ⃗⃗⃗⃗⃗ |cosA <0,即cosA <0, 因为A ∈(0,π),所以A 为钝角,所以△ABC -定是钝角三角形. 故选:C.2、已知a ,b ⃗ 是不共线的向量,OA ⃗⃗⃗⃗⃗ =λa +μb ⃗ ,OB ⃗⃗⃗⃗⃗ =3a −2b ⃗ ,OC ⃗⃗⃗⃗⃗ =2a −3b ⃗ ,若A,B,C 三点共线,则实数λ,µ满足( )A .λ=μ−5B .λ=μ+5C .λ=μ−1D .λ=μ+1 答案:B解析:根据向量的线性运算方法,分别求得AB ⃗⃗⃗⃗⃗ =(3−λ)a −(2+μ)b ⃗ ,BC ⃗⃗⃗⃗⃗ =−a −b ⃗ ; 再由AB⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ ,得到3−λ=−(2+μ),即可求解. 由OA ⃗⃗⃗⃗⃗ =λa +μb ⃗ ,OB ⃗⃗⃗⃗⃗ =3a −2b ⃗ ,OC ⃗⃗⃗⃗⃗ =2a −3b⃗ , 可得AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(3−λ)a −(2+μ)b ⃗ ,BC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ =−a −b ⃗ ; 若A,B,C 三点共线,则AB ⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ ,可得3−λ=−(2+μ),化简得λ=μ+5. 故选:B.3、在△ABC 中,角A,B,C 的对边分别为a,b,c ,且B =π3,b =3,a =√3,则c =( ). A .√3B .2√3C .3−√3D .3 答案:B分析:利用余弦定理可构造方程直接求得结果.在△ABC 中,由余弦定理得:b 2=a 2+c 2−2accosB =3+c 2−√3c =9,即c 2−√3c −6=0,解得:c =−√3(舍),∴c =2√3.c故选:B.4、已知非零向量a →与b →共线,下列说法不正确的是( ) A .a →=b →或a →=−b →B .a →与b →平行C .a →与b →方向相同或相反D .存在实数λ,使得a →=λb →答案:A分析:根据向量共线的概念,以及向量共线定理,逐项判断,即可得出结果. 非零向量a →与b →共线,对于A ,a →=λb →,λ≠0,故A 错误;对于B ,∵向量a →与b →共线,∴向量a →与b →平行,故B 正确; 对于C ,∵向量a →与b →共线,∴a →与b →方向相同或相反,故C 正确; 对于D ,∵a →与b →共线,∴存在实数λ,使得a →=λb →,故D 正确. 故选:A.5、已知向量a =(−1,m ),b ⃗ =(m +1,2),且a ⊥b ⃗ ,则m =( ) A .2B .−2C .1D .−1 答案:C分析:由向量垂直的坐标表示计算.由题意得a ⋅b ⃗ =−m −1+2m =0,解得m =1 故选:C .6、已知f (x )=sin (ωx +π6)+cosωx (ω>0),将f (x )图象上的横坐标伸长到原来的2倍(纵坐标不变时),得到g (x )的图象.g (x )的部分图象如图所示(D 、C 分别为函数的最高点和最低点):其中CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22,则ω=( )A .π4B .π2C .πD .2π 答案:C分析:先求出g (x )的解析式,再利用CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22得到cos∠ACB =12,进而求出|AB |=2,所以T =2×2=4,ω=π 由f (x )=√32sinωx +32cosωx =√3sin (ωx +π3),∴g (x )=√3sin (12ωx +π3),因为D 、C 分别为函数的最高点和最低点,所以DA =AC =CB ,由CA⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22,即|CA ⃗⃗⃗⃗⃗ |2⋅cos∠ACB =|AD |22∴cos∠ACB =12,∴△ACB 为正三角形,又△ABC 的高为√3, ∴|AB |=2 ∴T =2×2=4, ∴即2π12ω=4πω=4,∴ω=π, 故选:C .7、某人先向东走3km ,位移记为a →,接着再向北走3km ,位移记为b →,则a →+b →表示( ) A .向东南走3√2km B .向东北走3√2km C .向东南走3√3km D .向东北走3√3km 答案:B分析:由向量的加法进行求解.由题意和向量的加法,得a →+b →表示先向东走3km ,再向北走3km,即向东北走3√2km.故选:B.8、在锐角△ABC中,角A,B,C的对边分别为a,b,c,S为△ABC的面积,且2S=a2−(b−c)2,则2b2+c2bc 的取值范围为()A.(4315,5915)B.[2√2,4315)C.[2√2,5915)D.[2√2,+∞)答案:C分析:根据余弦定理和△ABC的面积公式,结合题意求出sinA、cosA的值,再用C表示B,求出bc =sinBsinC的取值范围,即可求出2b2+c2bc的取值范围.解:在△ABC中,由余弦定理得a2=b2+c2−2bccosA,且△ABC的面积S=12bcsinA,由2S=a2−(b−c)2,得bcsinA=2bc−2bccosA,化简得sinA+2cosA=2,又A∈(0,π2),sin2A+cos2A=1,联立得5sin2A−4sinA=0,解得或sinA=0(舍去),所以bc =sinBsinC=sin(A+C)sinC=sinAcosC+cosAsinCsinC=45tanC+35,因为△ABC为锐角三角形,所以0<C<π2,B=π−A−C<π2,所以π2−A<C<π2,所以tanC>tan(π2−A)=1tanA=34,所以1tanC∈(0,43),所以bc∈(35,53),设bc =t,其中t∈(35,53),所以2b2+c2bc=2bc+cb=2t+1t=2(t+12t),由对勾函数单调性知y=2t+1t 在(35,√22)上单调递减,在(√22,53)上单调递增,当t=√22时,y=2√2;当t=35时,y=4315;当t=53时,y=5915;所以y∈[2√2,5915),即2b2+c2bc的取值范围是[2√2,5915).故选:C.小提示:关键点点睛:由2b2+c2bc =2bc+cb,所以本题的解题关键点是根据已知及bc=sinBsinC=sin(A+C)sinC=4 sin5AsinAcosC+cosAsinCsinC=45tanC+35求出bc的取值范围.多选题9、等边三角形ABC 中,BD →=DC →,EC →=2AE →,AD 与BE 交于F ,则下列结论正确的是( ) A .AD →=12(AB →+AC →)B .BE →=23BC →+13BA →C .AF →=12AD →D .BF →=12BA →+13BC →答案:AC分析:可画出图形,根据条件可得出D 为边BC 的中点,从而得出选项A 正确; 由EC →=2AE →可得出AE →=13AC →,进而可得出BE →=13BC →+23BA →,从而得出选择B 错误;可设AF →=12AD →,进而得出AF →=λ2AB →+3λ2AE →,从而得出λ=12,进而得出选项C 正确;由AF →=12AD →即可得出BF →=12BA →+14BC →,从而得出选项D 错误. 如图,∵BD →=DC →,∴D 为BC 的中点,∴AD →=12(AB →+AC →),∴A 正确; ∵EC →=2AE →,∴AE →=13AC →=13(BC →−BA →),∴BE →=BA →+AE →=BA →+13(BC →−BA →)=13BC →+23BA →,∴ B 错误;设AF →=λAD →=λ2AB →+λ2AC →=λ2AB →+3λ2AE →,且B ,F ,E 三点共线,∴λ2+3λ2=1,解得λ=12,∴AF →=12AD →,∴C 正确;BF →=BA →+AF →=BA →+12AD →=BA →+12(BD →−BA →)=BA →+14BC →−12BA →=12BA →+14BC →,∴D 错误. 故选:AC10、已知△ABC 是边长为2的等边三角形,D ,E 分别是AC,AB 上的点,且AE ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,BD 与CE 交于点O ,则( )A .OC ⃗⃗⃗⃗⃗ +EO ⃗⃗⃗⃗⃗ =0⃗B .AB⃗⃗⃗⃗⃗ ⋅CE ⃗⃗⃗⃗⃗ =0 C .|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=√3D .ED ⃗⃗⃗⃗⃗ 在BC ⃗⃗⃗⃗⃗ 方向上的投影为76 答案:BD解析:可证明EO =CE ,结合平面向量线性运算法则可判断A ;由AB⃗⃗⃗⃗⃗ ⊥CE ⃗⃗⃗⃗⃗ 结合平面向量数量积的定义可判断B ;建立直角坐标系,由平面向量线性运算及模的坐标表示可判断C ;由投影的计算公式可判断D. 因为△ABC 是边长为2的等边三角形,AE⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ , 所以E 为AB 的中点,且CE ⊥AB ,以E 为原点如图建立直角坐标系,则E (0,0),A (−1,0),B (1,0),C(0,√3),由AD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ 可得AD ⃗⃗⃗⃗⃗ =23AC ⃗⃗⃗⃗⃗ =(23,2√33),则D (−13,2√33), 取BD 的中点G ,连接GE ,易得GE//AD 且GE =12AD =DC , 所以△CDO ≌△EGO ,EO =CO ,则O (0,√32), 对于A ,OC⃗⃗⃗⃗⃗ +EO ⃗⃗⃗⃗⃗ =EC ⃗⃗⃗⃗⃗ ≠0⃗ ,故A 错误;对于B ,由AB ⃗⃗⃗⃗⃗ ⊥CE ⃗⃗⃗⃗⃗ 可得AB⃗⃗⃗⃗⃗ ⋅CE ⃗⃗⃗⃗⃗ =0,故B 正确; 对于C ,OA ⃗⃗⃗⃗⃗ =(−1,−√32),OB ⃗⃗⃗⃗⃗ =(1,−√32),OC ⃗⃗⃗⃗⃗ =(0,√32),OD ⃗⃗⃗⃗⃗⃗ =(−13,√36), 所以OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ =(−13,−√33),所以|OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=23,故C 错误; 对于D ,BC⃗⃗⃗⃗⃗ =(−1,√3),ED ⃗⃗⃗⃗⃗ =(−13,2√33), 所以ED ⃗⃗⃗⃗⃗ 在BC ⃗⃗⃗⃗⃗ 方向上的投影为BC ⃗⃗⃗⃗⃗ ⋅ED ⃗⃗⃗⃗⃗⃗ |BC⃗⃗⃗⃗⃗ |=13+22=76,故D 正确.故选:BD.小提示:关键点点睛:建立合理的平面直角坐标系是解题关键. 11、下列说法中错误的是( ). A .若a //b ⃗ ,b ⃗ //c ,c //d ,则a //d B .若|a |=|b ⃗ |且a //b ⃗ ,则a =b⃗ C .若a ,b ⃗ 非零向量且|a +b ⃗ |=|a −b ⃗ |,则a ⊥b ⃗ D .若a //b ⃗ ,则有且只有一个实数λ,使得a =λb ⃗ 答案:ABD分析:对于题中所给的条件与结论需要考虑周全,可以得出结论. A 选项,当b ⃗ ,c 中至少有一个0⃗ 时,a 与d 可能不平行,故A 错误; B 选项,由|a |=|b ⃗ |且a //b ⃗ ,可得a =b ⃗ 或a =−b⃗ ,故B 错误; C 选项,|a +b ⃗ |=|a −b ⃗ |,根据数量积规则,则两边平方化简可得a ⋅b ⃗ =0, ∴a ⊥b⃗ ,故C 正确; D 选项,根据向量共线基本定理可知当a ,b⃗ 都为非零向量时成立, a 为零向量时也成立(λ=0) ,若b ⃗ =0⃗ 时,λ 不存在,但b ⃗ //a (零向量与所有的向量共线),故D 错误; 故选:ABD.12、下列说法错误的是( )A .若a //b ⃗ ,则存在唯一实数λ使得a =λb⃗ B .两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b⃗ 共线且反向C .已知a =(1,2),b ⃗ =(1,1),且a 与a +λb ⃗ 的夹角为锐角,则实数λ的取值范围是(−53,+∞) D .在△ABC 中,BC ⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ ,则△ABC 为等腰三角形 答案:AC分析:若a =b ⃗ =0⃗ 可判断A ;将已知条件两边平方再进行数量积运算可判断B ;求出a +λb ⃗ 的坐标,根据a ⋅(a +λb ⃗ )>0且a 与a +λb ⃗ 不共线求出λ的取值范围可判断C ;取AC 的中点D ,根据向量的线性运算可得CA ⃗⃗⃗⃗⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =0可判断D ,进而可得正确选项. 对于A :若a =b ⃗ =0⃗ 满足a //b⃗ ,则实数λ不唯一,故选项A 错误; 对于B :两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则(a −b ⃗ )2=(|a |+|b⃗ |)2, 所以a 2+b ⃗ 2−2a ⋅b ⃗ =|a |2+|b ⃗ |2+2|a ||b ⃗ |,可得2a ⋅b ⃗ =2|a ||b ⃗ |⋅cos 〈a ⋅b ⃗ 〉=−2|a ||b ⃗ |,cos 〈a ⋅b ⃗ 〉=−1,因为0≤〈a ⋅b ⃗ 〉≤π,所以〈a ⋅b ⃗ 〉=π,所以a 与b⃗ 共线且反向,故选项B 正确; 对于C :已知a =(1,2),b ⃗ =(1,1),所以a +λb ⃗ =(1+λ,2+λ),若a 与a +λb ⃗ 的夹角为锐角,则a ⋅(a +λb ⃗ )=1+λ+2(2+λ)>0,解得:λ>−53,当λ=0时,a +λb ⃗ =a ,此时a 与a +λb ⃗ 的夹角为0,不符合题意,所以λ≠0,所以λ的取值范围是(−53,0)∪(0,+∞),故选项C 不正确;对于D :在△ABC 中,取AC 的中点D ,由BC⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ ,得CA ⃗⃗⃗⃗⃗ ⋅(BC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=CA ⃗⃗⃗⃗⃗ ⋅(BC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ )=CA ⃗⃗⃗⃗⃗ ⋅2BD ⃗⃗⃗⃗⃗⃗ =0,故BD 垂直平分AC ,所以△ABC 为等腰三角形,故选项D 正确. 故选:AC .13、有下列说法,其中错误的说法为 A .若a //b ⃗ ,b ⃗ //c ,则a //cB .若2OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =0,S ΔAOC ,S ΔABC 分别表示ΔAOC ,ΔABC 的面积,则S ΔAOC :S ΔABC =1:6 C .两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b ⃗ 共线且反向D .若a //b ⃗ ,则存在唯一实数λ使得a =λb ⃗ 答案:AD分析:对每一个选项逐一分析判断得解.A. 若a //b ⃗ ,b ⃗ //c ,则a //c ,如果a ,c 都是非零向量,b ⃗ =0⃗ ,显然满足已知条件,但是结论不一定成立,所以该选项是错误的;B. 如图,D,E 分别是AC,BC 的中点,2OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =0⃗ ,∴2(OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )+(OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )=0⃗ ,∴4OD ⃗⃗⃗⃗⃗⃗ +2OE ⃗⃗⃗⃗⃗ =0⃗ ,∴OE ⃗⃗⃗⃗⃗ =−2OD ⃗⃗⃗⃗⃗⃗ , 所以OD =16AB,则S ΔAOC :S ΔABC =1:6,所以该选项是正确的;C. 两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b ⃗ 共线且反向,所以该选项是正确的;D. 若a //b ⃗ ,如果a 是非零向量,b ⃗ =0⃗ ,则不存在实数λ使得a =λb ⃗ ,所以该选项是错误的. 故选A,D小提示:本题主要考查平面向量的运算,考查向量的平行及性质,意在考查学生对这些知识的理解掌握水平,属于基础题. 填空题14、已知P ,Q 分别是四边形ABCD 的对角线AC 与BD 的中点,BC ⃗⃗⃗⃗⃗ =a ,DA ⃗⃗⃗⃗⃗ =b ⃗ ,且a ,b ⃗ 是不共线的向量,则向量PQ⃗⃗⃗⃗⃗ =___________. 答案:−12a −12b⃗ 分析:取AB 的中点E ,连接PE,QE ,然后利用向量的加法法则和三角形中位线定理求解. 如图,取AB 的中点E ,连接PE,QE ,因为P ,Q 分别是四边形ABCD 的对角线AC 与BD 的中点,BC ⃗⃗⃗⃗⃗ =a ,DA ⃗⃗⃗⃗⃗ =b⃗ 所以PE ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ =−12a ,EQ ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ =−12b ⃗ , 所以PQ ⃗⃗⃗⃗⃗ =PE ⃗⃗⃗⃗⃗ +EQ ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ =−12a −12b⃗ .所以答案是:−12a−12b⃗15、在△ABC中,若a=2,c=2√3,cosC=−12,M是BC的中点,则AM的长为____________.答案:√7分析:在△ABC中,由余弦定理求出b=2,进而,在△AMC中,由余弦定理可得AM.在△ABC中,由余弦定理c2=b2+a2−2abcosC得b2+2b−8=0,又b>0,所以b=2.在△AMC中,CA=b=2,CM=a2=1,由余弦定理得AM2=CA2+CM2−2CA⋅CM⋅cosC=22+12−2×2×1×(−12)=7,所以AM=√7.所以答案是:√7.16、在△ABC中,cos∠BAC=−13,AC=2,D是边BC上的点,且BD=2DC,AD=DC,则AB等于 ___.答案:3分析:运用余弦定理,通过解方程组进行求解即可.设DC=x,AB=y,因为BD=2DC,AD=DC,所以BC=3x,AD=DC=x,在△ADC中,由余弦定理可知:cosC=AC2+CD2−AD22AC⋅DC =4+x2−x24x=1x,在△ABC中,由余弦定理可知:cosC=AC2+CB2−AB22AC⋅BC =4+9x2−y212x,于是有4+9x2−y212x =1x⇒9x2−y2=8(1),在△ABC中,由余弦定理可知:cosA=AB2+CA2−CB22AB⋅AC =y2+4−9x24y=−13,⇒27x2−3y2−4y=12(2),把(1)代入(2)中得,y=3,所以答案是:3解答题17、记△ABC的内角A,B,C的对边分别为a,b,c﹐已知sinCsin(A−B)=sinBsin(C−A).(1)若A=2B,求C;(2)证明:2a2=b2+c2答案:(1)5π8;(2)证明见解析.分析:(1)根据题意可得,sinC=sin(C−A),再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再根据正弦定理,余弦定理化简即可证出.(1)由A=2B,sinCsin(A−B)=sinBsin(C−A)可得,sinCsinB=sinBsin(C−A),而0<B<π2,所以sinB∈(0,1),即有sinC=sin(C−A)>0,而0<C<π,0<C−A<π,显然C≠C−A,所以,C+C−A=π,而A=2B,A+B+C=π,所以C=5π8.(2)由sinCsin(A−B)=sinBsin(C−A)可得,sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再由正弦定理可得,accosB−bccosA=bccosA−abcosC,然后根据余弦定理可知,1 2(a2+c2−b2)−12(b2+c2−a2)=12(b2+c2−a2)−12(a2+b2−c2),化简得:2a2=b2+c2,故原等式成立.18、如图,有一景区的平面图是一个半圆形,其中O为圆心,直径AB的长为2km,C,D两点在半圆弧上,且BC=CD,设∠COB=θ;(1)当θ=π12时,求四边形ABCD的面积.(2)若要在景区内铺设一条由线段AB,BC,CD和DA组成的观光道路,则当θ为何值时,观光道路的总长l 最长,并求出l的最大值.答案:(1)√6−√24+14;(2)5分析:(1)把四边形ABCD分解为三个等腰三角形:△COB,△COD,△DOA,利用三角形的面积公式即得解;(2)利用θ表示(1)中三个等腰三角形的顶角,利用正弦定理分别表示BC,CD和DA,令t=sinθ2,转化为二次函数的最值问题,即得解.(1)连结,则∠COD=π12,∠AOD=5π6∴四边形ABCD的面积为2×12×1×1×sinπ12+12×1×1×sin5π6=√6−√24+14(2)由题意,在△BOC中,∠OBC=π−θ2,由正弦定理BC sinθ=OBsin(π−θ2)=1cosθ2∴BC=CD=sinθcosθ2=2sinθ2同理在△AOD中,∠OAD=θ,∠DOA=π−2θ,由正弦定理DAsin(π−2θ)=ODsinθ∴DA=sin2θsinθ=2cosθ∴l=2+4sin θ2+2cosθ=2+4sinθ2+2(1−2sin2θ2),0<θ<π2OD令t =sin θ2(0<t <√22) ∴l =2+4t +2(1−2t 2)=4+4t −4t 2=−4(t −12)2+5 ∴t =12时,即θ=π3,l 的最大值为5 小提示:本题考查了三角函数和解三角形综合实际应用问题,考查了学生综合分析,数学建模,转化划归,数学运算能力,属于较难题。
高中数学必修二第六章平面向量及其应用重点知识点大全单选题1、若M 为△ABC 的边AB 上一点,且AB⃑⃑⃑⃑⃑ =3AM ⃑⃑⃑⃑⃑⃑ ,则CB ⃑⃑⃑⃑⃑ =( ) A .3CM⃑⃑⃑⃑⃑⃑ −2CA ⃑⃑⃑⃑⃑ B .3CA ⃑⃑⃑⃑⃑ −2CM ⃑⃑⃑⃑⃑⃑ C .3CM ⃑⃑⃑⃑⃑⃑ +2CA ⃑⃑⃑⃑⃑ D .3CA ⃑⃑⃑⃑⃑ +2CM ⃑⃑⃑⃑⃑⃑ 答案:A解析:先用向量CB →,CA →表示向量CM →,再转化为用CA →,CM →表示CB →即可得答案.解:根据题意做出图形,如图,所以CM →=CB →+BM →=CB →+23BA →=CB →+23(CA →−CB →)=13CB →+23CA →,所以CB →= 3CM →−2CA →.故选:A.小提示:关键点睛:解题关键在于利用向量的线性运算进行求解,属于基础题2、已知向量a ,b ⃑ 满足|a |⃑⃑⃑⃑⃑ =1,a ⊥b ⃑ ,则向量a −2b ⃑ 在向量a 方向上的投影向量为( )A .aB .1C .-1D .−a答案:A分析:根据给定条件,求出(a −2b ⃑ )⋅a ,再借助投影向量的意义计算作答.因|a |⃑⃑⃑⃑⃑ =1,a ⊥b ⃑ ,则(a −2b ⃑ )⋅a =a 2−2b ⃑ ⋅a =1,令向量a −2b ⃑ 与向量a 的夹角为θ,于是得|a −2b ⃑ |cosθ⋅a ⃑ |a ⃑ |=(a ⃑ −2b ⃑ )⋅a ⃑ |a ⃑ |⋅a⃑ |a ⃑ |=a ,所以向量a −2b ⃑ 在向量a 方向上的投影向量为a .故选:A3、如图,四边形ABCD 是平行四边形,则12AC ⃑⃑⃑⃑⃑ +12BD ⃑⃑⃑⃑⃑⃑ =( )A .AB ⃑⃑⃑⃑⃑ B .CD ⃑⃑⃑⃑⃑C .CB ⃑⃑⃑⃑⃑D .AD ⃑⃑⃑⃑⃑答案:D分析:由平面向量的加减法法则进行计算.由题意得AC ⃑⃑⃑⃑⃑ =AB ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ ,BD ⃑⃑⃑⃑⃑⃑ =AD ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ ,所以12AC ⃑⃑⃑⃑⃑ +12BD ⃑⃑⃑⃑⃑⃑ =12(AB ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ )=AD ⃑⃑⃑⃑⃑ .故选:D.4、下列条件中能得到a ⃗=b ⃑⃗的是( )A .|a ⃗|=|b ⃑⃗|B .a ⃗与b ⃑⃗的方向相同;C .a ⃗=0⃑⃗,b ⃑⃗为任意向量D .a ⃗=0⃑⃗且b ⃑⃗=0⃑⃗答案:D分析:根据相等向量的概念,即可得到结果.由于a ⃗=b ⃑⃗,所以a ⃗与b ⃑⃗的大小相等,方向相同,故D 正确.故选:D.5、向量a ⃗,b ⃑⃗满足a ⃗=(1,√3),|b ⃑⃗|=1,|a ⃗+b ⃑⃗|=√3,则b ⃑⃗在a ⃗方向上的投影为()A .-1B .−12C .12D .1答案:B解析:根据题条件,先求出a ⃗⋅b ⃑⃗,再由向量数量积的几何意义,即可求出结果.因为向量a ⃗,b ⃑⃗满足a ⃗=(1,√3),|b ⃑⃗|=1,|a ⃗+b ⃑⃗|=√3,所以|a ⃗|2+2a ⃗⋅b ⃑⃗+|b ⃑⃗|2=3,即4+2a ⃗⋅b ⃑⃗+1=3,则a ⃗⋅b⃑⃗=−1, 所以b ⃑⃗在a ⃗方向上的投影为|b →|cos <a →,b →>=a →⋅b →|a →|=−12. 故选:B.6、在△ABC 中,内角A,B,C 的对边分别为a,b,c ,且a (sin A −sin B )+b sin B =c sin C,a +b =2c =2,则△ABC 的面积为( )A .3√38B .√34C .√32D .3√32 答案:B分析:由正弦定理化角为边结合余弦定理可求出C =π3,再由已知可求出ab =1,即可求出面积.因为a (sin A −sin B )+b sin B =c sin C ,由正弦定理得a (a −b )+b 2=c 2,即a 2+b 2−c 2=ab ,所以cos C =a 2+b 2−c 22ab =12, 又C ∈(0,π),所以C =π3.又a +b =2c =2,则c =1,a +b =2,由a 2+b 2−c 2=a 2+b 2−1= ab,(a +b)2−3ab =1,得ab =1.所以S △ABC =12ab sin C =12×1×1×sin π3=√34. 故选:B.7、在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( )A .14B .34C .√24D .√23答案:B分析:利用余弦定理求得cosB .b 2=ac,c =2a ,则b 2=2a 2,由余弦定理得cosB =a 2+c 2−b 22ac =a 2+4a 2−2a 22a⋅2a =34. 故选:B8、在△ABC 中,若AB⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ 2=0,则△ABC 的形状一定是( ) A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形答案:B分析:先利用数量积运算化简得到accosB =c 2,再利用余弦定理化简得解.因为AB ⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ +AB⃑⃑⃑⃑⃑ 2=0,所以accos(π−B)+c 2=0, 所以accosB =c 2,所以ac ×a 2+c 2−b 22ac =c 2,所以b 2+c 2=a 2,所以三角形是直角三角形.故选:B多选题9、下列结果为零向量的是( )A .AB ⃑⃑⃑⃑⃑ −(BC ⃑⃑⃑⃑⃑ +CA ⃑⃑⃑⃑⃑ )B .AB ⃑⃑⃑⃑⃑ −AC ⃑⃑⃑⃑⃑ +BD⃑⃑⃑⃑⃑⃑ −CD ⃑⃑⃑⃑⃑ C .OA ⃑⃑⃑⃑⃑ −OD ⃑⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ D .NO ⃑⃑⃑⃑⃑⃑ +OP ⃑⃑⃑⃑⃑ +MN ⃑⃑⃑⃑⃑⃑⃑ −MP⃑⃑⃑⃑⃑⃑ 答案:BCD分析:根据向量加减法的运算方法即可逐项判断.A 项,AB⃑⃑⃑⃑⃑⃗−(BC ⃑⃑⃑⃑⃑⃗+CA ⃑⃑⃑⃑⃑⃗)=AB ⃑⃑⃑⃑⃑⃗−BA ⃑⃑⃑⃑⃑⃗=2AB ⃑⃑⃑⃑⃑⃗; B 项,AB ⃑⃑⃑⃑⃑⃗−AC ⃑⃑⃑⃑⃑⃗+BD ⃑⃑⃑⃑⃑⃑⃗−CD ⃑⃑⃑⃑⃑⃗=CB ⃑⃑⃑⃑⃑⃗+BC ⃑⃑⃑⃑⃑⃗=0⃑⃗;C 项,OA ⃑⃑⃑⃑⃑⃗−OD ⃑⃑⃑⃑⃑⃑⃗+AD ⃑⃑⃑⃑⃑⃗=DA ⃑⃑⃑⃑⃑⃗+AD ⃑⃑⃑⃑⃑⃗=0⃑⃗;D 项,NO ⃑⃑⃑⃑⃑⃑⃗+OP ⃑⃑⃑⃑⃑⃗+MN ⃑⃑⃑⃑⃑⃑⃑⃗−MP ⃑⃑⃑⃑⃑⃑⃗=NP ⃑⃑⃑⃑⃑⃑⃗+PN ⃑⃑⃑⃑⃑⃑⃗=0⃑⃗.故选:BCD.10、已知向量a ⃗=(1,−2),b⃑⃗=(−1,m),则( ) A .若a ⃗与b ⃑⃗垂直,则m =−1B .若a ⃗//b⃑⃗,则m =2 C .若m =1,则|a ⃗−b ⃑⃗|=√13D .若m =−2,则a ⃗与b⃑⃗的夹角为60° 答案:BC分析:利用向量垂直、平行的坐标表示求参数m ,即可判断A 、B 的正误;由m 的值写出b⃑⃗的坐标,再由向量坐标的线性运算及模长的坐标求法、夹角的坐标求法求|a ⃗−b ⃑⃗|、a ⃗与b⃑⃗的夹角,即可判断C 、D 正误. A :a ⃗与b ⃑⃗垂直,则−1−2m =0,可得m =−12,故错误;B:a⃗//b⃑⃗,则m−2=0,可得m=2,故正确;C:m=1有b⃑⃗=(−1,1),则a⃗−b⃑⃗=(2,−3),可得|a⃗−b⃑⃗|=√13,故正确;D:m=−2时,有b⃑⃗=(−1,−2),所以cos<a⃗,b⃑⃗>=a⃑⃗⋅b⃑⃗|a⃑⃗||b⃑⃗|=√5×√5=35,即a⃗与b⃑⃗的夹角不为60°,故错误.故选:BC11、(多选)已知向量a⃗,b⃑⃗,在下列命题中正确的是()A.若|a⃗|>|b⃑⃗|,则a⃗>b⃑⃗B.若|a⃗|=|b⃑⃗|,则a⃗=b⃑⃗C.若a⃗=b⃑⃗,则a⃗//b⃑⃗D.若|a⃗|=0,则a⃗=0答案:CD分析:根据向量相等和模值相等的区别分析四个选项便可得出答案.解:向量的模值可以比较大小,但是向量不能比较大小,故A错;向量的模值相等,只能证明大小相等并不能说明方向也相同,故B错;两个向量相等,这两个向量平行,所以C正确;模值为零的向量为零向量,故D正确故选:CD填空题12、《后汉书·张衡传》:“阳嘉元年,复造候风地动仪.以精铜铸成,员径八尺,合盖隆起,形似酒尊,饰以篆文山龟鸟兽之形.中有都柱,傍行八道,施关发机.外有八龙,首衔铜丸,下有蟾蜍,张口承之.其牙机巧制,皆隐在尊中,覆盖周密无际.如有地动,尊则振龙,机发吐丸,而蟾蜍衔之.振声激扬,伺者因此觉知.虽一龙发机,而七首不动,寻其方面,乃知震之所在.验之以事,合契若神.”如图,为张衡地动仪的结构图,现要在相距200km的A,B两地各放置一个地动仪,B在A的东偏北60°方向,若A地动仪正东方向的铜丸落下,B地东南方向的铜丸落下,则地震的位置在A地正东________________km.答案:100(√3+1)分析:依题意画出图象,即可得到A=60∘,B=75∘,C=45∘,AB=200,再利用正弦定理计算可得;解:如图,设震源在C处,则AB=200km,则由题意可得A=60∘,B=75∘,C=45∘,根据正弦定理可得200 sin45∘=ACsin75∘,又sin75∘=sin(45∘+30∘)=sin45∘cos30∘+cos45∘sin30∘=√22×√32+√22×12=√6+√24所以AC=200sin75∘sin45∘=200×√6+√24√22=100(√3+1),所以震源在A地正东100(√3+1)km处.所以答案是:100(√3+1)13、已知向量a⃗,b⃑⃗的夹角为120°,|a⃗|=2,|b⃑⃗|=1,若(a⃗+3b⃑⃗)⊥(2a⃗+λb⃑⃗),则实数λ=___________. 答案:−1分析:由(a⃗+3b⃑⃗)⊥(2a⃗+λb⃑⃗),可得(a⃗+3b⃑⃗)⋅(2a⃗+λb⃑⃗)=0,化简后结已知条件可求得答案解:因为向量a⃗,b⃑⃗的夹角为120°,|a⃗|=2,|b⃑⃗|=1,且(a⃗+3b⃑⃗)⊥(2a⃗+λb⃑⃗),所以(a ⃗+3b ⃑⃗)⋅(2a ⃗+λb ⃑⃗)=0,即2a ⃗2+(6+λ)a ⃗⋅b⃑⃗+3λb ⃑⃗2=0, 所以8+(6+λ)×2×1×(−12)+3λ=0,解得λ=−1,所以答案是:−114、设向量m ⃑⃑ =2a −3b ⃑ ,n ⃑ =4a −2b ⃑ ,p =3a +2b ⃑ ,若用m ⃑⃑ ,n ⃑ 表示p ,则p =________.答案:−74m ⃑⃑ +138n ⃑分析:根据平面向量基本定理进行求解即可.设p ⃗=xm ⃑⃑⃗+yn ⃑⃗,则有p ⃗=3a ⃗+2b ⃑⃗=x(2a ⃗−3b ⃑⃗)+y(4a ⃗−2b ⃑⃗)=(2x +4y)a ⃗+(−3x −2y)b⃑⃗, 得{2x +4y =3−3x −2y =2⇒{x =−74,y =138.,所以p ⃗=−74m ⃑⃑⃗+138n ⃑⃗, 所以答案是:−74m ⃑⃑⃗+138n ⃑⃗解答题 15、△ABC 的内角A,B,C 的对边分别为a,b,c ,已知asinAsinB +ccosA =(acosA +2b )cosB(1)求B ;(2)若b =2√3,AB⃑⃑⃑⃑⃑ ⋅CB ⃑⃑⃑⃑⃑ =6,求△ABC 的周长 答案:(1)B =π3;(2)6√3. 分析:(1)根据asinAsinB +ccosA =(acosA +2b )cosB ,利用正弦定理结合两角和与差的三角函数化简为2sinBcosB =sinB 求解;(2)利用余弦定理得到(a +c )2−3ac =12,然后由AB⃑⃑⃑⃑⃑ ⋅CB ⃑⃑⃑⃑⃑ =6求得ac 代入即可. (1)因为 asinAsinB +ccosA =(acosA +2b )cosB ,所以a (sinAsinB −cosAcosB )+ccosA =2bcosB ,所以−acos(A +B)+ccosA =2bcosB所以acosC +ccosA =2bcosB由正弦定理得sinAcosC +sinCcosA =2sinBcosB整理得sin (A +C )=2sinBcosB =sinB因为在△ABC 中,所以sinB ≠0,则2cosB =1所以B =π3 (2)由余弦定理得b 2=a 2+c 2−2accosB ,即(a +c )2−3ac =12,因为AB ⃑⃑⃑⃑⃑ ⋅CB ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ =accosB =12ac =6, 所以ac =12,所以(a +c )2−36=12,解得a +c =4√3.所以△ABC 的周长是6√3小提示:方法点睛:在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.。
第13讲平面向量十大题型总结【题型目录】题型一:平面向量线性运算题型二:平面向量共线问题题型三:平面向量垂直问题题型四:平面向量的夹角问题题型五:平面向量数量积的计算题型六:平面向量的模问题题型七:平面向量的投影问题题型八:万能建系法解决向量问题题型九:平面向量中的最值范围问题题型十:平面向量中多选题【典型例题】题型一:平面向量线性运算【例1】在ABC △中,D 是AB 边上的中点,则CB =()A .2CD CA+ B .2CD CA- C .2CD CA- D .2CD CA+ 【答案】C【解析】:CA CD AC CD CD AC CD AD CD DB CD CB -=+=++=+=+=22【例2】在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC-B .1344AB AC-C .3144+AB AC D .1344+AB AC 【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC=+=+=++ 1113124444BA BA AC BA AC=++=+,所以3144EB AB AC =-,故选A.【例3】在ABC 中,点P 为AC 中点,点D 在BC 上,且3BD DC = ,则DP =()A .1144AB AC+B .1144AB AC--C .1144AB AC-D .1144AB AC-+【答案】B【解析】∵点P 为AC 中点,∴12AP AC = ,∵3BD DC =,()3AD AB AC AD ∴-=- ,∴1344AD AB AC =+ ,∴113244DP AP AD AC AB AC =-=-- =1144AB AC --,故选:B.【例4】在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,且EB AB AC λμ=+,则λ=________,μ=_________.【答案】3414-【解析】如下图所示:D Q 为BC 的中点,则()()111222AD AB BD AB BC AB AC AB AB AC =+=+=+-=+,E 为AD 的中点,所以,()1124AE AD AB AC ==+,因此,()131444EB AB AE AB AB AC AB AC =-=-+=- ,即34λ=,14μ=-.故答案为:34;14-.【例5】如图,等腰梯形ABCD 中,3AB BC CD AD ===,点E 为线段CD 中点,点F 为线段BC 的中点,则FE =()A .2136AB AC+B .2136AB AC-+C .1263AB AC+D .1263AB AC-+点F 为线段BC 的中点,13BD BA AD BA BC BA =+=+=+ 又2BD FE = ,2136FE AB AC ∴=-+.【题型专练】1.设,,D E F 分别为ABC 的三边BC,CA,AB 的中点,则EB FC +=()A .ADB .12ADC .12BCD .BC【答案】A【解析】111()()()222EB FC BA BC CA CB AB AC AD +=-+-+=+=,故选:A2.设D为△ABC所在平面内的一点,若3,AD BD CD CA CBλμ==+,则μλ=_____.【答案】3-【解析】如图所示:3CD CA AD CA BD=+=+,CA=+3(CD CB-),即有CD=﹣1322CA CB+,因为CD CA CBλμ=+,所以λ=﹣12,μ=32,则μλ=﹣3,故答案为:﹣3.3.在ABC中,4AC AD=,P为BD上一点,若13AP AB ACλ=+,则实数λ的值()A.18B.316C.16D.38【答案】C【解析】4AC AD=,14AD AC∴=,则14BD AD AB AC AB=-=-,1233BP AP AB AB AC AB AC ABλλ⎛⎫=-=+-=-⎪⎝⎭,由于P为BD上一点,则//BP BD,设BP k BD=,则21344kAC AB k AC AB AC k ABλ⎛⎫-=-=-⎪⎝⎭,所以423kkλ⎧=⎪⎪⎨⎪=⎪⎩,解得16λ=.4.在ABC 中,2AB =,4BC =,60ABC ∠=︒,AD 为BC 边上的高,O 为AD 的中点,若AO AB BC λμ=+,则λμ+=()A .13B .23C .38D .58【答案】D【解析】AD 是BC 边上的高,∴90ADB ∠=︒,在ADB △中,1cos 22BD BD ABD AB ∠===,解得1BD =, 4BC =,∴14BD BC =,∴14AD AB BD AB BC =+=+, O 为AD 中点,∴1111122428AO AD AB BC AB BC ⎛⎫==+=+ ⎪⎝⎭ , AO AB BC λμ=+ ,∴1128AB BC AB BC λμ+=+ ,∴12λ=,18μ=,∴115288λμ+=+=.5.已知O 是ABC 所在平面内一点,D 为BC 边中点,且20OA OB OC ++=,那么()A .AO OD =B .2AO OD=C .3AO OD=D .4AO OD =【答案】A【解析】D 为BC 边中点,∴2OB OC OD +=,∵20OA OB OC ++=,∴0OA OD =+,即AO OD =.6.设D 为ABC 所在平面内一点,且满足3CD BD =,则()A .3122AD AB AC =-B .3122=+AD AB ACC .4133AD AB AC =-D .4133AD AB AC=+ ∴2CB BD =,即12BD CB = .()12123122AD AB BD ABCBAB AB ACAB AC ∴=+=+=+-=- 故选:A.题型二:平面向量共线问题【例1】已知向量()1,2a =- ,()sin ,cos b αα= ,若//a b,则tan α=()A .12-B .2-C .12D .2【例2】与模长为13的向量()12,5d =平行的单位向量为()A .1251313⎛⎫ ⎪⎝⎭,B .1251313⎛⎫-- ⎪⎝⎭,C .1251313⎛⎫ ⎪,或1251313⎛⎫-- ⎪,D .1251313⎛⎫- ⎪,或1251313⎛⎫- ⎪,【例3】已知向量()1,2AB =,(),7BC m =,()3,1CD =-,若A ,B ,D 三点共线,则m =________.【例4】设向量,a b 不平行,向量λ+a b 与2+a b 平行,则实数λ=___.【答案】21【解析】因向量λ+a b 与2+a b 平行,所以()b a b a ba μμμλ22+=+=+,所以⎩⎨⎧==μμλ21,解得⎪⎩⎪⎨⎧==2121μλ【例5】在ABC ∆中,点P 满足3BP PC = ,过点P 的直线与AB 、AC 所在的直线分别交于点M 、N ,若AM AB λ= ,()0,0AN AC μλμ=>>,则λμ+的最小值为()A .212+B .12+C .32D .52【答案】B【解析】如下图所示:3BP PC = ,即()3AP AB AC AP -=- ,1344AP AB AC∴=+ ,AM AB λ= ,()0,0AN AC μλμ=>> ,1AB AM λ∴=,1AC ANμ= ,1344AP AM ANλμ∴=+ ,M 、P 、N 三点共线,则13144λμ+=.()133********λμλμλμλμμλ⎛⎫∴+=++=++≥=+ ⎪⎝⎭,当且仅当μ=时,等号成立,因此,λμ+的最小值为312+,故选:B.【题型专练】1.已知非零向量a ,b ,c ,若(1)a x = ,,(41)b =- ,,且//a c ,//b c则x =()A .4B .4-C .14D .14-【答案】D【解析】:因非零向量c b a ,,,且//a c ,//b c ,所以a 与b 共线,所以()x 411=-⨯,所以41-=x 2.已知向量的(7,6)AB =,(3,)BC m =- ,(1,2)AD m =- ,若A ,C ,D 三点共线,则m =______.3.已知向量a ,b 是两个不共线的向量,且35OA a b =+,47OB a b =+,OC a mb =+,若A ,B ,C 三点共线,则m =()A .1B .1-C .2D .2-【答案】A【解析】法一:b a b a b a OB AO AB 27453+=++--=+=,()b m a b m a b a OC BO BC 7374-+-=++--=+=,因A ,B ,C 三点共线,所以AB 与BC 共线,所以()[]()b m a b m a b a 73732-+-=-+-=+λλλ,所以()⎩⎨⎧-=-=7231m λλ,解得⎪⎩⎪⎨⎧=-=131m λ法二:由,,A B C 三点共线,得(1)(4)(72)OC xOA x OB x a x b =+-=-+-,故41,72,x x m -=⎧⎨-=⎩解得1m =.4.设12e e,是两个不共线的向量,若向量12m e ke =-+(k ∈R )与向量212n e e =-共线,则A .0k =B .1k =C .2k =D .12k =【答案】D【解析】因为向量12=-+ m e ke (k ∈R )与向量212=-n e e 共线,所以存在实数λ,使得λ=m n ,所以有2211(2)λ-+=- e ke e e ,因此12k λλ=⎧⎨-=-⎩,解得12k =.5.如图,在ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM = ,AC nAN =,则m n +=()A .1B .32C .2D .3【答案】C【解析】连接AO ,由O 为BC 中点可得,1()222m n AO AB AC AM AN =+=+,M 、O 、N 三点共线,122m n∴+=,2m n ∴+=.故选:C.6.已知M 为ABC 的边AB 的中点,N 为ABC 内一点,且13AN AM BC =+ ,则AMNBCNS S =△△()A .16B .13C .12D .23【答案】B【解析】因为13AN AM BC =+,所以13MN BC = ,所以MN ∥BC ,又因为M 为边AB 的中点,所以点A 到MN 的距离等于点N 到BC 的距离,所以13AMNBCNMN S S BC== △△,题型三:平面向量垂直问题【例1】已知向量(1)(32)m =-,,=,a b ,且()+⊥a b b ,则m =()A .8-B .6-C .6D .8【答案】D【解析】:()()()2,42,3,1-=-+=+m m b a ,因()b b a ⊥+,所以()0=⋅+b b a ,即()()()022122,32,4=--=--m m ,所以8=m 【例2】已知单位向量a ,b 的夹角为45°,ka –b 与a 垂直,则k =__________.【答案】22【解析】由题意可得:11cos 452a b →→⋅=⨯⨯=,由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:22k =.【例3】已知单位向量,a b 的夹角为60°,则在下列向量中,与b 垂直的是()A .b a 2+B .ba +2C .ba 2-D .ba -2【答案】D【思路导引】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可.【解析】由已知可得:11cos 601122⋅=︒=⨯⨯=a b a b .A :∵215(2)221022+⋅=⋅+=+⨯=≠a b b a b b ,∴本选项不符合题意;B :∵21(2)221202+⋅=⋅+=⨯+=≠a b b a b b ,∴本选项不符合题意;C :∵213(2)221022-⋅=⋅-=-⨯=-≠a b b a b b ,∴本选项不符合题意;D :∵21(2)22102-⋅=⋅-=⨯-=b b b a b b ,∴本选项符合题意.故选D .【例4】已知向量(2,1),(3,)a b m →→=-=,且()a b a →→→+⊥,则实数m =___________.【答案】1【分析】先求出+=(1,1)a b m →→+,再解方程1(2)1(1)0m ⨯-+⨯+=即得解.【详解】解:由题得+=(1,1)a b m →→+,因为()a b a →→→+⊥,所以()=0a b a →→→+g ,所以1(2)1(1)0,1m m ⨯-+⨯+=∴=.故答案为:1【例5】已知非零向量m,n 满足4|3|=m |n |,1cos ,3<>=m n .若()t ⊥+n m n ,则实数t 的值为()A .4B .–4C .94D .–94【答案】B 【解析】由()t ⊥+n m n 可得()0t ⋅+=n m n ,即20t ⋅+=m n n ,所以2221|cos |3||t |||<,>|||=-=-=-⋅⋅⨯⨯n n n m n m n m n m n ||4334||3=-=-⨯=-n m .故选B .【例6】已知向量AB 与AC 的夹角120,且|AB |=3,|AC |=2,若AP AB AC λ=+ ,且AP BC ⊥ ,则实数λ的值为_____.【答案】712【解析】向量与的夹角为,且所以.由得,,即,所以,即,解得.【题型专练】1.ΑΒC ∆是边长为2的等边三角形,已知向量a ,b 满足2ΑΒ= a ,2ΑC =+a b ,则下列结论正确的是()A .1=b B .⊥a bC .1⋅=a b D .()4ΒC-⊥a b 【答案】D【解析】如图由题意,(2)2BC AC AB a b a b =-=+-= ,故||2b = ,故A 错误;|2|2||2a a ==,所以||1a = ,又22(2)4||222cos 602AB AC a a b a ab ⋅=⋅+=+=⨯=,所以1a b ⋅=- ,故,B C 错误;设,B C 中点为D ,则2AB AC AD += ,且AD BC ⊥ ,所以()4C a b +⊥B ,故选D .2.已知1e ,2e 12-e 与12λ+e e 的夹角为60 ,则实数λ的值是.【答案】33【解析】解法一:因1e ,2e 11==,021=⋅e e所以221212112122)()λλλ-⋅+=+⋅-⋅-=-e e e e e e e e ,12|2-=e ,12||λ+===e e ,2cos60λ==,解得:33λ=.解法二:建立坐标系,设()()1,0,0,121==e e ()()λλ,1,1,3212=+-=-e e e ,所以()()2221213λ+=+=-+=)()λλ-=+-3212e e e所以由数量积的定义得︒⨯+⨯=-60cos 1232λλ,解得:33λ=.3.已知向量()(),2,1,1a m b ==,若()a b b +⊥ ,则m =__________.【答案】4-【分析】根据向量的坐标运算即可求解.【详解】由题意可得()1,3a b m +=+,则130m ++=,解得4m =-.故答案为:4-4.已知向量(,2),(2,4)m a a n a =+=- ,且()n m n ⊥-,则实数=a _____________.【答案】2【分析】根据向量坐标运算及向量垂直的坐标表示即得.【详解】因为(,2)(2,4)(2,2)m n a a a a -=+--=-,又()n m n ⊥- ,所以2(2)(2)40a a ⨯-+-⨯=,解得2a =.故答案为:2.5.在ABC 中,()1,2,3A k -,()2,1,0B -,()2,3,1C -,若ABC 为直角三角形,则k 的值为()A .23B .83C .-1D .325-题型四:平面向量的夹角问题【例1】已知平面向量a ,b满足||4,||1== a b ,()a b b -⊥ ,则cos ,a b 〈〉= ()A .14B .4C.4D .4【例2】已知(2,0)a = ,1,22b ⎛= ⎝⎭r ,则a b - 与12a b + 的夹角等于()A .150°B .90°C .60°D .30°【例3】已知向量a=(2,1),()3,1b =- ,则()A.若c =-⎝⎭ ,则a c ⊥B .向量a 在向量b 上的投影向量为12b-C .a 与a b -D .()//a b a+【例4】若向量a ,b 满足||a = ,(2,1)b =-,5a b ⋅=- ,则a 与b 的夹角为_________.【例5】已知向量a b ,满足566a b a b ==⋅=-,,,则cos ,a a b +=()A .3135-B .1935-C .1735D .1935【例6】若非零向量,a b 满足32a b a b ==+,则a 与b 夹角的余弦值为________.【例7】设向量(68)=-,a ,(34)=,b ,t =+c a b,t ∈R ,若c 平分a与b 的夹角,则t 的值为.【答案】2【解析】解法一:()t t b t a c 48,36++-=+=,所以()()t t t c a 14100488366+=+++--=⋅;()()1425484363+=+++-=⋅t t t c b 510==因c 平分a 与b 的夹角,所以=c b c a ==,所以()1425214100+=+t t ,解得2=t解法二:因c 平分a 与b的夹角,所以()()⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+-=⎫⎛=58,054,3108,6λλλb a c ,又因()t t b t a c 48,36++-=+=,所以()()t t 3658480+-=+⨯,解得2=t 【例8】已知A B C △的三个顶点分别为(3(60)(5A B C ,,,,,求ACB ∠的大小.【答案】C【解析】()()3,1,0,2=-=CB CA()()()2312022222=+==+-=所以21223012cos -=⨯⨯+⨯-==∠CB CA ACB ,所以︒=∠120ACB 【题型专练】1.设非零向量、ab满足||2||,||||a b a b b =+= ,则向量a 与b的夹角为()A .30°B .60︒C .120︒D .150︒2.已知(2,1)a =-,||b =,且()10a b a +⋅= ,则,a b 〈〉= ___________.3.已知向量,a b 满足||1a =,||a b =+1)b =- ,则,a b 的夹角等于___________.4.若两个非零向量a 、b 满足2a b a b a +=-=,则a b - 与b 的夹角___________.5.已知单位向量a ,b 满足0a b ⋅=,若向量c =+,则sin ,a c =()A B C D6.已知向量,a b 满足()()3,4,·28a b a b a b ==+-=,则向量a 与b 所成的夹角为()A .π6B .π3C .π2D .2π37.已知向量a ,b 满足||2||2b a == ,|2|2a b -= ,则向量a ,b 的夹角为()A .30°B .45︒C .60︒D .90︒8.已知向量()PA =,(1,PB =,则APB ∠=A .30︒B .60︒C .120︒D .150︒【答案】D【解析】根据题意,可以求得2,2PA PB ===,所以333cos 222PA PB APB PA PB⋅∠===-⋅,结合向量所成角的范围,可以求得150APB ∠=︒,故选D .9.非零向量a ,b 满足:-=a b a ,()0⋅-=a a b ,则-a b 与b 夹角的大小为A .135︒B .120︒C .60︒D .45︒【答案】A【解析】 非零向量a ,b 满足()0⋅-=a a b ,∴2=⋅a a b,由-=a b a 可得2222-⋅+=a a b b a,解得=b ,()22cos 2θ-⋅⋅-∴===--a b ba b b a b ba b,θ为-a b 与b 的夹角,135θ∴= ,故选A .10.已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos,=a c ___________.【答案】23【解析】因为2=c a,0⋅=a b ,所以22⋅=⋅a c a b 2=,222||4||5||9=-⋅+=c a b b ,所以||3=c ,所以cos ,=a c 22133⋅==⨯⋅a c a c .11.已知向量(4,3),(1,2)a b =-=-,,a b的夹角为θ,则sin θ=__________.【答案】55【解析】依题意[]0,πθ∈,所以255cos ,sin 55||||a b a b θθ⋅===-== .故答案为.12.已知向量,a b 满足5,6,6==⋅=-a b a b ,则cos ,+=a a b ()A .3531-B .3519-C .3517D .3519【答案】D【思路导引】计算出()a ab ⋅+ 、a b + 的值,利用平面向量数量积可计算出cos ,a a b <+>的值.【解析】5a = ,6b = ,6a b ⋅=- ,()225619a a b a a b ∴⋅+=+⋅=-= .7a b +== ,因此()1919cos ,5735a ab a a b a a b ⋅+<+>===⨯⋅+ .故选D .题型五:平面向量数量积的计算【例1】(2021新高考2卷)已知向量0,||1,||||2,a b c a b c a b b c c a ++====⋅+⋅+⋅=_______.【答案】29-【解析】方法一:因为0=++c b a ,所以()02=++cb a ,即0222222=+++++c b c a b a c b a所以0222441=+++++c b c a b a ,所以9222-=++c b c a b a ,所以29-=++c b c a b a 方法二:因为0=++c b a ,所以c b a -=+,所以()()22c b a -=+,即2222cb a b a=++所以4241=++b a ,所以21-=b a ,同理b c a -=+,所以()()22b ca -=+,即2222b c a c a =++,所以4241=++c a ,所以21-=c a ,同理a c b -=+,所以()()22a c b -=+,即2222a c b c b =++,所以1244=++c b ,所以27-=⋅c b ,所以29-=++c b c a b a 【例2】在△ABC 中,6,AB O =为△ABC 的外心,则AO AB ⋅等于A B .6C .12D .18【答案】D【解析】试题分析:如图,过点O 作OD AB ⊥于D ,则()36018AO AB AD DO AB AD AB DO AB ⋅=+⋅=⋅+⋅=⨯+=,应选D.【例3】已知边长为3的正2ABC BD DC = ,,则AB AD ⋅=()A .3B .9C .152D .6【例4】已知ABC 为等边三角形,AB =2,设点P ,Q 满足AP AB λ=,(1)AQ AC λ=-,R λ∈,若2BQ CP ⋅=-,则λ=()A .12B .12C .12±D故选:A.【例5】在ABC 中,6A π=,||AB =||4AC =,3BD BC =,则AB AD ⋅=______.【答案】24-【分析】利用基底,AB AC 3AD AB BD AB BC =+=+ ,BC AC = 23AD AB AC ∴=-+ ,∴()232AB A AB AD AB AB C =⋅-+=-⋅ 【题型专练】1.如图,在△ABC 中,AD ⊥AB ,BC =,1AD = ,则AC AD ⋅=()A .B CD .3-2.在ABC 中,3AB AC ==,DC BD 2=﹒若4AD BC ⋅=,则AB AC ⋅=______.3.ABC 中,90C ∠=︒,2AC =,P 为线段BC 上任一点,则AP AC ⋅=()A .8B .4C .2D .64.已知ABC 为等边三角形,D 为BC 的中点,3AB AD ⋅=,则BC =()A BC .2D .45.如图,在ABC 中,3BAC ∠=,2AD DB =,P 为CD 上一点,且满足2AP mAC AB =+,若||3AC =,||4AB =,则AP CD ⋅的值为()A .-3B .1312-C .1312D .1126.在平行四边形ABCD 中,AC =6,AB AD ⋅=5,则BD =____________.【详解】AC AB BC AB AD =+=+ ,则2AC AB = 236226AD AB AD +=-⋅=,AD AB - ,则222BD AD AB AD =-⋅+ 7.已知在ABC 中,90C ∠=︒,4CA =,3CB =,D 为BC 的中点,2AE EB =,CE 交AD 于F ,则CE AD ⋅=_______【答案】73-##123-题型六:平面向量的模问题【例1】已知(1)t =,a ,(6)t =-,b ,则|2|+a b 的最小值为________.【答案】52【解析】:()()()40205362444462262,2222222+-=+-+++=-++=-+=+t t t t t t t t t t a对称轴2=t ,所以当2=t 时,524040202=+-=a 【例2】(2021新高考1卷)已知O 为坐标原点,点1(cos ,sin )P αα,2(cos ,sin )P ββ-,3(cos(),sin())P αβαβ++,(1,0)A ,则:A .12||||OP OP = B .12||||AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅ 【答案】AC 【解析】【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=- ,所以1||1OP == ,2||1OP == ,故12||||OP OP = ,正确;B :1(cos 1,sin )AP αα=- ,2(cos 1,sin )AP ββ=-- ,所以1||2|sin |2AP α===== ,同理2||2|sin |2AP β== ,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+ ,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯= ,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC【例3】已知向量a ,b 的夹角为60°,||2=a ,||1=b ,则|2|+a b =.【答案】324211244+⨯⨯⨯+====+3212==【例4】已知a 与b 均为单位向量,其中夹角为θ,有下列四个命题1p :||1+>a b ⇔θ∈[0,23π)2p :||1+>a b ⇔θ∈(23π,π]3p :||1->a b ⇔θ∈[0,3π)4p :||1->a b ⇔θ∈(3π,π]其中真命题是(A )1p ,4p (B)1p ,3p (C)2p ,3p (D)3p ,4p 【答案】A【解析】由||1+>a b 得,221∙>a +2a b +b ,即∙a b >12-,即cos θ=||||∙a b a b >12-,∵θ∈[0,π],∴θ∈[0,23π),由||1->a b 得,22-1∙>a 2a b +b ,即∙a b <12,即cos θ=||||∙a b a b <12,∵θ∈[0,π],∴θ∈(3π,π],故选A .【例5】设a ,b 是两个非零向量A .若||||||+=-a b a b ,则⊥a bB .若⊥a b ,则||||||+=-a b a b C .若||||||+=-a b a b ,则存在实数λ,使得λ=b a D .若存在实数λ,使得λ=b a ,则||||||+=-a b a b 【答案】C【解析】对于A b b a a2222-=⇒+-=+⋅+⇒=θ,所以1cos -=θ,所以︒=180θ,所以A 错,B 错;C 对,D 有可能为︒0【题型专练】1.设向量(10),a =,22()22=-b ,若t =+c a b (t ∈R),则||c 的最小值为A B .1C .2D .12【答案】C【解析】()⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=+=t t t b t a c 22,22122,220,12222221⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=t t 222122122121212222≥+⎪⎪⎭⎫ ⎝⎛+=++=+++=t t t t t t 2.已知向量(1,2)a =- ,(21,1)b m =- ,且a b ⊥,则|2|a b -= ()A .5B .4C .3D .23.已知向量a ,b满足1a =,2b =,a b -=,则2a b +=()A .B .C D4.已知[02π)αβ∈、,,(cos ,sin )a αα=r,(cos(),sin())b αβαβ=++,且23a b -=,则β可能为()A .π3B .2π3C .πD .4π3【答案】BD【分析】根据向量模的运算列方程,化简求得cos β的值,进而求得正确答案.5.平面向量a 与b 的夹角为60︒,(3,4),||1==a b ,则|2|a b += _____________.6.已知向量,a b 满足||2,(2,2)a b == ,且|2|6a b += ,则||a b += __________.7.设,a b 为单位向量,且||1+=a b ,则||a b -=______________.【解析】因为,a b为单位向量,所以1a b ==r r所以1a b +==,解得:21a b ⋅=-所以a b -==8.设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵33-=+a b a b ,∴22(3)(3)-=+a b a b ,∴2269-⋅+=a ab b 2296+⋅+a a b b ,又||||1==a b ,∴0⋅=a b ,∴⊥a b ;反之也成立,故选C .9.已知向量a ,b 夹角为045,且|a |=1,|2-a b |b |=.【答案】.【解析】∵|2-a b |=平方得224410-= a a b +b ,即260--=|b |b |,解得|b |=(舍)题型七:平面向量的投影问题【例1】已知向量(2,1),(1,1)a b =-= ,则a 在b上的投影向量的模为()A B .12C .2D .1【例2】已知6a =,3b =,向量a 在b 方向上投影向量是4e ,则a b ⋅ 为()A .12B .8C .-8D .2【例3】已知平面向量a ,b ,满足2a =,1b =,a 与b 的夹角为23π,2b 在a 方向上的投影向量为()A .1-B .12aC .12a - D .1【例4】已知平面向量a ,b 满足2=a ,()1,1b =,a b +=r r a 在b 上的投影向量的坐标为()A .22⎛ ⎝⎭B .()1,1C .()1,1--D .⎛ ⎝⎭【例5】已知O 为正三角形ABC 的中心,则向量OA 在向量AB 上的投影向量为()A .ABB C .12AB-D .12AB故选:C【例6】设向量a 在向量b 上的投影向量为m ,则下列等式一定成立的是()A .||a b m bb ⋅=⋅ B .2||a b m bb ⋅=⋅ C .m b a b⋅=⋅ D .ma b a⋅=⋅【题型专练】1.已知()1,2a = ,()1,2b =- ,则a 在b上的投影向量为()A .36,55⎛⎫- ⎪B .36,55⎛⎫- ⎪C .36,55⎛⎫-- ⎪D .36,55⎛⎫ ⎪2.如图,在平面四边形ABCD 中,120ABC BCD ∠=∠= ,AB CD =,则向量CD 在向量AB 上的投影向量为()A .2AB -B .12AB -C .12AB D .2AB 【答案】B【分析】根据图形求出向量AB 与CD的夹角,再根据投影向量的公式进行求解即可.【详解】延长AB ,DC 交于点E ,如图所示,3.已知向量()1,3a =,()2,4b =-,则下列结论正确的是()A .()a b a+⊥r r r B .2a b +=C .向量a 与向量b 的夹角为34πD .b 在a的投影向量是()1,34.已知()3,1a =-,()1,2b =,下列结论正确的是()A .与b同向共线的单位向量是⎝⎭B .a 与bC .向量a在向量b 上的投影向量为12,55⎛⎫ ⎪⎝⎭D .15a b b⎛⎫-⊥ ⎪ 5.关于平面向量,有下列四个命题,其中说法正确的是()A .若1,,120a b a b ===︒,则()2a b a+⊥r r r B .点()()1,1,3,2M N --,与向量MN同方向的单位向量为43,55⎛⎫- ⎪⎝⎭C .若20a b a b a +=-=≠ ,则+r r a b 与a b - 的夹角为60°D .若向量()()2,1,6,2a b =-= ,则向量b 在向量a 上的投影向量为2a-同方向的单位向量为6.己知空间向量||3,||2a b ==,且2a b ⋅=,则b 在a 上的投影向量为________.【答案】29a ##29a7.已知1a =,2b =,且()a ab ⊥+,则a 在b 上的投影向量为()A .b -B .bC .14b- D .14b【答案】C 【详解】因为()a a b ⊥+ ,所以()0a a b ⋅+= ,即220,0a a b a a b +⋅=+⋅= ,又因为1a = ,设,a b 的夹角为θ,所以1a b ⋅=-,a 在b 上的投影为:cos b a b a θ⋅=⋅ ,所以a 在b 上的投影向量为214cos b a b b b ba b θ⋅⋅=⋅=⋅- .故选:C8.已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为ABC.D.【答案】A【解析】AB =(2,1),CD =(5,5),则向量AB 在向量CD方向上的射影为22325515255)5,5()1,2(cos 22=⨯+⨯=+⋅==CD AB AB θ9.若向量,a b满足22a a b =+= ,则a 在b 方向上投影的最大值是AB.CD.【答案】B【详解】由题意2,22a a b =+= ,所以2||4164b a b +⋅+=,设,a b 的夹角为θ,则2||8cos 120b b θ++= ,所以212cos 8b bθ+=- ,所以a 在b 方向上投影为2123cos 2()(48b b a bb θ+=⨯-=-+,因为3b b +≥cos a θ≤ ,故选B.题型八:万能建系法解决向量问题边长为a 的等边三角形已知夹角的任意三角形正方形矩形平行四边形直角梯形等腰梯形圆建系必备(1)三角函数知识cos ,sin x r y r q q ==;(2)向量三点共线知识(1)OC OB OAl l =+-(对面女孩看过来).【例1】如图,在等腰梯形ABCD 中,2,3,4AB BC CD BC BE ==== ,则CA DE ⋅=()A .43B .154-C .558-D .6516-3315,0,,0,1,D C A ⎛⎛⎫⎛⎫【例2】如图,正八边形ABCDEFGH 中,若AE AC AF λμ=+()R λμ∈,,则λμ+的值为________.正八边形的中心【详解】、HD BF 所在的直线分别为x y 、轴建立平面直角坐标系,正八边形的中心M 点,3608⎛∠=∠=∠=∠= ⎝AOB COB AOH EOD 18045135-= ,所以22.5∠= BAC ,13522.5112.5∠-∠=-= HAB CAB ,所以∠HAC y 轴,、AOM MOC 为等腰直角三角形,2,则2=====OD OF OE OA OC ,()0,2F ,2===OM MC ,所以()2,2--A ,(2,-C【点睛】本题主要考查了平面向量坐标法解决几何问题,建立坐标系是解题的关键,还考查了向量的加法运算,考查方程思想及转化思想,属于中档题.【题型专练】1.如图,在梯形ABCD 中,//AB DC ,10AB =,7BC =,2CD =,5AD =,则AC BD ⋅=___________.则5,02A ⎛⎫- ⎪⎝⎭,532,2C ⎛⎫ ⎪ ⎪⎝⎭,15,02B ⎛⎫ ⎪⎝⎭,530,2D ⎛ ⎝953,22AC ⎛⎫∴= ⎪ ⎪⎝⎭ ,1553,22BD ⎛⎫=- ⎪ ⎪⎝⎭,AC BD ∴⋅ 故答案为:15-.2.已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+ ,则||PD = _________;PB PD ⋅=_________.【答案】(1).(2).1-【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=-,()0,1PB =- ,因此,PD == ()021(1)1PB PD ⋅=⨯-+⨯-=-.题型九:平面向量中的最值范围问题【例1】如下图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,3BCD π∠=,CB CD ==M 为边BC 上的动点,则AM DM ⋅的最小值为()A .83B .214C .114-D .133-【例2】ABC 是边长为4的等边三角形,点D 、E 分别在边AC 、BC 上,且DE BC ⊥,则DA DE ⋅的最小值为()AB .C .3D .-3则(0,0),(2,23),(4,0)C A B【例3】四边形ABCD 中,4AB =,60A B ∠=∠=︒,150D ∠=︒,则DA DC ⋅的最小值为()AB .C .3D .-3∴90,60DCB E ∠=︒∠= ,设CE x =,则3,DC x DA =∴()423cos150DA DC x x ⋅=-⋅⋅ 所以当1x =时,DA DC ⋅的最小值为【例4】如图,在梯形ABCD 中,//AD BC ,2AD =,9BC =,5AB =,cos 5B =,若M ,N 是线段BC上的动点,且1MN = ,则DM DN ⋅的最小值为()A .134B .132C .634D .352//AD BC ,32AD =,9BC =,5AB =(9,0)C ∴,∴3cos 5A xB AB ==,3,4A A x y ==9(3,4),(,4)2A D ∴,【例5】已知边长为2的菱形ABCD 中,点F 为BD 上一动点,点E 满足2BE EC =,3AE BD ⋅=-,则AF BE⋅的最小值为()A .0B .23C .43D .2【例6】已知向量a,b,c共面,且均为单位向量,0a b⋅=,则ab c++的最大值是()A B C1D1【例7】骑自行车是一种能有效改善心肺功能的耐力性有氧运动,深受大众喜爱,如图是某一自行车的平面结构示意图,已知图中的圆A (前轮),圆DABE △,BEC △,ECD 均是边长为4的等边三角形.设点P 为后轮上的一点,则在骑动该自行车的过程中,AC BP ⋅的最小值为()A .12B .24C .36D .18故选:A【例8】已知AB AC ⊥ ,1AB t = ,AC t = ,若点P 是ABC ∆所在平面内一点,且4AB AC AP AB AC=+ ,则PB PC ⋅的最大值等于()A .13B .15C .19D .21【答案】A【解析】以题意,以点A 为坐标原点,以AB 所在的直线为x 轴,AC 所在的直线为y 轴建立如图所示的平面直角坐标系,所以点(1,4)P ,1(,0)B t,(0,)C t ,所以11(1,4)(1,4)(1)(1)4(4)PB PC t t t t ⋅=----=-⨯--⨯- =1174t t --17-≤=13(当且仅当14t t =,即12t =时取等号),所以PB PC ⋅ 的最大值为13.故选A .【题型专练】1.已知梯形ABCD 中,3B π∠=,2AB =,4BC =,1AD =,点P ,Q 在线段BC 上移动,且1PQ =,则DP DQ ⋅的最小值为()A .1B .112C .132D .1142.在ABC 中,902A AB AC ∠=== ,,点M 为边AB 的中点,点P 在边BC 上运动,则AP MP ⋅的最小值为___________.【答案】78【分析】建立平面直角坐标系,利用数量积的坐标运算求出3.ABC 为等边三角形,且边长为2,则AB 与BC 的夹角大小为120,若1BD =,CE EA =,则AD BE ⋅的。
)))))))第五章 平面向量【考纲说明】1、理解平面向量的概念和几何表示,理解两个向量相等及共线的含义,掌握向量的加、减、数乘运算及其几何意义,会用坐标表示。
2、了解平面向量的基本定理,掌握平面向量的坐标运算。
3、掌握数量积的坐标表达式,会进行平面向量数量积的运算,会用向量方法解决简单的平面几何问题、力学问题与其他一些实际问题。
【知识梳理】一、 向量的基本概念与线性运算 1 向量的概念:(1)向量:既有大小又有方向的量,记作AB ;向量的大小即向量的模(长度),记作|AB | 向量不能比较大小,但向量的模可以比较大小.(2)零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行(3)单位向量:模为1个单位长度的向量常用e 表示.(4)平行向量(共线向量):方向相同或相反的非零向量,记作a ∥b平行向量也称为共线向量(5)相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a= 大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x(6)相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a-,零向量的相反向量仍是零向量若a 、b是互为相反向量,则a =b -,b =a -,a +b =2 向量的线性运算:(1)向量的加法:求两个向量和的运算叫做向量的加法 向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则” .(2)向量的减法 :求向量a 加上b 的相反向量的运算叫做a 与b的差.向量的减法有三角形法则,b a -可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)(3)向量的数乘运算:求实数λ与向量a 的积的运算,记作λa.①a a⋅=λλ;②当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反; 当0=λ时,0 =a λ,方向是任意的③数乘向量满足交换律、结合律与分配律3. 两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =λ向量b 与非零向量a共线⇔有两个均不是零的实数λ、μ,使得0a b λμ+=.二、平面向量的基本定理与坐标表示 1 平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底2. 平面向量的坐标表示:(1)在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j 作为基底 由平面向量的基本定理知,该平面内的任一向量a 可表示成a xi yj =+,由于a 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a 的坐标,记作a =(x,y),其中x 叫作a 在x 轴上的坐标,y 叫做在y 轴上的坐标显然0=(0,0),(1,0)i =,(0,1)j =. (2)设OA xi y j =+.则向量OA 的坐标(x,y)就是终点A 的坐标,即若OA =(x,y),则A 点的坐标为(x,y),反之亦成立(O 是坐标原点). 3 平面向量的坐标运算:(1)若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±±. (2)若()()2211,,,y x B y x A ,则()2121,AB x x y y =--,1(AB x =(3)若a =(x,y),则λa =(λx,λy).(4)若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-=. (5)若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅. 三、平面向量的数量积 1 两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,a ·b 等于a 的长度与b 在a 方向上的投影的乘积叫做a 与b 的数量积(或内积),即a ·b =︱a ︱·︱b ︱cos θ,规定00a ⋅=2 向量的投影:︱b ︱cos θ=||a ba ⋅∈R ,称为向量b 在a 方向上的投影 投影的绝对值称为射影 3 向量的模与平方的关系:22||a a a a ⋅==4 乘法公式成立:()()2222a b a b a b a b +⋅-=-=-; ()2222a b a a b b±=±⋅+222a a b b =±⋅+.5 平面向量数量积的运算律:①交换律成立:a b b a ⋅=⋅.②对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈.③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅±; 特别注意:①结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅.②消去律不成立a b a c⋅=⋅不能得到b c =.③a b ⋅=0不能得到a =0或b =06 两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y + 7 向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (001800≤≤θ)叫做向量a 与b 的夹角cos θ=cos ,a b a b a b⋅<>=⋅=当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题8 垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥ba ⊥b ⇔a ·b=O ⇔2121=+y y x x【经典例题】【例1】(2010全国Ⅱ,8)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB a =,ECBA CA b =,1,2a b ==,则CD = ( )(A )1233a b + (B )2133a b + (C )3455a b + (D )4355a b + 【答案】B .【解析】由角平分线的性质得2AD DB =,即有22()()33AD CB CA a b =-=-.从而221()333CD CA AD b a b a b =+=+-=+.故选B .【例2】(2009北京,2)已知向量a 、b 不共线,c k =a +b (k ∈R ),d =a -b ,如果c //d , 那么 ( ) A .1k =且c 与d 同向 B .1k =且c 与d 反向 C .1k =-且c 与d 同向 D .1k =-且c 与d 反向 【答案】D .【解析】取a ()1,0=,b ()0,1=,若1k =,则c =a +b ()1,1=,d =a -b ()1,1=-, 显然,a 与b 不平行,排除A 、B .若1k =-,则c =-a +b ()1,1=-,d =-a +b ()1,1=--, 即c //d 且c 与d 反向,排除C ,故选D .【例3】(2009湖南卷文)如图,D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则( ) A .0AD BE CF ++= B .0BD CF DF -+=C .0AD CE CF +-= D .0BD BE FC --= 【答案】A . 【解析】,,AD DB AD BE DB BE DE FC =∴+=+==得0AD BE CF ++=.或0AD BE CF AD DF CF AF CF ++=++=+=.【例4】(2009宁夏海南卷文)已知()()3,2,1,0a b =-=-,向量a b λ+与2a b -垂直,则实数λ的值为( )A.17-B.17C.16-D.16【答案】A .【解析】向量a b λ+=(-3λ-1,2λ),2a b -=(-1,2),因为两个向量垂直,故有(-3λ-1,2λ)×(-1,2)=0,即3λ+1+4λ=0,解得:λ=17-,故选A . 【例5】(2009全国卷Ⅰ文)设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a , ( )A .150° B.120° C.60° D.30° 【答案】B .【解析】由向量加法的平行四边形法则,知a 、b 可构成菱形的两条相邻边,且a 、b 为起点处的对角线长等于菱形的边长,故选择B .【例6】(2009安徽卷文)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,或=+,其中,R ,则+= _________.【答案】43. 【解析】设BC b =、BA a =则12AF b a =- ,12AE b a =- ,AC b a =- 代入条件得2433u u λλ==∴+=. 【例7】(2009辽宁卷文)在平面直角坐标系xoy 中,四边形ABCD 的边AB ∥DC,AD ∥BC,已知点A(-2,0),B (6,8),C(8,6),则D 点的坐标为___________. 【答案】(0,-2).【解析】平行四边形ABCD 中,OB OD OA OC +=+ ∴OD OA OC OB =+-=(-2,0)+(8,6)-(6,8)=(0,-2) 即D 点坐标为(0,-2).【例8】(2012江苏)如图,在矩形ABCD 中,22AB BC ==,,点E 为 BC 的中点,点F 在边CD 上,若2AB AF =,则AE BF 的值是___.【答案】2.【解析】由2AB AF =,得cos 2ABAF FAB ∠=,由矩形的性质,得cos =AF FAB DF ∠.∵2AB =,∴22DF ⋅=,∴1DF =∴21CF =-.记AE BF 和之间的夹角为,AEB FBC θαβ∠=∠=,,则θαβ=+. 又∵2BC =,点E 为BC 的中点,∴1BE =. ∴()()=cos =cos =cos cos sin sin AE BF AEBF AEBF AE BF θαβαβαβ+-()=cos cos sin sin =122212AE BF AE BF BE BC AB CF αβαβ--=⨯--=.本题也可建立以, AB AD 为坐标轴的直角坐标系,求出各点坐标后求解.【例9】(2009湖南卷理)在ABC ∆,已知2233AB AC AB AC BC ⋅=⋅=,求角A ,B ,C 的大小. 【答案】2,,663A B C πππ===. 【解析】解:设,,BC a AC b AB c ===由23AB AC AB AC ⋅=⋅得2cos 3bc A bc =,所以3cos 2A = 又(0,),A π∈因此6A π=由233AB AC BC ⋅=得23bc a =,于是23sin sin 3sin 4C B A ⋅=-所以53sin sin()64C C π⋅-=,133sin (cos sin )224C C C ⋅+=,因此 22sin cos 23sin 3,sin 23cos 20C C C C C ⋅+=-=,既sin(2)03C π-=由A=6π知506C π<<,所以3π-,4233C ππ-<,从而20,3C π-=或2,3C ππ-=,既,6C π=或2,3C π=故2,,,636A B C πππ===或2,,663A B C πππ===. 【课堂练习】一、选择题1.(2012辽宁理)已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( )A .a ∥bB .a ⊥bC .{0,1,3}D .a +b =a -b2. (2009年广东卷文)已知平面向量a =,1x (),b =2,x x (-),则向量+a b ( )A. 平行于x 轴B. 平行于第一、三象限的角平分线C. 平行于y 轴D. 平行于第二、四象限的角平分线3.(2012天津文)在ABC ∆中,90A ∠=︒,1AB =,AC=2,设点,P Q 满足,(1),AP AB AQ AC R λλλ==-∈.若2BQ CP ⋅=-,则λ=( )( )A .13 B .23C .43D .2 4.(2009浙江卷理)设向量a ,b 满足:||3=a ,||4=b ,0⋅=a b .以a ,b ,-a b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( )A .3 B.4 C .5D .65.(2012重庆理)设,x y ∈R,向量()()()4,2,,1,1,-===c y b x a ,且c b c a //,⊥,则a b += ()A B C .D .106. (2009浙江卷文)已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c =( )A .77(,)93B .77(,)39--C .77(,)39D .77(,)93--7.(2012浙江理)设a ,b 是两个非零向量.( )A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得a =λbD .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b |8.(2009全国卷Ⅰ理)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -•-的最 小值为( )A.2- 2C.1-D.19.(2012天津理)已知△ABC 为等边三角形,=2AB ,设点P,Q 满足=AP AB λ,=(1)AQ AC λ-,R λ∈,若3=2BQ CP ⋅-,则=λ ( )A .12 B .12± C .12± D .32-±10.(2009全国卷Ⅱ理)已知向量()2,1,10,||a a b a b =⋅=+=||b =( )A.B. C. 5 D. 2511.(2012大纲理)ABC ∆中,AB 边上的高为CD ,若,,0,||1,||2CB a CA b a b a b ==⋅===,则AD =( )A .1133a b -B .2233a b - C .3355a b - D .4455a b - 12.(2008湖南)设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC( )A. 反向平行B. 同向平行C. 互相垂直D. 既不平行也不垂直13.(2008广东)在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A .1142+a b B .2133+a b C .1124+a bD .1233+a b 14.(2007湖北)设(43)=,a ,a 在b 上的投影为522,b 在x 轴上的投影为2,且||14≤b ,则b 为( )A .(214),B .227⎛⎫- ⎪⎝⎭,C .227⎛⎫- ⎪⎝⎭,D .(28),15.(2012安徽理)在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP 按逆时针旋转34π后,得向量OQ 则点Q 的坐标是 ( ) A .(72,2)-- B .(72,2)- C .(46,2)-- D .(46,2)-二、填空题16.(2012浙江文)在△ABC 中,M 是BC 的中点,AM=3,BC=10,则AB AC ⋅=________.17.(2009安徽卷理)给定两个长度为1的平面向量OA 和OB ,它们的夹角为120o.如图所示,点C 在以O 为圆心的圆弧AB 上变动. 若,OC xOA yOB =+其中,x y R ∈,则x y + 的最大值是________.18.(2012上海文)在知形ABCD 中,边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上的点,且满足||||||||CD CN BC BM =,则AN AM ⋅的取值范围是_________ .19.(2012课标文)已知向量a ,b 夹角为045,且|a |=1,|2-a b |=10,则|b |=_______. 20.(2012湖南文)如图4,在平行四边形ABCD 中 ,AP ⊥BD,垂足为P,3AP =且APAC = _____.A DBCP21.(2012湖北文)已知向量(1,0),(1,1)a b ==,则(Ⅰ)与2a b +同向的单位向量的坐标表示为____________; (Ⅱ)向量3b a -与向量a 夹角的余弦值为____________.22.(2012北京文)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为________. 23.(2012安徽文)设向量(1,2),(1,1),(2,)a m b m c m ==+=,若()a c +⊥b ,则a =_____.24.(2012江苏)如图,在矩形ABCD 中,22AB BC ==,,点E 为BC 的中点,点F 在边CD上,若2AB AF =,则AE BF 的值是___.25.(2012安徽理)若平面向量,a b 满足:23a b -≤;则a b 的最小值是_____三、解答题26. (2009年广东卷文)(已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中)2,0(πθ∈(1)求θsin 和θcos 的值(2)若ϕϕθcos 53)cos(5=-,<<ϕ02π,求ϕcos 的值 27.(2009上海卷文)已知ΔABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(,)m a b =, (sin ,sin )n B A =,(2,2)p b a =-- .(1) 若m //n ,求证:ΔABC 为等腰三角形; (2) 若m ⊥p ,边长c = 2,角C =3π,求ΔABC 的面积 . 28. 已知A 、B 、C 分别为ABC △的三边a 、b 、c 所对的角,向量)sin ,(sin B A m =,)cos ,(cos A B n =,且C n m 2sin =⋅.(Ⅰ)求角C 的大小;(Ⅱ)若A sin ,C sin ,B sin 成等差数列,且18)(=-⋅AC AB CA ,求边c 的长.【课后作业】一、选择题1.(2009辽宁卷理)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b +=( )A.B. C. 4 D. 22.(2009宁夏海南卷理)已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA •=•=•,则点O ,N ,P 依次是ABC ∆的( )A. 重心 外心 垂心B. 重心 外心 内心C. 外心 重心 垂心D. 外心 重心 内心3.(2008安徽)在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =,(1,3)AC =,则BD =( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)4.(2008浙江)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足0)()(=-⋅-c b c a ,则c 的最大值是( )A. 1B. 2C.2 D.225.(2007海南、宁夏)已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b( ) A .(21)--, B .(21)-,C .(10)-,D .(12),6.(2007湖南)设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有( )A .⊥a bB .∥a bC .||||=a bD .||||≠a b7. (2007天津)设两个向量22(2cos )λλα=+-,a 和sin 2m m α⎛⎫=+ ⎪⎝⎭,b ,其中mλα,,为实数.若2=a b ,则mλ的取值范围是 ( ) A .[-6,1]B .[48],C .(-6,1]D .[-1,6]8. 在ABC BC AB ABC ∆︒︒=︒︒=∆则已知向量中),27cos 2,63cos 2(),72cos ,18(cos ,的面积等于( ) A .22 B .42 C .23 D .29. 已知平面向量(3,1),(,3),//,a b x a b x ==-则等于 ( )A .9B .1C .-1D .-910. 已知a 、b 是不共线的AB a b λ=+AC a b μ=+(,)R λμ∈,则A 、B 、C 三点共线的充要条件是:( )A .1λμ+=B .1λμ-=C .1λμ=-D .1λμ=二、填空题11. 设向量2,3,19,AB AC AB AC CAB ==+=∠=则_________.12. 若向量,2,2,()a b a b a b a ==-⊥ 满足,则向量b a 与的夹角等于 .13. 已知平面上的向量PA 、PB 满足224PA PB +=,2AB =,设向量2PC PA PB =+,则PC 的最小值是 .14.(2008江苏)a ,b 的夹角为120︒,1a =,3b = 则5a b -= . 15. (2007安徽)在四面体O ABC -中,OA OB OC D ===,,,a b c 为BC 的中点,E 为AD 的中点,则OE = (用,,a b c 表示).16.(2007北京)已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是 .17. 已知向量(cos15,sin15)a =,(sin15,cos15)b =--,则a b |+|的值为 .18.(2007广东)若向量a 、b 满足b a b a 与,1==的夹角为120°,则b a b a ··+= .三、解答题19.(2009湖南卷文)已知向量(sin ,cos 2sin ),(1,2).a b θθθ=-=(1)若//a b ,求tan θ的值;(2)若||||,0,a b θπ=<<求θ的值。
向量的概念一、高考要求:理解有向线段及向量的有关概念,掌握求向量和与差的三角形法则和平行四边形法则,掌握向量加法的交换律和结合律.二、知识要点:1. 有向线段:具有方向的线段叫做有向线段,在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,注意:始点一定要写在前面,已知AB ,线段AB 的长度叫做有向线段AB 的长(或模),AB 的长度记作AB ||.有向线段包含三个要素:始点、方向和长度.2. 向量:具有大小和方向的量叫做向量,只有大小和方向的向量叫做自由向量.在本章中说到向量,如不特别说明,指的都是自由向量.一个向量可用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.用有向线段AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、…等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等.与向量有关的概念有:(1) 相等向量:同向且等长的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作a =b .(2) 零向量:长度等于零的向量叫做零向量,记作0.零向量的方向不确定.(3) 位置向量:任给一定点O 和向量a ,过点O 作有向线段OA a =,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量a 又常叫做点A 相对于点O 的位置向量.(4) 相反向量:与向量a 等长且方向相反的向量叫做向量a 的相反向量,记作a -.显然,()0a a +-=.(5) 单位向量:长度等于1的向量,叫做单位向量,记作e .与向量a 同方向的单位向量通常记作0a ,容易看出:0a a a =│ │. (6) 共线向量(平行向量):如果表示一些向量的有向线段所在的直线互相平行或重合,即这些向量的方向相同或相反,则称这些向量为共线向量(或平行向量).向量a 平行于向量b ,记作a ∥b .零向量与任一个向量共线(平行).三、典型例题:例:在四边形ABCD 中,如果AB DC =且AB BC =│ │ │ │ ,那么四边形ABCD 是哪种四边形? 四、归纳小结:1. 用位置向量可确定一点相对于另一点的位置,这是用向量研究几何的依据.2. 共线向量(平行向量)可能有下列情况: (1)有一个为零向量;(2)两个都为零向量;(3)方向相同,模相等(即相等向量);(4)方向相同,模不等;(5)方向相反,模相等;(6)方向相反,模不等.五、基础知识训练:(一)选择题:1. 下列命题中: (1)向量只含有大小和方向两个要素. (2)只有大小和方向而无特定的位置的向量叫自由向量. (3)同向且等长的有向线段表示同一向量或相等的向量. (4)点A 相对于点B 的位置向量是BA . 正确的个数是( )A.1个B.2个C.3个D.4个2. 设O 是正△ABC 的中心,则向量,,AO OB OC 是( )A.有相同起点的向量B.平行向量C.模相等的向量D.相等向量3. a b =的充要条件是( )A.a b =│ │ │ │ B.a b =│ │ │ │ 且a b ∥ []l C.a b ∥ D.a b =│ │ │ │ 且a 与b 同向 4. AA BB ''=是四边形ABB A ''是平行四边形的( )A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件5. 依据下列条件,能判断四边形ABCD 是菱形的是( )A.AD BC =B.AD BC ∥且AB CD ∥C.AB DC =且AB AD =│ │ │ │ D.AB DC =且AD BC = 6. 下列关于零向量的说法中,错误的是( )A.零向量没有方向B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向任意7. 设与已知向量a 等长且方向相反的向量为b ,则它们的和向量a b +等于( )A.0B.0C.2aD.2b(二)填空题:8. 下列说法中: (1)AB 与BA 的长度相等 (2)长度不等且方向相反的两个向量不一定共线 (3)两个有共同起点且相等的向量,终点必相同(4)长度相等的两个向量必共线。
向量的线性运算一.教学目标1.理解向量的概念;2.掌握向量的线性运算;3。
理解向量线性运算的几何意义、向量共线的含义、平行向量基本定理;4。
理解平面向量基本定理,掌握平面向量的正交分解及其坐标表示、平面向量的坐标运算;5。
理解用坐标表示平面向量的共线条件。
二.知识清单1。
向量基本概念(1)向量的定义:既有又有称为向量;(2)向量的大小(或称模):有向线段的表示向量的大小;(3)零向量与单位向量:叫做零向量,叫做单位向量; (4)共线向量与相等向量:叫做共线向量(或平行向量),叫做相等向量。
2。
向量的线性运算(1)向量的加法a。
向量加法的三角形法则、平行四边形法则和多边形法则.b.向量加法满足的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
(2)向量的减法a。
定义:a—b=a+(—b),即减去一个向量相当于加上这个向量的相反向量.一个向量等于终点位置向量减始点位置向量,即AB=OB-OA.b。
三角形法则:“共始点,连终点,指向被减"。
(3)数乘向量a.定义:一般地,实数λ和向量a的乘积是一个向量,记作λa。
b.数乘向量满足的运算律:(λ+μ)a=λ(μa)=λ(a+b)=3。
向量共线的条件与轴上向量坐标运算(1)向量共线的条件平行向量基本定理:如果,则;反之,如果,且 ,则一定存在,使。
(2)轴上向量的坐标运算4. 向量的分解与向量的坐标运算(1)平面向量基本定理如果是一平面内的的向量,那么该平面内的任一向量a,存在,使。
(2)平面向量的正交分解定义: 把一个向量分解为,叫做把向量正交分解。
(3)向量的坐标表示在平面直角坐标系中,分别取与x轴、y轴方向相同的两个_______作为基底。
对于平面内的任一个向量,由平面向量基本定理可知,有且只有一对实数x,y使得____________,这样,平面内的任一向量a都可由 __________唯一确定,我们把有序数对________叫做向量的坐标,记作___________此式叫做向量的坐标表示,其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标.(4)向量的坐标运算向量坐标的加减与数乘若a=(a1,a2),b=(b1,b2),则a+b=(a1+b1,a2+b2),a-b=(a1-b1,a2—b2),λa=(λa1,λa2).(5)用平面向量坐标表示向量共线条件两个向量a, b平行的条件:a=λb,b≠0。
平面向量常用方法归纳1、基底法 在处理平面向量问题时,有一类是所求的向量模长和夹角是在变化的,我们利用平面向量的基本定理,选取一组不共线的且模长和夹角知道的非零向量作为基底,把所求向量都用所选基底表示来处理问题.【例1.1】在ABC ∆中,M 是BC 的中点,3,10AM BC ==,则__________. 【答案】16- 【解析】方法一:基底法 ()()()1625092-=-+=⋅++⋅+=+⋅+=⋅MC MB MC MB AM AM MC AM MB AM AC AB 方法二:极化恒等式法161004194122-=⋅-=-=⋅BC AM AC AB 【例1.2】已知菱形的边长为2,,点分别在边上,,.若,,则( )A. B. C. D. 【答案】C【解析】方法一:基底法AB AC ⋅=ABCD 120BAD ,E F ,BC DC BE BC DF DC 1AE AF 23CE CF 122356712()()()()⎪⎩⎪⎨⎧-=-⋅-=+⋅+⇒⎪⎩⎪⎨⎧-=⋅=⋅32111321DC BC DC AD BC AB CF CE AF AE μλμλ,()()⎪⎩⎪⎨⎧=++-=-++-∴3111242μλλμλμμλ令μλ+=x ,λμ=y ,则原式可化为:⎪⎩⎪⎨⎧=+-=-+-3111242x y y x ,解得⎪⎪⎩⎪⎪⎨⎧==6165y x ,65=+∴μλ.方法二:解析法建立如图所示直角坐标系,则:()0,2B ,()3,1C ,()3,1-D ,又 BC BE λ=,DC DF μ=,易得()λλ3,2-E ,()3,12-μF()1224=--+=⋅∴λμμλAF AE ,()32222-=--+=⋅λμμλCF CE ,下同方法一. 65=+∴μλ【练习1.1】已知直角梯形中,//,,,是腰上的动点,则的最小值为____________.【答案】5 【提示】本题仍然推荐基底法和坐标法,可令DC DP λ=,当43=λ时取得最小值5.【练习1.2】如图,△ABC 是边长为32的等边三角形,P 是以C 为圆心,半径为1的圆上的任意一点,则BP AP ⋅的取值范围是 .【答案】[]13,1 【提示】本题可以使用基底法和极化恒等式两种方法处理,当然也可以使用解析法处理..2、平方法在向量中,遇到和模长有关的问题,很多时候都可以考虑把相关式子两边同时平方来处理,并且要灵活运用:向量的平方等于它模长的平方这个规律,即22||a a =.【例2.1】设,a b 是两个非零向量,( )A .若||||||a b a b +=-,则a b ⊥B .若a b ⊥,则||||||a b a b +=-C .若||||||a b a b +=-,则存在实数λ,使得b a λ=D .若存在实数λ,使得b a λ=,则||||||a b a b +=-【答案】CABCD AD BC 090ADC ∠=2,1AD BC ==P DC 3PA PB +C AB P【解析】方法一:平方法 对式子||||||b a b a -=+进行两边平方处理, 易得:1,cos -=b a ,即向量a 与b 反向,而“存在实数λ,使得b a λ=”表示向量a 与b 共线,故选项C 正确.方法二:三角不等式由三角不等式||||||||b a b a +≤-等号成立的条件是向量a 与b 反向,下同方法一.【例2.2】11. 如图,在△ABC 中,3BAC π∠=,D 为AB 的中点,P 为CD 上一点,且满足AP t AC =13AB +,若△ABC 的面积为332,则||AP 的最小值为 【答案】2【解析】由AP t AC =13AB +,点D 为AB 的中点,易得: AD AC t AP 32+=,又P D C 、、 三点共线,31=∴t , AB AC AP 3131+=∴, 则A AC AB AB AC AB AC AP cos ||||2313131||222++=⎪⎭⎫ ⎝⎛+=,又233sin ||||21==∆A AC AB S ABC ,∴6||||=AC AB ,2||=≥=∴AP , 当且仅当6||||==AC AB 时取等号.【练习2.1】设12,e e 为单位向量,非零向量12,,b xe ye x y R =+∈.若12,e e 的夹角为6π,则||||x b 的最大值等于__________.【答案】2【提示】平方法转化成二次函数最值问题,数形结合也可处理.【练习2.2】设为两个非零向量,a b 的夹角,已知对任意实数,||b ta +的最小值为1( )A.若确定,则||a |唯一确定B.若确定,则||b 唯一确定C.若||a 确定,则唯一确定D.若||b 确定,则唯一确定【答案】B【提示】平方法转化成一次二此不等式恒成立问题,或使用数形结合方法处理.3、投影法 平面向量数量积(点乘):||||cos ,a b a b a b ⋅=<>θt θθθθ③b 在a 上的投影是||cos ,.b a b <>④投影有正有负,正负代表投影的位置.【例3.1】如图,四个边长为1的正方形排成一个大正方形,AB 是在正方形的一条边,是小正方形的其余各个顶点,则的不同值的个数为( )A. 7B. 5C. 3D. 1【答案】C【解析】i AP 在向量AB 上的投影有三种情况,分别是52 AP AP 、的投影是0,1AP ,3AP ,6AP 的投影是1,4AP ,7AP的投影是2, 所以共有三个不同的结果,故选C.【例3.2】如图,在等腰直角ABO ∆中,1,OA OB C ==为AB 上靠近点A 的四等分点,过C 作AB 的垂线l ,P 为垂线上任一点,设,,OA a OB b OP p ===,则()p b a -等于( ) A .12- B. 12 C .32- D. 32【答案】A【提示】投影法(1,2,,7)i P i =(1,2,,7)i AB AP i ⋅=()2||41||||41AB AB AB AB OP a b p -=⋅-=⋅=-⋅, 又ABO ∆ 是等腰直角三角形,且1==OB OA ,2||=∴AB ,∴()21||412-=-=-⋅AB a b p .【练习3.1】已知,是平面单位向量,且.若平面向量满足,则 . 【答案】332 【提示】方法一:投影法由题意知1||||21==e e ,又121=⋅=⋅e b e b ,由向量数量积的几何意义,可知b 在1e 与2e 上的投影均为1,又2121=⋅e e ,3,21π=e e , 则向量b 如图所示,由几何关系易得332||=b 方法二:坐标法1e 2e 1212e e ⋅=b 121b e b e ⋅=⋅=b =建立如图所示的直角坐标系,设()y x b ,= 易得:()0,11=e ,⎪⎪⎭⎫ ⎝⎛=23,212e ,121=⋅=⋅b e b e ,可得:⎪⎩⎪⎨⎧=+=12321y x x ,解得:⎪⎩⎪⎨⎧==331y x , 332||=∴b 方法三:数形结合121=⋅=⋅b e b e ,01cos ||||cos ||||2211>==∴θθe b e b ,21θθ=∴,又2121=⋅e e ,3,21π=e e , 621πθθ==∴或65π(舍) 代回已知11=⋅e b ,易得332||=b 【练习3.2】在ABC 中,5BC =,G ,O 分别为ABC 的重心和外心,且5OG BC ⋅=,则ABC 的形状是( )A .锐角三角形B .钝角三角形C .直角三角形D .上述三种情况都有可能【答案】B【提示】方法一利用重心和外心的性质,利用投影的思想来处理5=⋅BC OG 这个条件,方法二利用基底代换,把条件5=⋅BC OG 转化为余弦定理形式来判断C ∠为钝角.4、坐标法 几何问题代数化是数学中比较重要的一个思想方法,在平面向量中,这个思想在处理很多问题时比较“直接无脑”。
平面向量应试技巧总结一。
向量有关概念:1。
向量得概念:既有大小又有方向得量,注意向量与数量得区别。
向量常用有向线段来表示,注意不能说向量就就是有向线段,为什么?(向量可以平移)。
如:已知A(1,2),B(4,2),则把向量按向量=(-1,3)平移后得到得向量就是_____(答:(3,0))2.零向量:长度为0得向量叫零向量,记作:,注意零向量得方向就是任意得;3。
单位向量:长度为一个单位长度得向量叫做单位向量(与共线得单位向量就是);4.相等向量:长度相等且方向相同得两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反得非零向量、叫做平行向量,记作:∥,规定零向量与任何向量平行.提醒:①相等向量一定就是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行就是不同得两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有);④三点共线共线;6。
相反向量:长度相等方向相反得向量叫做相反向量。
得相反向量就是-.如下列命题:(1)若,则.(2)两个向量相等得充要条件就是它们得起点相同,终点相同。
(3)若,则就是平行四边形。
(4)若就是平行四边形,则。
(5)若,则。
(6)若,则。
其中正确得就是_______(答:(4)(5)) 二。
向量得表示方法:1.几何表示法:用带箭头得有向线段表示,如,注意起点在前,终点在后;2。
符号表示法:用一个小写得英文字母来表示,如,,等;3。
坐标表示法:在平面内建立直角坐标系,以与轴、轴方向相同得两个单位向量,为基底,则平面内得任一向量可表示为,称为向量得坐标,=叫做向量得坐标表示.如果向量得起点在原点,那么向量得坐标与向量得终点坐标相同。
三.平面向量得基本定理:如果e1与e2就是同一平面内得两个不共线向量,那么对该平面内得任一向量a,有且只有一对实数、,使a=e1+e2。
如(1)若,则______(答:);(2)下列向量组中,能作为平面内所有向量基底得就是A、B、C、D、(答:B);(3)已知分别就是得边上得中线,且,则可用向量表示为_____(答:);(4)已知中,点在边上,且,,则得值就是___(答:0)四.实数与向量得积:实数与向量得积就是一个向量,记作,它得长度与方向规定如下:当〉0时,得方向与得方向相同,当<0时,得方向与得方向相反,当=0时,,注意:≠0。
方法技巧专题26 平面向量解析版【一】向量的概念1.例题【例1】给出下列结论:①数轴上相等的向量,它们的坐标相等;反之,若数轴上两个向量的坐标相等,则这两个向量相等; ②对于任何一个实数,数轴上存在一个确定的点与之对应;③数轴上向量AB 的坐标是一个实数,实数的绝对值为线段AB 的长度,若起点指向终点的方向与数轴同方向,则这个实数取正数,反之取负数;④数轴上起点和终点重合的向量是零向量,它的方向不确定,它的坐标是0. 其中正确结论的个数是( ) A.1 B.2C.3D.4【答案】D【解析】①向量相等,则它们的坐标相等,坐标相等,则向量相等,①正确;②实数和数轴上的点是一一对应的关系,即有一个实数就有一个点跟它对应,有一个点也就有一个实数与它对应,②正确;③数轴用一个实数来表示向量AB ,正负决定其方向,绝对值决定其长度,③正确; ④数轴上零向量其起点和终点重合,方向不确定,大小为0,其坐标也为0,④正确. 【例2】下列命题中,正确的个数是( ) ①单位向量都相等;②模相等的两个平行向量是相等向量;③若a ,b 满足b a >且a 与b 同向,则a b >; ④若两个向量相等,则它们的起点和终点分别重合; ⑤若a b b c ∥,∥,则a c ∥. A .0个 B .1个C .2个D .3个【答案】A【解析】对于①,单位向量的大小相等,但方向不一定相同,故①错误; 对于②,模相等的两个平行向量是相等向量或相反向量,故②错误; 对于③,向量是有方向的量,不能比较大小,故③错误;对于④,向量是可以自由平移的矢量,当两个向量相等时,它们的起点和终点不一定相同,故④错误; 对于⑤,0b =时,a b b c ∥,∥,,则a 与c 不一定平行. 综上,以上正确的命题个数是0. 2.巩固提升综合练习 【练习1】给出下列命题: ①若c b b a ==,则c a=;②若A ,B ,C ,D 是不共线的四点,则DC AB =是四边形ABCD 为平行四边形的充要条件;③b a==且b a //;④若c b b a //,//,则c a //; 其中正确命题的序号是 . 【答案】①②【解析】①正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .②正确.∵DC AB ==且DC AB //, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形,=且DC AB //,,因此,DC AB =.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件. ④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②.【二】平面向量的线性表示1.例题【例1】在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=EB ( )A.AC AB 4143- B. AC AB 4341- C. AC AB 4143+ D. AC AB 4341+ 【解析】根据向量的运算法则,可得,所以,故选A.【例2】在梯形ABCD 中,AB →=3DC →,则BC →等于( )A .-13AB →+23AD → B .-23AB →+43AD → C.23AB →-AD → D .-23AB →+AD →【解析】 在线段AB 上取点E ,使BE =DC ,连接DE ,则四边形BCDE 为平行四边形, 则BC →=ED →=AD →-AE →=AD →-23AB →;故选D.【例3】已知A ,B ,C 为圆O 上的三点,若()12AO AB AC =+则AB 与AC 的夹角为__________. 【解析】由()12AO AB AC =+可得O 为BC 的中点,则BC 为圆O 的直径,即∠BAC =90°,故AB 与AC 的夹角为90°. 2.巩固提升综合练习【练习1】在正方形ABCD 中,E 为DC 的中点,若AE AB AC λμ=+,则λμ+的值为( ) A .12-B .12C .1-D .1【答案】B【解析】由题得1111111122222222AE AD AC BC AC AC AB AC AB AC =+=+=-+=-+, 11,1,22λμλμ∴=-=∴+=.故选:B【练习2】已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足:OP →=13⎪⎭⎫ ⎝⎛++OC OB OA 22121,则P 一定为△ABC 的( )A .重心B .AB 边中线的三等分点(非重心)C .AB 边中线的中点D .AB 边的中点【解析】如图所示:设AB 的中点是E ,△O 是三角形ABC 的重心,OP →=13⎪⎭⎫ ⎝⎛++C O B O A O 22121=13()OE →+2OC →,△2EO →=OC →, △OP →=13()4EO →+OE →=EO →,△P 在AB 边的中线上,是中线的三等分点,不是重心,故选B.【练习3】如图,在平面四边形ABCD 中,,,120,1,AB BC AD CD BAD AB AD ⊥⊥∠===若点E 为边CD 上的动点,则AE BE ⋅的最小值为 ( )A.2116B.32C.2516D.3【答案】A【解析】连接BD,取AD 中点为O,可知ABD △为等腰三角形,而,AB BC AD CD ⊥⊥,所以BCD 为等边三角形,BD =.设(01)DE tDC t =≤≤AE BE ⋅223()()()2AD DE BD DE AD BD DE AD BD DE BD DE DE =+⋅+=⋅+⋅++=+⋅+ =233322t t -+(01)t ≤≤ 所以当14t =时,上式取最小值2116,选A.【三】向量共线的应用1.例题【例1】设两个非零向量a 与b不共线.(1)若b a AB +=,b a BC 82+=,)(3b a CD-=,求证:D B A ,,三点共线;(2)试确定实数k ,使b a k +和b k a+共线.【答案】(1)见解析;(2)k =±1.【解析】(1)证明:∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →,∴AB →,BD →共线.又∵它们有公共点B ,∴A ,B ,D 三点共线.(2)假设k a +b 与a +k b 共线,则存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)b .又a ,b 是两个不共线的非零向量,∴k -λ=λk -1=0. 消去λ,得k 2-1=0,∴k =±1.【例2】已知点()3,1A ,()1,4B -,则与向量AB 的方向相反的单位向量是( ) A.43,55⎛⎫-⎪⎝⎭ B.43,55⎛⎫-⎪⎝⎭ C.34,55⎛⎫-⎪⎝⎭D.34,55⎛⎫- ⎪⎝⎭1.共线向量定理:向量a (0≠a )与b 共线,当且仅当有唯一一个实数λ,使得a b λ=2.平面向量共线定理的三个应用:3.求解向量共线问题的注意事项:(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用;(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线;(3)直线的向量式参数方程:B P A ,,三点共线OB t OA t OP +-=⇔)1((O 为平面内任一点,R t ∈).【解析】(4,3)AB =-,∴向量AB 的方向相反的单位向量为4343(,)(,)5555||AB AB --=-=-,2.巩固提升综合练习【练习1】设P 是△ABC 所在平面内的一点,且CP →=2P A →,则△P AB 与△PBC 的面积的比值是( )A.13B.12C.23D.34【解析】 因为CP →=2P A →,所以|CP →||P A →|=21,又△P AB 在边P A 上的高与△PBC 在边PC 上的高相等,所以S △P AB S △PBC =|P A →||CP →|=12.【练习2】设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________.【解析】因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则12,k k λ=⎧⎨=⎩,所以12λ=.【四】平面向量基本定理及应用 1.例题【例1】如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若(,)DE AB AD R λμλμ=+∈,则λμ+等于( ).A .12-B .12C .1D .1-【答案】A【解析】由平面向量基本定理,化简()11DE DA AE DA AC AD AB AD 44=+=+=-++ 13AB AD 44=-,所以13λ,μ44==-,即1λμ2+=-,【例2】在中,点满足,当点在射线(不含点)上移动时,若,则 的 取值范围为__________.【答案】【解析】因为点在射线(不含点)上,设,又,所以, 所以 , , 故的取值范围.2.巩固提升综合练习【练习1】如图,在平行四边形ABCD 中,E 和F 分别在边CD 和BC 上,且DC →=3 DE →,BC →=3 BF →,若AC →=mAE →+nAF →,其中m ,n △R ,则m +n =________.【解析】 由题设可得AE →=AD →+DE →=AD →+13DC →=AD →+13AB →,AF →=AB →+BF →=AB →+13AD →=AB →+13AD →,又AC→=mAE →+nAF →,故AC →=mAD →+13mAB →+nAB →+13nAD →=(13m +n )AB →+(m +13n )AD →,而AC →=12(AB →+AD →),故⎩⎨⎧13m +n =12m +13n =12△m +n =32. 故应填答案32.ABC ∆D 34BD BC =E AD A AE AB AC λμ=+()221λμ++()1,+∞E AD A ,0AE k AD k =<34BD BC=()()33444kk AE k AB AD k AB AC AB AB AC ⎡⎤=+=+-=+⎢⎥⎣⎦4{34kk λμ==()2222295291114168510k t k k λμ⎛⎫⎛⎫=++=++=++> ⎪ ⎪⎝⎭⎝⎭()221λμ++()1,+∞【练习2】如图,在ABC ∆中,D 是BC 的中点,E 在边AB 上,EA BE 2=,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=【五】平面向量的坐标运算1.例题【例1】已知向量)3,2(=a,)2,3(=b ,则=-b a ( )A .2B .2C .52D .50【答案】A【解析】由已知,(2,3)(3,2)(1,1)-=-=-a b ,所以||-==a b故选A【例2】在平面直角坐标系中,向量n =(2,0),将向量n 绕点O 按逆时针方向旋转π3后得向量m ,若向量a满足|a -m -n |=1,则|a |的最大值是( )A .23-1B .23+1C .3 D.6+2+1 【解析】 由题意得m =(1,3).设a =(x ,y ),则a -m -n =(x -3,y -3), △|a -m -n |2=(x -3)2+(y -3)2=1,而(x ,y )表示圆心为(3,3)的圆上的点, 求|a |的最大值,即求该圆上点到原点的距离的最大值,最大值为23+1.【例3】在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是( )A .[4,6]B .[19-1,19+1]C .[23,27]D .[7-1,7+1]【解析】 法一:设出点D 的坐标,利用向量的坐标运算公式及向量模的运算公式求解.设D (x ,y ),则由|CD →|=1,C (3,0),得(x -3)2+y 2=1. 又△OA →+OB →+OD →=(x -1,y +3), △|OA →+OB →+OD →|=(x -1)2+(y +3)2.△|OA →+OB →+OD →|的几何意义为点P (1,-3)与圆(x -3)2+y 2=1上点之间的距离,由|PC |=7知,|OA →+OB →+OD →|的最大值是1+7,最小值是7-1.故选D.法二:根据向量OA →+OB →的平行四边形法则及减法法则的几何意义,模的几何意义求解.如图,设M (-1,3),则OA →+OB →=OM →,取N (1,-3),△OM →=-ON →.由|CD →|=1,可知点D 在以C 为圆心,半径r =1的圆上, △OA →+OB →+OD →=OD →-ON →=ND →,△|OA →+OB →+OD →|=|ND →|,△|ND →|max =|NC →|+1=7+1,|ND →|min =7-1.2.巩固提升综合练习【练习1】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .22C. 5D .2【解析】如图所示,建立平面直角坐标系:设A (0,1),B (0,0),C (2,0),D (2,1),P (x ,y ),根据等面积公式可得圆的半径r =25,即圆C 的方程是(x -2)2+y 2=45,AP →=(x ,y -1),AB →=(0,-1),AD →=(2,0),若满足AP →=λAB →+μAD →,即⎩⎪⎨⎪⎧x =2μy -1=-λ,μ=x 2,λ=1-y ,所以λ+μ=x 2-y +1,设z =x 2-y +1,即x 2-y +1-z=0,点P (x ,y )在圆(x -2)2+y 2=45上,所以圆心到直线的距离d ≤r ,即|2-z |14+1≤25,解得1≤z ≤3,所以z的最大值是3,即λ+μ的最大值是3.【练习2】如图,正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →,则λ+μ=( )A .2 B.83 C.65 D.85【解析】 法一 如图以AB ,AD 为坐标轴建立平面直角坐标系,设正方形边长为1, AM →=⎪⎭⎫ ⎝⎛21,1,BN →=⎪⎭⎫ ⎝⎛-1,21,AC →=(1,1).△AC →=λAM →+μBN →=λ⎪⎭⎫ ⎝⎛21,1+μ⎪⎭⎫ ⎝⎛-1,21=⎪⎭⎫ ⎝⎛+-μλμλ2,2,△⎩⎨⎧λ-12μ=1,λ2+μ=1,解之得⎩⎨⎧λ=65,μ=25,故λ+μ=85.法二 以AB →,AD →作为基底,△M ,N 分别为BC ,CD 的中点, △AM →=AB →+BM →=AB →+12AD →,BN →=BC →+CN →=AD →-12AB →,因此AC →=λAM →+μBN →=⎪⎭⎫ ⎝⎛-2μλAB →+⎪⎭⎫ ⎝⎛+μλ2AD →,又AC →=AB →+AD →,因此⎩⎨⎧λ-μ2=1,λ2+μ=1,解得λ=65且μ=25.所以λ+μ=85【例1】已知向量(1,)a m =,(,2)b m =,若//a b ,则实数m 等于( ) A.C.D.0【答案】C 【解析】.【例2】若()3,4a =-,则与a 同方向的单位向量0a =____________【答案】34,55⎛⎫- ⎪⎝⎭【解析】与a 同方向的单位向量0134(3,4)(,)555aa a ==-=-2.巩固提升综合练习【练习1】如图,在平面四边形ABCD 中,90CBA CAD ∠=∠=︒,30ACD ∠=︒,AB BC =,点E 为线段BC 的中点.若AC AD AE λμ=+(,R λμ∈),则λμ的值为_______.【解析】以A 为原点,建立如图所示的平面直角坐标系,不妨设AB =BC =2, 则有A (0,0),B (2,0),C (2,2),E (2,1),AC =, AD =,过D 作DF⊥x 轴于F ,∠DAF=180°-90°-45°=45°, DF=32=D(), AC =(2,2),AD=(3-),AE =(2,1),因为AC AD AE λμ=+,所以,(2,2)=λ(3-,3)+μ(2,1),所以,2223μλμ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:43λμ⎧=⎪⎪⎨⎪=⎪⎩λμ【练习2】已知向量a =(3,1),b =(1,3),c =(k ,-2),若(a -c )△b ,则向量a 与向量c 的夹角的余弦值是( )A.55 B.15 C .-55 D .-15【解析】 △a =(3,1),b =(1,3),c =(k ,-2),△a -c =(3-k,3),△(a -c )△b , △(3-k )·3=3×1,△k =2,△a ·c =3×2+1×(-2)=4,△|a |=10,|c |=22, △cos 〈a ,b 〉=a ·c |a |·|c |=410·22=55,故选A.【一】平面向量数量积的概念 1.例题【例1】在如图的平面图形中,已知0120,2,1=∠==MON ON OM ,NA CN MA BM 2,2==则OM BC •的值为( )1.两个向量的夹角:(1)定义:已知两个非零向量a 和b ,作a =,b =,则θ=∠AOB 叫做向量a 与b 的夹角.(2)范围:向量夹角θ的范围是πθ≤≤0;a 与b 同向时,夹角θ=0°;a 与b反向时,夹角θ=180°.(3)向量垂直:如果向量a 与b 的夹角是90°,则a 与b垂直,记作b a ⊥.2.平面向量的数量积的概念:(1)已知两个非零向量a 与b ,则数量θcos b a ⋅叫做a 与b的数量积,记作b a •,即:b a •=θcos b a ⋅,其中θ是a 与b的夹角.规定:00=•a ;(2)b a •的几何意义:数量积b a•等于a 的长度a与b在a的方向上的投影θcos b的乘积. 3.数量积的运算律:(1)交换律:a b b a•=•;(2)分配律:()c b c a c b a •+•=•+;(3)对R ∈λ,()())(b a b a b aλλλ•=•=•.4.计算向量数量积的三种常用方法:(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即b a •=θcos b a⋅,其中θ是a 与b的夹角.(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.OA OBA .B .C .D .0【答案】C【解析】如图所示,连结MN , 由 可知点分别为线段上靠近点的三等分点,则,由题意可知:,,结合数量积的运算法则可得:.本题选择C 选项.【例2】已知AB =(2,3),AC =(3,t ),||BC =1,则AB BC ⋅=( ) A .-3 B .-2 C .2 D .3【答案】C【解析】由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .2.巩固提升综合练习【练习1】如图,AB 是半圆O 的直径,C 、D 是弧AB 的三等分点,M ,N 是线段AB 的三等分点.若6OA =,则MD NC ⋅的值是( )A.12B.C.26D.36【答案】C 【解析】连接,OC OD ,由C 、D 是弧AB 的三等分点,得∠AOD =∠BOC =60°,()()MD NC OD OM OC ON ⋅=-⋅-OD OC OD ON OM OC OM ON =⋅-⋅-⋅+⋅66cos6062cos12026cos12022=⨯⨯-⨯⨯-⨯⨯-⨯18664=++-26=.【练习2】已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>= 22133a c a c ⋅==⨯⋅. 【练习3】已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =__________.【解析】∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t .∴t =2.1.例题【例1】已知平面向量,a b不共线,且1a=,1a b⋅=,记b与2a b+的夹角是θ,则θ最大时,a b-=()A.1B C D.2【答案】C【解析】设|b|=x,则()22·22?2b a b a b b x+=+=+,22|2+|=44?8a b a a b b++=+所以()2·22cos 28b a bb a bx θ++==++易得cos 0θ>,()()()2222222222211cos 124811411222263x x x x xx θ+===+⎛⎫-++--+⎪+++⎝⎭, 当24x =时,2cos θ取得最小值,θ取得最大值, 此时22||=2?12a b a a b b --+=-=故选C.【例2】已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>= 22133a c a c ⋅==⨯⋅. 【例3】设向量a =(1,0),b =(−1,m ),若()a mab ⊥-,则m =_________. 【解析】(1,0),(1,)a b m ==-,(,0)(1,)(1,)ma b m m m m ∴-=--=+-,由()a ma b ⊥-得:()0a ma b ⋅-=,()10a ma b m ∴⋅-=+=,即1m =-.2.巩固提升综合练习【练习1】若两个非零向量a ,b 满足2a b a b a +=-=,则向量a b +与a b -的夹角是( ) A.6πB.2π C.23π D.56π 【解析】将2a b a b a +=-=平方得:22222224a a b b a a b b a +⋅+=-⋅+=,解得:2203a b b a⎧⋅=⎪⎨=⎪⎩ . 222()()1cos ,42||||a b a b a b a b a b a a b a b +⋅--<+->===-+-.所以向量a b +与a b -的夹角是23π.【练习2】已知非零向量a与b满足b a2=,且b b a⊥-)(,则a与b的夹角为( ) A .π6B .π3C .2π3D .5π6【解析】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【练习3】已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 【解析】由|2a -b |=10,得4 a 2-4 a ·b +b 2=10,得4-4×|b |×cos45°+|b |2=10,即-6-22|b |+|b |2=0,解得|b |=32或|b |=-2(舍去).1.例题【例1】已知e b a ,,是平面向量,e 是单位向量.若非零向量a 与e的夹角为3π,向量b 满足0342=+•-b e b ,则b a-的最小值是( )A .1-3B .13+C .2D .3-2 【答案】A 【解析】设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.【例2】在ABC △,若0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭,且12AB AC AB AC ⋅=,则ABC △的形状为( ) A.直角三角形 B.等腰三角形C.等边三角形D.无法判断【答案】C【解析】由题意可得:()cos cos AB BC B AC BC C AB AC BC AB AC AB AC ⎛⎫⨯⨯-⨯⨯ ⎪+⋅=+ ⎪⎝⎭()cos cos BC C B =⨯-,故()cos cos 0BC C B ⨯-=,cos cos ,B C B C ∴==,且:cos 1cos 2AB AC A AB AC A ABACAB AC⨯⨯⋅===⨯,则3A π=, 结合,3B C A π==可知△ABC 为等边三角形.【例3】如图所示,直线x =2与双曲线C :x 24-y 2=1的渐近线交于E 1,E 2两点.记OE 1→=e 1,OE 2→=e 2,任取双曲线C 上的点P ,若OP →=a e 1+b e 2(a ,b △R ),则ab 的值为( )A.14 B .1 C.12 D.18【解析】由题意易知E 1(2,1),E 2(2,-1),△e 1=(2,1),e 2=(2,-1),故OP →=a e 1+b e 2=(2a +2b ,a -b ),又点P 在双曲线上,△(2a +2b )24-(a -b )2=1,整理可得4ab =1,△ab =14.【答案】 A2.巩固提升综合练习【练习1】在平面四边形ABCD 中,o90=∠BAD ,1,2==AD AB ,若CB CA BC BA AC AB •=•+•34, 则CD CB 21+的最小值为____.【答案】【解析】如图,以的中点为坐标原点,以方向为轴正向,建立如下平面直角坐标系.则,,设,则,,因为所以,即:整理得:,所以点在以原点为圆心,半径为的圆上. 在轴上取,连接可得,所以,所以由图可得:当三点共线时,即点在图中的位置时,最小.此时最小为.【练习2】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值. 【答案】(1)5π6x =(2)0x =时,取得最大值,为3; 5π6x =时,取得最小值,为23-.【解析】解:(1)因为co ()s ,sin x x =a ,(3,=b ,a ∥b ,(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅==+a b . 因为,所以ππ7π[,]666x +∈, 从而π1cos()62x -≤+≤. 于是,当ππ66x +=,即0x =时,取到最大值3; 当π6x +=π,即5π6x =时,取到最小值23-.1.已知O,A,B 是平面上的三个点,直线AB 上有一点C ,且20AC CB +=,则OC =( ) A.2OA OB - B.2OA OB -+C.2133OA OB - D.1233OA OB -+【答案】A【解析】因为20AC CB +=,所以2()()0OC OA OB OC -+-=, 所以OC =2OA OB -, 故选:A.2.已知G 是ABC ∆的重心,D 是AB 的中点 则GA GB GC +-=____________ 【答案】4GD【解析】因为D 是AB 的中点,G 是ABC ∆的重心,则2CG GD =,即2GC GD =- 又1()2GD GA GB =+,所以2GA GB GD +=, 所以2(2)4GA GB GC GD GD GD +-=--=, 故答案为:4GD .3.在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且2EF =,则的AE BF ⋅最小值为____.【答案】-3【解析】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=; ∴a=b+2,或b=a+2;且()()12AE a BF b ==-,,,; ∴2AE BF ab ⋅=-+;当a=b+2时,()22222AE BF b b b b ⋅=-++⋅=+-;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b=a+2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.4.在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A ∠=︒ ,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=__________. 【答案】1-.【解析】建立如图所示的直角坐标系,则B ,5()22D . 因为AD ∥BC ,30BAD ∠=︒,所以150CBA ∠=︒, 因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BE y x =-,直线AE的斜率为-y x =.由(3y x y ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-,所以1)E -.所以35(,)(3,1)122BD AE =-=-.5.已知数列{}n a 为等差数列,且满足12107OA a OB a OC =+,若AB AC λ=(R λ∈),点O 为直线BC 外一点,则1009a =( )A . 3B . 2C . 1D .12【答案】D6.设向量a,b 满足|+|=a b ||-=a b ,则a ·b =( ).A .1B .2C .3D .5 【解析】∵|+|=a b (a +b )2=10,即a 2+b 2+2a ·b =10.①∵||-=a b ,∴(a -b )2=6,即a 2+b 2-2a ·b =6.②由①②可得a ·b =1.故选A.7.已知a =(3,2),b =(2,-1),若λa +b 与a +λb 平行,则λ=________.【解析】 △a =(3,2),b =(2,-1),△λa +b =(3λ+2,2λ-1),a +λb =(3+2λ,2-λ),△λa +b △a +λb ,△(3λ+2)(2-λ)=(2λ-1)(3+2λ), 解得λ=±18.在平行四边形ABCD 中,|AD →|=3,|AB →|=5,AE →=23AD →,BF →=13BC →,cos A =35,则|EF →|=( )A.14 B .2 5 C .4 2 D .211 【解析】如图,取AE 的中点G ,连接BG △AE →=23AD →,BF →=13BC →,△AG →=12AE →=13AD →=13BC →=BF →,△EF →=GB →,△|GB →|2=|AB →-AG |2=AB →2-2AB →·AG →+AG →2=52-2×5×1×35+1=20,△|EF →|=|GB →|=25,故选B.9.已知锐角△ABC 的外接圆的半径为1,△B =π6,则BA →·BC →的取值范围为__________.【解析】如图,设|BA →|=c ,|BC →|=a ,△ABC 的外接圆的半径为1,△B =π6.由正弦定理得a sin A =c sin C =2,△a=2sin A ,c =2sin C ,C =5π6-A ,由⎩⎨⎧0<A <π20<5π6-A <π2,得π3<A <π2,△BA →·BC →=ca cos π6=4×32sin A sin C =23sin A sin ⎪⎭⎫ ⎝⎛-A 65π =23sin A ⎪⎪⎭⎫ ⎝⎛+A A sin 23cos 21=3sin A cos A +3sin 2A=32sin2A +3(1-cos2A )2=32sin2A +32cos2A +32=3sin ⎪⎭⎫ ⎝⎛-32πA +32. △π3<A <π2,△π3<2A -π3<2π3,△32<sin ⎪⎭⎫ ⎝⎛-32πA ≤1,△3<3sin ⎪⎭⎫ ⎝⎛-32πA +32≤3+32. △BA →·BC →的取值范围为⎥⎦⎤ ⎝⎛+233,3.10.已知点O ,N ,P 在△ABC 所在的平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,P A →·PB →=PB →·PC →=PC →·P A →,则点O ,N ,P 依次是△ABC 的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心 【解析】因为|OA →|=|OB →|=|OC →|,所以点O 到三角形的三个顶点的距离相等,所以O 为△ABC 的外心;由NA →+NB →+NC →=0,得NA →+NB →=-NC →=CN →,由中线的性质可知点N 在三角形AB 边的中线上,同理可得点N 在其他边的中线上,所以点N 为△ABC 的重心;由P A →·PB →=PB →·PC →=PC →·P A →,得P A →·PB →-PB →·PC →=PB →·CA →=0,则点P 在AC 边的垂线上,同理可得点P 在其他边的垂线上,所以点P 为△ABC 的垂心. 【答案】 C11.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积:a △b =(a 1,a 2)△(b 1,b 2)=(a 1b 1,a 2b 2).已知向量m =⎪⎭⎫ ⎝⎛4,21,n =⎪⎭⎫⎝⎛0,6π,点P 在y =cos x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m △OP →+n (其中O 为坐标原点),则y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ上的最大值是( ) A .4 B .2 C .2 2 D .23【解析】 因为点P 在y =cos x 的图象上运动,所以设点P 的坐标为(x 0,cos x 0),设Q 点的坐标为(x ,y ),则OQ →=m △OP →+n △(x ,y )=⎪⎭⎫ ⎝⎛4,21△(x 0,cos x 0)+⎪⎭⎫ ⎝⎛0,6π△(x ,y )=⎪⎭⎫ ⎝⎛+00cos 4,621x x π△⎩⎪⎨⎪⎧x =12x 0+π6,y =4cos x 0,即⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛-=00cos 462xy x x π△y =4cos ⎪⎭⎫ ⎝⎛-32πx , 即f (x )=4cos ⎪⎭⎫⎝⎛-32πx ,当x △⎥⎦⎤⎢⎣⎡3,6ππ时,由π6≤x ≤π3△π3≤2x ≤2π3△0≤2x -π3≤π3, 所以12≤cos ⎪⎭⎫ ⎝⎛-32πx ≤1△2≤4cos ⎪⎭⎫ ⎝⎛-32πx ≤4,所以函数y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ的最大值是4,故选A. 12.已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小是( ) A .-2 B .-32 C .-43 D .-1【解析】 以BC 为x 轴,BC 的垂直平分线AD 为y 轴,D 为坐标原点建立坐标, 则A (0,3),B (-1,0),C (1,0),设P (x ,y ),所以 P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y )所以PB →+PC →=(-2x ,-2y ),P A →·(PB →+PC →)=2x 2-2y (3-y )=2x 2+2223⎪⎪⎭⎫ ⎝⎛-y -32≥-32当P ⎪⎪⎭⎫ ⎝⎛23,0时,所求的最小值为-32,故选B.13.已知O 是正△ABC 的中心.若CO AB ACλμ→→→=+,其中λ, R μ∈,则λμ的值为( ) A . 14-B . 13-C . 12- D . 2 【解析】由题O 是正△ABC 的中心,延长CO 交AB 与.D 则()()221112,332333CO CD CA CB AC AB AC AB AC ⎡⎤==+=-+-=-⎢⎥⎣⎦ 即121,,.332λλμμ==-=- 故选C.。
高中数学平面向量知识点与典型例题总结(师)《数学》必会基础题型——《平面向量》【基本概念与公式】【任何时候写向量时都要带箭头】1.向量:既有大小又有方向的量。
记作:AB 或a 。
2.向量的模:向量的大小(或长度),记作:||AB 或||a 。
3.单位向量:长度为1的向量。
若e 是单位向量,则||1e =。
4.零向量:长度为0的向量。
记作:0。
【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。
6.相等向量:长度和方向都相同的向量。
7.相反向量:长度相等,方向相反的向量。
AB BA =-。
8.三角形法则:AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数)9.平行四边形法则:以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。
10.共线定理://a b a b λ=?。
当0λ>时,a b 与同向;当0λ<时,a b 与反向。
11.基底:任意不共线的两个向量称为一组基底。
12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a ba b +=+13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?=? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+=题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。
(2)若两个向量不相等,则它们的终点不可能是同一点。
(3)与已知向量共线的单位向量是唯一的。
(4)四边形ABCD 是平行四边形的条件是AB CD =。
(5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。
(6)因为向量就是有向线段,所以数轴是向量。
(7)若a 与b 共线, b 与c 共线,则a 与c 共线。
2023年高考数学----平面向量基本定理及其应用规律方法与典型例题讲解【规律方法】1、应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.2、用基底表示某个向量的基本方法:(1)观察各向量的位置;(2)寻找相应的三角形或多边形;(3)运用法则找关系;(4)化简结果.【典型例题】例1.(2022·全国·模拟预测)如图,在ABC 中,点D 是边AB 上一点且2BD AD =,E 是边BC 的中点,直线AE 和直线CD 交于点F ,若BF 是ABC ∠的平分线,则BCBA =( )A .4B .3C .2D .12 【答案】C【解析】因为BF 是ABC ∠的平分线,所以存在一个实数λ使得BA BC BF BA BC λ⎛⎫ ⎪=+ ⎪⎝⎭,(根据角平分线的条件,选择合适的基底)因为E 是边BC 的中点,所以2BA BE BF BA BC λ⎛⎫ ⎪ ⎪⎝⎭=+,又点A ,E ,F 共线,所以21BA BC λλ+=①.(三点共线的应用:OA OB OC λμ=+(λ,μ为实数),若A ,B ,C 三点共线,则1λμ+=) 因为2BD AD =,所以32BD BC BF BABC λ⎛⎫ ⎪=+ ⎪ ⎪⎝⎭,又点C ,F ,D 共线,所以312BA BC λλ+=②,联立①②,得112BA BC =,则2BC BA =,即2BC BA =.故选:C . 例2.(2022·全国·模拟预测)如图,在平行四边形ABCD 中,点E 在线段BD 上,且EB mDE =(m R ∈),若AC AE AD λμ=+(λ,μ∈R )且20λμ+=,则m =( )A .13B .3C .14D .4【答案】B 【解析】方法1:在平行四边形ABCD 中,因为EB =mDE ,所以()AB AE m AE AD −=−,所以11AE AB m =++1m AD m +, 又∵AB DC AC AD ==−,∴()111m AE AC AD AD m m =−+++, ∴()()11AC m AE m AD =++−,又∵AC AE AD λμ=+,∴1m λ=+,1m μ=−,(平面向量基本定理的应用)又∵20λμ+=,∴()1210m m ++−=,解得3m =,故选:B.方法2:如图,以A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则()0,0A ,设(),0B a ,(),D b c ,∵AB DC = 则 (),C a b c +,又∵EB mDE =,设(),E x y ,则()()11mb a x a x m x b m y m y c mc y m ⎧+⎧=⎪⎪−=−⎪⎪+⇒⎨⎨−=−⎪⎪=⎪⎪+⎩⎩即:,11mb a mc E m m +⎛⎫ ⎪++⎝⎭∴,11mb a mc AE m m +⎛⎫= ⎪++⎝⎭,(),AC a b c =+,(),AD b c =, 又∵AC AE AD λμ=+,20λμ+=∴2AC AE AD μμ=−+∴()(),=2,,11mb a mc a b c b c m m μμ+⎛⎫+−+ ⎪++⎝⎭∴2()121a bm a b b m mc c c m μμμμ−+⎧+=+⎪⎪+⎨−⎪=+⎪+⎩①② 由②得1=1m mμ+−,将其代入①得3m =, 故选:B. 例3.(2022·北京·牛栏山一中高三期中)在平行四边形ABCD 中,E 是边CD 的中点,AE 与BD 交于点F .若AB a =,AD b =,则AF =( )A .1344a b +B .2133a b +r rC .3144a b +D .1233a b + 【答案】D【解析】12AE AD DE AD AB =+=+. 设AF AE λ=()01λ<<, 则1122BF AF AB AD AB AB AD AB λλλ⎛⎫⎛⎫=−=+−=+− ⎪ ⎪⎝⎭⎝⎭, 又BD AD AB =−,且,,B F D 三点共线,则,BF BD 共线,即R μ∃∈,使得BF BD μ=,即12AD AB AD AB λλμμ⎛⎫+−=− ⎪⎝⎭, 又,AB AD 不共线,则有12λμλμ=⎧⎪⎨−=−⎪⎩,解得2323λμ⎧=⎪⎪⎨⎪=⎪⎩,所以,22112123323333AF AE AD AB AB AD a b ⎛⎫==+=+=+ ⎪⎝⎭. 故选:D.例4.(2022·广东广州·高三期中)如图,在平行四边形ABCD 中,,M N 分别为,AB AD 上的点,且42,53AM AB AN AD ==,连接,AC MN 交于P 点,若AP AC λ=,则λ的值为( )A .35B .57C .411D .815【答案】C 【解析】设MP kMN = 则45AP AM MP AB kMN =+=+ 显然2435MN AN AM AD AB =−=− 得()42424153535k AP AB k AD AB AD k AB ⎛⎫=+−=+− ⎪⎝⎭ 显然AC AD AB =+因为AP AC λ= 所以有()()24135k AD k AB AD AB λ+−=+ 即()24135k AD k AB AD AB λλ+−=+ 根据向量的性质可知()23415k k λλ⎧=⎪⎪⎨⎪−=⎪⎩ 解得611411k λ⎧=⎪⎪⎨⎪=⎪⎩故选:C例5.(2022·安徽省舒城中学模拟预测(文))已知平面向量OA ,OB 满足2OA OB ==,2OA OB ⋅=−,点D 满足2DA OD =,E 为AOB 的外心,则OB ED ⋅的值为( )A .83− B .83 C .163− D .163 【答案】A 【解析】2OA OB ==uu r uu u r Q ,cos 4c 2os OA O OA OB B AOB AOB ⋅=−∴⋅∠=∠=uu r uu u r uu r uu u r ,1cos 2AOB ∴∠=−,23AOB π∴∠=, 以O 为原点,OA ,垂直于OA 所在直线为x ,y 轴建立平面直角坐标系,如图所示,则()0,0O ,()2,0A ,(B −,设(),0D x 又2DA OD =,知()(),022,0x x =−,解得23x =,2,03D ⎛⎫∴ ⎪⎝⎭ 又E 为AOB 的外心,123AOE AOB π∴∠=∠=,OE EA =3AOE EAO OEA π∴∠=∠=∠=,AOE ∴为等边三角形,(E ,∴1,3ED ⎛=− ⎝,∴83OB ED ⋅=−. 故选:A例6.(多选题)(2022·湖北·华中师大一附中高三期中)如图,ABC 中,13BD BC =,12AE AC =,AD 与BE 交于点F ,则下列说法正确的是( )A .1233AD AB AC =+ B .12BF BE = C .:1:3BFD AFE S S =△△D .20AF BFCF ++=【答案】BCD 【解析】为了判断下面的有关结论,先引入三点共线向量形式的充要条件,设,,A B C 三点共线,O 为线外一点,则()1OB mOC m OA =+−, 即OA 与OC 前系数和为1,证:,,A B C 三点共线,AB mAC ∴=,()OB OA m OC OA ∴−=−, ()1OB mOC m OA ∴=+−.()11213333AD AB BD AB BC AB AC AB AB AC =+=+=+−=+, 故A 错; ,,B F E 三点共线,()()112AF AB AE AB AC λλλλ−∴=+−=+, ,,A F D 三点共线,233AF AD AB AC μμμ∴==+, 23132μλμλ⎧=⎪⎪∴⎨−⎪=⎪⎩, 解得1234λμ⎧=⎪⎪⎨⎪=⎪⎩,1122AF AB AE ∴=+, ∴ F 为BE 的中点, 12BF BE ∴=,故B 对; 111443BFD ABD ABC S S S ==⨯⋅△△△, 111222AFE ABE ABC S S S ==⨯⋅△△△, :1:3BFD AFE S S ∴=△△,故C 对;取AB 中点G ,BC 中点H ,如下图,则,,G F H 三点共线,()()()()2AF BF CF AF BF BF CF FB FB F FA C ⎡⎤∴++=−++++=++⎣⎦ ()()220FG FH EA EC =−+=−+=,故D 对. 故选:BCD .例7.(2022·黑龙江·哈尔滨三中模拟预测)在ABC 中,13A A D B =,34A A E C =,BE 与DC 交于点F ,若AF AB AC λμ=+,则λμ+的值为__________. 【答案】79【解析】由已知可得,13A A D B =,34A A E C =. 因为,,,D F C 三点共线,设DF mDC =uuu r uuu r ,01m <<. 13DC AC AD AC AB =−=−uuu r uuu r uuu r uuu r uu u r ,则111333m AF AD DF AB m AC AB AB mAC −⎛⎫=+=+−=+ ⎪⎝⎭uu u r uuu r uuu r uu u r uuu r uu u r uu u r uuu r . 1233m m BF AF AB AB mAC AB AB mAC −+=−=+−=−+uu u r uu u r uu u r uu u r uuu r uu u r uu u r uuu r , 又34BE AE AB AB AC =−=−+uur uu u r uu u r uu u r uuu r ,因为,,B E F 三点共线,则存在R n ∈,使得BF nBE =uu u r uur ,即233344m n AB mAC n AB AC nAB AC +⎛⎫−+=−+=−+ ⎪⎝⎭uu u r uuu r uu u r uuu r uu u r uuu r , 因为,,AB AC 不共线,所以有2334m n n m +⎧−=−⎪⎪⎨⎪=⎪⎩,解得2389m n ⎧=⎪⎪⎨⎪=⎪⎩, 所以,1293AF AB AC =+uu u r uu u r uuu r ,即19λ=,23μ=,79λμ+=. 故答案为:79.例8.(2022·全国·高三专题练习)根据毕达哥拉斯定理,以直角三角形的三条边为边长作正方形,从斜边上作出的正方形的面积正好等于在两直角边上作出的正方形面积之和.现在对直角三角形CDE 按上述操作作图后,得如图所示的图形,若AF AB AD x y =+,则x y −=____________.【答案】12− 【解析】如图,以A 为原点,分别以,AB AD 为,x y 轴建立平面直角坐标系,设正方形ABCD 的边长为2a ,则正方形DEHI,正方形EFGC 边长为a 可知()0,0A ,()2,0B a ,()0,2D a,)1DF a =则)1cos30F x a =⋅,)1sin 302F y a a =⋅+,即F ⎫⎪⎪⎝⎭ 又AF AB AD x y =+,()()()2,00,22,2x a y a ax ay ⎫∴=+=⎪⎪⎝⎭即22ax ay ⎧=⎪⎪⎨⎪=⎪⎩,即22ax ay −=,化简得12x y −=− 故答案为:12−。
平面向量的加减平面向量是指在二维平面上具有大小和方向的量,通常用箭头表示。
在平面向量的运算中,加法和减法是最基本且常见的操作。
本文将主要介绍平面向量的加法和减法,并提供相关的例题进行讲解。
一、平面向量的加法平面向量的加法可以理解为将两个向量按照一定规律进行合并的过程。
具体来说,对于两个平面向量A和B,它们的加法运算可以表示为A + B = C,其中C为两个向量相加得到的结果。
在平面向量的加法中,可以利用平行四边形法则或三角形法则来进行计算。
下面我们以平行四边形法则为例进行说明。
1. 平行四边形法则平行四边形法则是指将两个向量的起点放在同一点,然后将它们的向量箭头相连,形成一个平行四边形。
向量C的起点为平行四边形的共同起点,终点为与该点对应的平行四边形对角线的另一个端点。
图示如下:(插入平行四边形示意图)2. 平面向量的加法性质在平面向量的加法中,有以下几个性质:- 交换律:对于任意平面向量A和B,有A + B = B + A。
- 结合律:对于任意平面向量A、B和C,有(A + B) + C = A + (B + C)。
- 零向量:平面上的零向量O满足A + O = A,对于任意平面向量A。
二、平面向量的减法平面向量的减法可以理解为通过改变向量的方向和大小,使得两个向量相减得到一个新的向量。
具体来说,对于两个平面向量A和B,它们的减法运算可以表示为A - B = D,其中D为两个向量相减得到的结果。
在平面向量的减法中,可以利用向量加法的性质进行计算。
具体做法是将B取负后与A相加,即A - B = A + (-B)。
下面我们通过一个例题来进行说明。
例题:已知向量A = 3i + 2j,向量B = 5i - 4j,求向量C = A - B的结果。
解:首先将向量B取负得到-B = -5i + 4j,然后利用向量加法进行计算,有:C = A + (-B)= (3i + 2j) + (-5i + 4j)= (3i + (-5i)) + (2j + 4j)= -2i + 6j因此,向量C的结果为-2i + 6j。
1.平面向量基本定理如果e 1、e 2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21. (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2) (a ≠0),如果a ∥b ,那么x 1y 2-x 2y 1=0;反过来,如果x 1y 2-x 2y 1=0,那么a ∥b . 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √ )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( × )(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ )1.设e 1,e 2是平面内一组基底,那么下列说法正确的是________(填序号). ①若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0;②空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数); ③对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内;④对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对. 答案 ①2.在△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s =________. 答案 0解析 因为CD →=2DB →,所以CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝⎛⎭⎫-23=0. 3.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=BC →-AB →=(-3,-5).4.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.答案 12解析 ∵a ∥b ,∴sin 2θ×1-cos 2 θ=0, ∴2sin θcos θ-cos 2 θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=12.5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧ 4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________. 答案 (1)45 (2)311解析 (1)因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.(2)设BP →=kBN →,k ∈R . 因为AP →=AB →+BP →=AB →+kBN → =AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.思维升华 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.(1)在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________.(用e 1,e 2表示)(2)如图,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则xy x +y的值为________.答案 (1)-23e 1+512e 2 (2)13解析 (1)如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.(2)易知AG →=13AB →+13AC →,MN →=-xAB →+yAC →,故MG →=⎝⎛⎭⎫13-x AB →+13AC →.由于MG →与MN →共线,所以⎝⎛⎭⎫13-x y =-13x , 即xy =13(x +y ),因此xy x +y =13.题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c =________. (2)已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量为__________. 答案 (1)⎝⎛⎭⎫-133,-43 (2)⎝⎛⎭⎫35,-45 解析 (1)由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4).所以c =⎝⎛⎭⎫-133,-43. (2)A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4), ∴与A B →同方向的单位向量为A B→|A B →|=⎝⎛⎭⎫35,-45. 思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.(1)已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为__________.(2)在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →=________.答案 (1)(5,14) (2)(-6,21)解析 (1)设点B 的坐标为(x ,y ),则AB →=(x +1,y -5).由AB →=3a ,得⎩⎪⎨⎪⎧ x +1=6,y -5=9,解得⎩⎪⎨⎪⎧x =5,y =14.(2)BC →=3PC →=3(2PQ →-P A →)=6PQ →-3P A →=(6,30)-(12,9)=(-6,21).题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标例3 (1)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________.(2)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 答案 (1)(-4,-8) (2)(2,4)解析 (1)由a =(1,2),b =(-2,m ),且a ∥b , 得1×m =2×(-2),即m =-4. 从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8). (2)∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 命题点2 利用向量共线求参数例4 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 答案 -54解析 AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5, ∴a =-54.命题点3 求交点坐标例5 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ). 又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0,解得λ=34,所以OP→=34OB →=(3,3),所以点P 的坐标为(3,3). 方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3).思维升华 平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b 的最小值为________.答案3+222解析 由题意得AB →=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λ(b +2),-2=-4λ,整理得2a +b =2, 所以1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+222(当且仅当b =2a 时,等号成立).11.解析法(坐标法)在向量中的应用典例 (14分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.思维点拨 可以建立平面直角坐标系,将向量坐标化,求出点A ,B 的坐标,用三角函数表示出点C 的坐标,最后转化为三角函数求最值. 规范解答解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32).[4分]设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,[8分] 所以x +y =cos α+3sin α=2sin(α+π6),[11分]又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.[14分]温馨提醒 本题首先通过建立平面直角坐标系,引入向量的坐标运算,然后用三角函数的知识求出x +y 的最大值.引入向量的坐标运算使得本题比较容易解决,体现了解析法(坐标法)解决问题的优势,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.[方法与技巧]1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.根据向量共线可以证明点共线;利用两向量共线也可以求点的坐标或参数值. [失误与防范]1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.A 组 专项基础训练 (时间:40分钟)1.如图,设O 是平行四边形ABCD 两对角线的交点,给出下列向量组: ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为该平面内其他向量的基底的是________. 答案 ①③解析 ①中AD →,AB →不共线;③中CA →,DC →不共线.2.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =________.答案 (-1,2)解析 12a =(12,12),32b =(32,-32),故12a -32b =(-1,2). 3.已知a =(1,1),b =(1,-1),c =(-1,2),则c =________. 答案 12a -32b解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,∴⎩⎨⎧λ=12,μ=-32,∴c =12a -32b .4.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=________. 答案 12解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb )∥c ,∴1+λ3=24,∴λ=12.5.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则m n 的值为________.答案 3解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA 为x 轴,OB 为y 轴建立直角坐标系,OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m =3n ,即mn=3. 6.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a =________.答案 2解析 设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ),∵AC →=2CB →,∴⎩⎪⎨⎪⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎪⎨⎪⎧x =3,y =3.∴C (3,3).又∵C 在直线y =12ax 上,∴3=12a ·3,∴a =2.7.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________.答案 (-2,-4)解析 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2). 由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6). 因为AC →=13AB →,DA →=-13BA →,所以有⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2和⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧ x 1=0,y 1=4和⎩⎪⎨⎪⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别为(0,4),(-2,0), 从而CD →=(-2,-4).8.已知向量OA →=(3,-4),OB →=(0,-3),OC →=(5-m ,-3-m ),若点A ,B ,C 能构成三角形,则实数m 满足的条件是________. 答案 m ≠54解析 由题意得AB →=(-3,1),AC →=(2-m,1-m ),若A ,B ,C 能构成三角形,则AB →,AC →不共线,则-3×(1-m )≠1×(2-m ),解得m ≠54. 9.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3.∴点C 的坐标为(5,-3).10.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0, 故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,∴AM →与AB →共线,又有公共点A ,∴A ,B ,M 三点共线.B 组 专项能力提升(时间:15分钟)11.在△ABC 中,点P 是AB 上的一点,且CP →=23CA →+13CB →,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,则t 的值为________.答案 34解析 ∵CP →=23CA →+13CB →, ∴3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →.∴2AP →=PB →,因此P 为AB 的一个三等分点.∵A ,M ,Q 三点共线,∴CM →=xCQ →+(1-x )CA →=x 2CB →+(x -1)AC → (0<x <1). ∵CB →=AB →-AC →,∴CM →=x 2AB →+⎝⎛⎭⎫x 2-1AC →. ∵CP →=CA →-P A →=-AC →+13AB →, 且CM →=tCP →(0<t <1),∴x 2AB →+⎝⎛⎭⎫x 2-1AC →=t ⎝⎛⎭⎫-AC →+13AB →. ∴x 2=t 3且x 2-1=-t ,解得t =34. 12.已知向量a =(1,2),b =(0,1),设u =a +k b ,v =2a -b ,若u ∥v ,则实数k 的值为________.答案 -12解析 ∵u =(1,2)+k (0,1)=(1,2+k ),v =(2,4)-(0,1)=(2,3),又u ∥v ,∴1×3=2(2+k ),得k =-12. 13.已知向量a =(1,1),b =(1,-1),c =(2cos α,2sin α)(α∈R ),实数m ,n 满足m a +n b =c ,则(m -3)2+n 2的最大值为________.答案 16解析 由m a +n b =c ,可得⎩⎪⎨⎪⎧m +n =2cos α,m -n =2sin α,故(m +n )2+(m -n )2=2,即m 2+n 2=1,故点M (m ,n )在单位圆上,则点P (3,0)到点M 的距离的最大值为OP +1=3+1=4,故(m -3)2+n 2的最大值为42=16.14.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________.答案 3解析 ∵MA →+MB →+MC →=0,∴M 为△ABC 的重心.如图所示,连结AM 并延长交BC 于D ,则D 为BC 的中点.∴AM →=23AD →. 又AD →=12(AB →+AC →), ∴AM →=13(AB →+AC →), 即AB →+AC →=3AM →,∴m =3.15.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0)解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0. 又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).。
微专题平面向量【秒杀总结】结论1:极化恒等式1.平行四边形平行四边形对角线的平方和等于四边的平方和:|a +b |2+|a -b |2=2(|a|2+|b |2)证明:不妨设AB =a ,AD =b ,则AC =a +b ,DB =a -bAC 2=AC 2=a +b 2=a 2+2a ⋅b +b 2(1)DB 2=DB 2=a -b 2=a 2-2a ⋅b +b 2(2)(1)(2)两式相加得:AC 2+DB 2=2a 2+b 2=2AB 2+AD 2 2.极化恒等式:上面两式相减,得:14a +b 2-a -b 2 ----极化恒等式(1)平行四边形模式:a ⋅b =14AC 2-DB 2几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14.(2)三角形模式:a ⋅b =AM 2-14DB 2(M 为BD 的中点)结论2:矩形大法:矩形所在平面内任一点到其对角线端点距离的平方和相等.已知点O 是矩形ABCD 与所在平面内任一点,证明:OA 2+OC 2=OB 2+OD 2.【证明】(坐标法)设AB =a ,AD =b ,以AB 所在直线为轴建立平面直角坐标系xoy ,则B (a ,0),D (0,b ),C (a ,b ),设O (x ,y ),则OA 2+OC 2=(x 2+y 2)+[(x -a )2+(y -b )2]OB 2+OD 2=[(x -a )2+y 2]+[x 2+(y -b )2]∴OA 2+OC 2=OB 2+OD 2结论3:三点共线的充要条件设OA 、OB 、OP 是三个不共线向量,则A 、B 、P 共线⇔存在λ∈R 使OP =(1-λ)OA +λOB .特别地,当P 为线段AB 的中点时,OP =12OA+12OB .结论4:等和线【基本定理】(一)平面向量共线定理已知OA =λOB +μOC ,若λ+μ=1,则A ,B ,C 三点共线;反之亦然.(二)等和线平面内一组基底OA ,OB 及任一向量OP ,OP =λOA +μOB (λ,μ∈R ),若点P 在直线AB 上或者在平行于AB 的直线上,则λ+μ=k (定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线.(1)当等和线恰为直线AB 时,k =1;(2)当等和线在O 点和直线AB 之间时,k ∈(0,1);(3)当直线AB 在点O 和等和线之间时,k ∈(1,+∞);(4)当等和线过O 点时,k =0;(5)若两等和线关于O 点对称,则定值k 互为相反数;结论5:奔驰定理【奔驰定理】若O 为ΔABC 内任一点,且αOA +βOB +γOC =0 ,则S ΔBOC :S ΔAOC :S ΔAOB =α:β:γ【典型例题】例1.在ΔABC 中,M 是BC 的中点,AM =3,BC =10,则AB ⋅AC =____.【答案】-16【解析】因为M 是BC 的中点,由极化恒等式得:AB ⋅AC =AM 2-14BC 2=9-14×100=-16.例2.正三角形内接于半径为2的圆O ,点P 是圆O 上的一个动点,则PA ⋅PB的取值范围是.【答案】[-2,6]【解析】取AB 的中点D ,连结CD ,因为三角形ABC 为正三角形,所以O 为三角形ABC 的重心,O 在CD 上,且OC =2OD =2,所以CD =3,AB =23(也可用正弦定理求AB )又由极化恒等式得:PA ⋅PB =PD 2-14AB 2=PD 2-3因为P 在圆O 上,所以当P 在点C 处时,|PD |max =3当P 在CO 的延长线与圆O 的交点处时,|PD |min =1所以PA ⋅PB∈[-2,6]例3.已知圆C 1:x 2+y 2=9与C 2:x 2+y 2=36,定点P (2,0),A 、B 分别在圆C 1和圆C 2上,满足PA ⊥PB ,则线段AB 的取值范围是.【答案】[41-2,41+2]【解析】以PA ,PB 为邻边作矩形PAQB ,则|AB |=|PQ |由|OP |2+|OQ |2=|OA |2+|OB |2得|OQ |2+4=9+36,即|OQ |=41,Q 的轨迹是以O 为圆心,半径为41的圆,|PM |=41-2,|PN |=41+2,∴|AB |=|PQ |∈[41-2,41+2].例4.在平面内,已知AB 1 ⊥AB 2 ,OB 1 =OB 2 =1,AP =AB 1 +AB 2 ,若|OP |<12,则|OA |的取值范围是()A.0,52B.52,72C.52,2D.72,2【答案】D【解析】因为AP =AB 1 +AB 2,所以四边形AB 1PB 2是平行四边形,又AB 1 ⊥AB 2 ,所以四边形AB 1PB 2是矩形,从而|OA |2+|OP |2=|OB 1 |2+|OB 2 |2=2,因为|OP |<12,所以74<|OA |2≤2,即72<|OA |≤2.例5.在△ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =13CA+λCB ,则λ=()A.13B.23C.-13D.-23【答案】B【解析】∵AD =2DB ,∴CD =CA +AD =CA +23AB =CA +23(CB -CA )=13CA +23CB又∵CD =13CA +λCB ,∴λ=23.例6.给定两个长度为1的平面向量OA 和OB,它们的夹角为1200,点C 在以O 为圆心的圆弧AB 上变动.若OC =xOA +yOB,其中x ,y ∈R ,则x +y 的最大值是__________.【答案】2【解析】(秒杀)作平行于AB 的直线l ,当且仅当l 与圆相切时,x +y 的取最大值2.令OC =λOD ,则由OC =λOD =xOA +yOB得OD =x λOA+y λOB .由A ,B ,D 三点共线可得x λ+y λ=1⇒x +y =λ=OCOD ≤2【过关测试】一、单选题1.(2023·北京西城·高三统考期末)在△ABC 中,AC =BC =1,∠C =90°.P 为AB 边上的动点,则PB⋅PC的取值范围是( )A.-14,1B.-18,1C.-14,2D.-18,2【答案】B【解析】以C 为坐标原点,CA ,CB 所在直线分别为x 轴,y 轴,建立直角坐标系,则A 0,1 ,B 1,0 ,直线AB 所在直线方程为y =-x +1,设P t ,-t +1 ,t ∈0,1 ,则PB=1-t ,t -1 ,PC =-t ,t -1 ,PB ⋅PC =-t 1-t +t -1 2=2t -34 2-18,当t =0时,PB ⋅PC max =1,当t =34时,PB ⋅PC min =-18,故其取值范围为-18,1,故选:B .2.(2023·北京昌平·高三统考期末)已知向量a ,b ,c 满足a =2,b =1,a ,b =π4,c -a⋅c -b =0,则c的最大值是( )A.2-1 B.5-12C.5+12D.2+1【答案】C【解析】把a ,b平移到共起点,以b 的起点为原点,b 所在的直线为x 轴,b 的方向为x 轴的正方向,见下图,设OB =b ,OA =a ,OC =c ,则c -a =AC,c -b =BC又∵c -a ⋅c -b =0∴AC ⊥BC 则点C 的轨迹为以AB 为直径的圆,又因为a =2,b =1,a ,b=π4,所以B 1,0 A 1,1 故以AB 为直径的圆为x -1 2+y -122=14,所以c 的最大值就是以AB 为直径的圆上的点到原点距离的最大值,所以最大值为12+122+12=5+12故选:C3.(2023·广西桂林·统考一模)如图,在△ABC 中,M 为线段BC 的中点,G 为线段AM 上一点且AG=2GM ,过点G 的直线分别交直线AB 、AC 于P 、Q 两点,AB =xAP (x >0),AC =yAQ (y >0),则1x+1y +1的最小值为( )A.34B.1C.43D.4【答案】B【解析】由于M 为线段BC 的中点,则AM =12AB +12AC又AG =2GM ,所以AM =32AG ,又AB =xAP (x >0),AC =yAQ (y >0)所以32AG=x 2AP +y 2AQ ,则AG =x 3AP +y 3AQ因为G ,P ,Q 三点共线,则x3+y 3=1,化得x +y +1 =4由1x +1y +1=14x +y +1 1x +1y +1 =14x y +1+y +1x+2 ≥142x y +1⋅y +1x+2=1当且仅当x y +1=y +1x 时,即x =2,y =1时,等号成立,1x +1y +1的最小值为1故选:B4.(2023·全国·高三专题练习)如图,在半径为4的扇形AOB 中,∠AOB =120∘,点P 是AB上的一点,则AP ·BP的最小值为( )A.-8 B.-3C.-2D.-4【答案】A【解析】设∠BOP =θ0≤θ≤2π3 ,如图,以OB 所在的直线为x 轴,以OB 的垂线为y 轴,建立平面直角坐标系.则由已知可得,O 0,0 ,B 4,0 ,∠AOB =2π3,根据三角函数的定义知A -2,23 ,P 4cos θ,4sin θ .则AP =4cos θ+2,4sin θ-23 ,BP =4cos θ-4,4sin θ ,所以,AP ·BP =4cos θ+2,4sin θ-23 ⋅4cos θ-4,4sin θ =-8cos θ+3sin θ +8=-16sin θ+π6+8,因为,0≤θ≤2π3,所以π6≤θ+π6≤5π6.则,当θ+π6=π2,即θ=π3时,该式子有最小值为-8.故选:A .5.(2023·全国·高三专题练习)在平面内,定点A ,B ,C ,D 满足|DA |=|DB|=|DC |,DA ⋅DB =DB ⋅DC =DC ⋅DA =-2,动点P ,M 满足|AP |=1,PM =MC ,则|BM |2的最大值是( )A.434B.494C.47+634D.37+2334【答案】B【解析】由题意知|DA |=|DB |=|DC |,即点D 到A ,B ,C 三点的距离相等,可得D 为△ABC 的外心,又由DA ⋅DB =DB ⋅DC =DC ⋅DA=-2,可得DA ⋅DB -DB ⋅DC =DB ⋅(DA -DC )=DB ⋅CA=0,所以DB ⊥AC ,同理可得DA ⊥BC ,DC ⊥AB ,所以D 为△ABC 的垂心,所以△ABC 的外心与垂心重合,所以△ABC 为正三角形,且D 为△ABC 的中心,因为DA ⋅DB =DA DB cos ∠ADB =DA 2×-12 =-2,解得DA =2,所以△ABC 为边长为23的正三角形,如图所示,以A 为原点建立直角坐标系,则B (3,-3),C (3,3),D (2,0),因为AP=1,可得设P (cos θ,sin θ),其中θ∈[0,2π],又因为PM =MC ,即M 为PC 的中点,可得M 3+cos θ2,3+sin θ2,所以BM 2=3+cos θ2-3 2+3+sin θ2+3 2=37+12sin θ-π6 4≤37+124=494.即BM 2的最大值为494.故选:B .6.(2023·全国·高三专题练习)△ABC 中,AB =2,∠ACB =π4,O 是△ABC 外接圆圆心,是OC ⋅AB +CA ⋅CB的最大值为( )A.0 B.1C.3D.5【答案】C【解析】过点O 作OD ⊥AC ,OE ⊥BC ,垂足分别为D ,E ,如图,因O 是△ABC 外接圆圆心,则D ,E 分别为AC ,BC 的中点,在△ABC 中,AB =CB -CA ,则|AB |2=|CA |2+|CB |2-2CA ⋅CB ,即CA ⋅CB =|CA |2+|CB|2-22,CO ⋅CA =CO CA cos ∠OCA = CD ⋅ CA =12 CA 2,同理CO ⋅CB =12|CB |2,因此,OC ⋅AB +CA ⋅CB =OC ⋅CB -CA+CA ⋅CB =CO ⋅CA -CO ⋅CB +CA ⋅CB=12|CA |2-12|CB |2+|CA |2+|CB |2-22=|CA |2-1,由正弦定理得:|CA |=|AB|sin B sin ∠ACB =2sin B sin π4=2sin B ≤2,当且仅当B =π2时取“=”,所以OC ⋅AB +CA ⋅CB的最大值为3.故选:C7.(2023·全国·高三专题练习)AB 为⊙C :(x -2)2+(y -4)2=25的一条弦,AB =6,若点P 为⊙C 上一动点,则PA ⋅PB的取值范围是( )A.[0,100] B.[-12,48]C.[-9,64]D.[-8,72]【答案】D【解析】取AB 中点为Q ,连接PQ∴PA +PB =2PQ ,PA -PB =BA ∴PA ⋅PB =14(PA +PB )2-(PA -PB )2=144|PQ |2-|BA |2 ,又∵|BA |=6,CQ =25-62 2=4∴PA ⋅PB =|PQ|2-9,∵点P 为⊙C 上一动点,∴|PQ |max =5+CQ =9,|PQ |min =5-CQ =1∴PA ⋅PB的取值范围[-8,72].故选:D .8.(2023·全国·高三专题练习)在△ABC 中,D 为三角形所在平面内一点,且AD =13AB +12AC ,则S △BCDS △ACD=( )A.16B.12C.13D.23【答案】B【解析】如图,设AD 交BC 于E ,且AE =xAD =x 3AB +x 2AC,由B ,E ,C 三点共线可得:x3+x 2=1⇒x =65,∴AE =25AB +35AC ,∴25AE -AB =35AC-AE ⇒2BE =3EC .设S △CED =2y ,则S △BED =3y ,∴S △BCD =5y .又AE =65AD ⇒AD =5DE ,∴S △ACD =10y ,∴S △BCD S △ACD =5y 10y =12.故选:B .9.(2023·全国·高三专题练习)已知向量a ,b ,c 满足a =4,a 在b 方向上的投影为2,c ⋅c -a=-3,则|b -c|的最小值为( )A.3-1B.3+1C.23-2D.23+2【答案】A【解析】设a ,b 向量的夹角为θ,则a cos θ=2,则cos θ=2a =24=12,因为θ∈0,π ,所以θ=π3.不妨设a =OA =2,23 ,b =OB =m ,0 m >0 ,设c =OC=x ,y ,则c ⋅c -a=x ,y ⋅x -2,y -23 =-3,整理得x -1 2+y -3 2=1,所以点C 的轨迹是以1,3 为圆心,半径r =1的圆,记圆心为D ,又b -c =m -x ,-y ,即|b -c |=m -x 2+y 2=BC ,当直线BC 过圆心D ,且垂直于x 轴时,BC 可取得最小值,即BC min =3-r =3-1.故选:A .10.(2023·全国·高三专题练习)已知边长为2的菱形ABCD 中,点F 为BD 上一动点,点E 满足BE =2EC ,AE ⋅BD =-23,则AF ⋅EF 的最小值为( )A.-23B.-43C.-15275D.-7336【答案】D【解析】由题意知:BE =23BC ,设∠DAB =θ∴AE ⋅BD =AB +BE ⋅AD -AB =AB ⋅AD -AB 2+23BC ⋅AD -23BC ⋅AB=4cos θ-4+83-83cos θ=-23∴cos θ=12 ⇒θ=π3以AC 与BD 交点为原点,AC 为x 轴,BD 为y 轴建立如下图所示的平面直角坐标系:∴A -3,0 ,E 233,-13,设F 0,t 则AF =3,t ,EF =-233,t +13 ∴AF ⋅EF =-2+t t +13 =t 2+13t -2当t =-16时,AF ⋅EF min =136-118-2=-7336本题正确选项:D11.(2023·全国·高三专题练习)P 是ΔABC 所在平面上的一点,满足PA +PB +PC =2AB,若S ΔABC =6,则ΔPAB 的面积为( )A.2 B.3C.4D.8【答案】A【解析】∵PA +PB +PC =2AB =2PB -PA ,∴3PA =PB -PC =CB ,∴PA ∥CB ,且方向相同.∴S ΔABC S ΔPAB =BCAP =CB PA =3,∴S ΔPAB =S ΔABC3=2.选A .12.(2023·全国·高三专题练习)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD,则λ+μ的最大值为A.3B.22C.5D.2【答案】A【解析】[方法一]:特殊值法x =2,y =1+255λ+μ=x 2+y =1+255>22,故选A [方法二]:解析法如图所示,建立平面直角坐标系.设A 0,1 ,B 0,0 ,C 2,0 ,D 2,1 ,P x ,y ,易得圆的半径r =25,即圆C 的方程是x -2 2+y 2=45,AP =x ,y -1 ,AB =0,-1 ,AD =2,0 ,若满足AP =λAB +μAD ,则x =2μy -1=-λ,μ=x 2,λ=1-y ,所以λ+μ=x2-y +1,设z =x 2-y +1,即x 2-y +1-z =0,点P x ,y 在圆x -2 2+y 2=45上,所以圆心(2,0)到直线x 2-y +1-z =0的距离d ≤r ,即2-z 14+1≤25,解得1≤z ≤3,所以z 的最大值是3,即λ+μ的最大值是3,故选A .二、多选题13.(2023·全国·高三专题练习)在△ABC 中,AB =AC =3,BC =4,O 为△ABC 内的一点,设AO =λAB +μAC ,则下列说法正确的是( )A.若O 为△ABC 的重心,则λ+μ=23 B.若O 为△ABC 的内心,则λ+μ==25C.若O 为△ABC 的外心,则λ+μ=910 D.若O 为△ABC 的垂心,则λ+μ=15【答案】ACD【解析】对于A 选项,重心为中线交点,则OA +OB +OC =0 ,即AO =OB +OC,因为AO =λAB +μAC =λOB -OA +μOC -OA ,则AO =λ1-λ-μOB +μ1-λ-μOC ,所以λ1-λ-μ=1,μ1-λ-μ=1,所以λ+μ=23,故A 正确;对于B 选项,内心为角平分线交点,则BC ⋅OA +AC ⋅OB +AB ⋅OC =0,即4OA +3OB +3OC =0 ,所以AO =34OB +34OC ,由A 选项,则λ1-λ-μ=34,μ1-λ-μ=34,所以λ+μ=35,故B 错误;对于C 选项,外心为垂直平分线交点,即△ABC 的外接圆圆心,因为AB =AC =3,设D 为边BC 的中点,所以AD =12AB +AC ,AO ⎳AD ,所以λ=μ,因为AO =λAB +μAC ,所以AO 2=λ2AB 2+λ2AC 2+2λ2AB ⋅AC ,在△ABC 中,cos A =AB 2+AC 2-BC 22AB ⋅AC=9+9-162×3×3=19,则sin A =1-cos 2A =459,BCsin A=2R =2AO ,所以42×4592=9λ2+9λ2+2λ2⋅3×3×19,易知λ>0,所以λ=920,所以λ+μ=910,故C 正确;对于D 选项,垂心为高线交点,设BE ⊥AC ,垂足为边AC 上点E ,则B ,E ,O 共线,由C 选项,因为AO =λAB +μAC,λ=μ,所以AO ⋅AC =λOB -OA⋅AC +λAC 2,因为OB ⊥AC ,则AO ⋅AC =-λOA ⋅AC +λAC 2,即1-λ AO ⋅AC =λAC 2,因为AO =AE +EO ,所以1-λ AE +EO ⋅AC =λAC 2,即1-λ AE ⋅AC =λAC 2,因为S △ABC =12AB ⋅AC ⋅sin A =12AC ⋅BE ,所以BE =453,所以AE =AB 2-BE 2=32-4532=13,所以1-λ ×13×3=λ×32,解得λ=110,所以λ+μ=15,故D 正确;故选:ACD14.(2023·全国·模拟预测)已知a ,b ,c 是互不相等的非零向量,其中a ,b 是互相垂直的单位向量,c =xa+ybx ,y ∈R ,记OA =a ,OB =b ,OC =c ,则下列说法正确的是( )A.若a -c⋅b -c =0,则O ,A ,B ,C 四点在同一个圆上B.若a -c ⋅b -c =0,则c的最大值为2C.若c =1,则a -c ⋅b -c 的最大值为22+1D.若c=1,则x +y 的最小值为-2【答案】AD【解析】对于A 选项,如图,若a -c ⋅b -c =0,则CA ⋅CB =0,所以CA ⊥CB ,又a ⊥b ,所以∠AOB +∠ACB =π,所以O ,A ,B ,C 四点在同一个圆上,故A 正确;对于B 选项,若a -c⋅b -c =0,由A 选项知,O ,A ,B ,C 四点在同一个圆上,又c =OC ,则其长度为圆上弦的长度.当线段OC 为该圆的直径时,c最大,且最大值等于AB =a 2+b 2=2,故B 错误;对于C 选项,由题可得A ,B ,C 均在以O 为圆心、1为半径的圆上,设OA =cos α,sin α ,OC =cos β,sin β ,又OA ⊥OB ,则OB =cos π2+α ,sin π2+α =-sin α,cos α .其中α,β∈0,2π .则a -c⋅b -c =OA -OC ⋅OB -OC=cos α-cos β ⋅-sin α-cos β +sin α-sin β ⋅cos α-sin β =sin αcos β-sin βcos α-cos αcos β+sin αsin β +1=sin α-β -cos α-β +1=1+2sin α-β-π4≤1+2,当α-β=3π4时取等号.故C 错误.对于D 选项,由C 选项分析结合c =xa+yb 可知cos β=x cos α-y sin αsin β=x sin α+y cos α .又c=1,则x cos α-y sin α 2+x sin α+y cos α 2=1⇒x 2cos 2α+sin 2α +y 2cos 2α+sin 2α -2xy cos αsin α+2xy cos αsin α=1⇒x 2+y 2=1,则由重要不等式有:x +y 2=x 2+y 2+2xy ≤2x 2+y 2 =2.得x +y ≥-2,当且仅当x =y =-22时取等号.故D 正确.故选:AD15.(2023·全国·高三专题练习)“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车,(Mercedesbenz )的log o 很相似,故形象地称其为“奔驰定理”,奔驰定理:已知O 是△ABC内一点,△BOC ,△AOC ,△AOB 的面积分别为S A ,S B ,S C ,且S A ⋅OA +S B ⋅OB +S C ⋅OC =0.设O 是锐角△ABC 内的一点,∠BAC ,∠ABC ,∠ACB 分别是的△ABC 三个内角,以下命题正确的有( )A.若OA +2OB +3OC =0 ,则S A :S B :S C =1:2:3B.若OA =OB =2,∠AOB =5π6,2OA +3OB +4OC =0 ,则S △ABC =92C.若O 为△ABC 的内心,3OA +4OB +5OC =0 ,则∠C =π2D.若O 为△ABC 的垂心,3OA +4OB +5OC =0 ,则cos ∠AOB =-66【答案】ACD【解析】对A ,由奔驰定理可得,OA +2OB +3OC =S A ⋅OA +S B ⋅OB+S C ⋅OC =0 ,又OA 、OB 、OC不共线,故S A :S B :S C =1:2:3,A 对;对B ,S C =12×2×2×sin ∠AOB =1,由2OA +3OB +4OC =0 得S A :S B :S C =2:3:4,故S △ABC =94S C =94,B 错;对C ,若O 为△ABC 的内心,3OA +4OB +5OC =0 ,则S A :S B :S C =3:4:5,又S A :S B :S C =12ar :12br :12cr =a :b :c (r 为内切圆半径),三边满足勾股定律,故∠C =π2,C 对;对D ,若O 为△ABC 的垂心,则∠BOC +∠A =π,OB ⋅OC =OB ⋅OC cos ∠BOC =-OB⋅OCcos ∠A ,又OB ⋅AC =OB ⋅OC -OA =0⇔OB ⋅OC =OB ⋅OA ⇔OCcos ∠A =OA cos ∠C ,同理OC cos ∠B =OB cos ∠C ,OA cos ∠B =OB cos ∠A ,∴OA :OB :OC=cos ∠A :cos ∠B :cos ∠C ,∵3OA +4OB +5OC =0 ,则S A :S B :S C =3:4:5,且S A :S B :S C =12OB OC sin ∠BOC :12OA OC sin ∠AOC :12OAOB sin ∠AOB=cos ∠B cos ∠C sin ∠A :cos ∠A cos ∠C sin ∠B :cos ∠A cos ∠B sin ∠C =sin ∠A cos ∠A :sin ∠B cos ∠B :sin ∠C cos ∠C=tan ∠A :tan ∠B :tan ∠C 如图,D 、E 、F 分别为垂足,设AF =m ,tan ∠A =3t t >0 ,则FC =3mt ,BF =34m ,AB =74m ,AC =9t 2+1⋅m ,又AE :EC =BE tan ∠A :BE tan ∠C =5:3,故AE =58AC ,BE =3t ⋅AE =15t8AC ,由AB ⋅FC =AC ⋅BE ⇔74m ⋅3mt =15t 89t 2+1 m 2,解得t =55,由tan 2∠C =1cos 2∠C-1=5⇒cos ∠C =66,故cos ∠AOB =-cos ∠C =-66,D 对故选:ACD 16.(2023·全国·高三专题练习)重庆荣昌折扇是中国四大名扇之一,始于1551年明代嘉靖年间,明末已成为贡品人朝,产品以其精湛的工业制作而闻名于海内外.经历代艺人刻苦钻研、精工创制,荣昌折扇逐步发展成为具有独特风格的中国传统工艺品,其精雅宜士人,其华灿宜艳女,深受各阶层人民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长,偏称游人携袖里,不劳侍女执花傍;宫罗旧赐休相妒,还汝团圆共夜凉”图1为荣昌折扇,其平面图为图2的扇形COD ,其中∠COD=2π3,OC =3OA =3,动点P 在CD 上(含端点),连接OP 交扇形OAB 的弧AB 于点Q ,且OQ =xOC +yOD ,则下列说法正确的是( )图1 图2A.若y =x ,则x +y =23B.若y =2x ,则OA ⋅OP=0C.AB ⋅PQ≥-2 D.PA ⋅PB ≥112【答案】ABD【解析】如图,作OE ⊥OC ,分别以OC ,OE 为x ,y 轴建立平面直角坐标系,则A (1,0),C (3,0),B -12,32 ,D -32,332 ,设Q (cos θ,sin θ),θ∈0,2π3,则P (3cos θ,3sin θ),由OQ =xOC +yOD 可得cos θ=3x -32y ,sin θ=332y ,且x >0,y >0 ,若y =x ,则cos 2θ+sin 2θ=3x -32x 2+332x2=1,解得x =y =13 ,(负值舍去),故x +y =23,A 正确;若y =2x ,则cos θ=3x -32y =0,OA ⋅OP =(1,0)⋅(0,1)=0,故B 正确;AB ⋅PQ =-32,32 ⋅(2cos θ,2sin θ)=3sin θ-3cos θ=23sin θ-π3 ,由于θ∈0,2π3 ,故θ-π3∈-π3,π3,故23sin θ-π3 ≥-3,故C 错误;由于PA =(3cos θ-1,3sin θ),PB =3cos θ+12,3sin θ-32,故PA ⋅PB =(3cos θ-1,3sin θ)⋅3cos θ+12,3sin θ-32 =172-3sin θ+π6 ,而θ+π6∈π6,5π6,故PA ⋅PB =172-3sin θ+π6 ≥172-3=112,故D 正确,故选:ABD17.(2023·全国·高三专题练习)如图,圆О是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM =xBA +yBD(x ,y ∈R ),则2x +y 可以取值为( )A.16B.13C.23D.1【答案】CD【解析】根据三角形面积公式得到12×l 周长×r =S =12×AB ×AC ×sin60°,可得到内切圆的半径为1;以D 点为原点,BC 所在直线为x 轴,AD 所在直线为y 轴,建立坐标系,可得到点的坐标为:B (-3,0),C (3,0),A (0,3),D (0,0),M (cos θ,1+sin θ),BM =(cos θ+3,1+sin θ),BA =(3,3),BD=(3,0),∵BM =xBA +yBD∴BM=(cos θ+3,1+sin θ)=(3x +3y ,3x ),∴cos θ=3x +3y -3,sin θ=3x -1,∴x =1+sin θ3y =cos θ3-sin θ3+23,2x +y =cos θ3+sin θ3+43=23sin θ+π3 +43,∵-1≤sin θ+π3≤1,∴23≤2x +y ≤2,故选项CD 满足.故选:CD .18.(2023·全国·高三专题练习)“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedesbenz )的log o 很相似,故形象地称其为“奔驰定理”.奔驰定理:已知O 是△ABC内的一点,△BOC 、△AOC 、△AOB 的面积分别为S A 、S B 、S C ,则S A ⋅OA +S B ⋅OB +S C ⋅OC =0.若O 是锐角△ABC 内的一点,∠BAC 、∠ABC 、∠ACB 是△ABC 的三个内角,且点O 满足OA ⋅OB =OB ⋅OC=OC ⋅OA,则( )A.O 为△ABC 的垂心B.∠AOB =π-∠ACBC.OA :OB :OC=sin ∠BAC :sin ∠ABC :sin ∠ACBD.tan ∠BAC ⋅OA +tan ∠ABC ⋅OB +tan ∠ACB ⋅OC =0【答案】ABD【解析】A 项:OA ⋅OB =OB ⋅OC ,即OA ⋅OB -OB ⋅OC =0,OB ⋅OA -OC =0,OB ⋅CA =0,OB ⊥CA ,同理可得OA ⊥CB ,OC⊥AB ,故O 为△ABC 的垂心,A 正确;B :如图,延长AO 交BC 于点D ,延长BO 交AC 于点E ,延长CO 交AB 于点F ,因为OA ⊥CB ,所以∠ADB =90∘,∠BAO =90∘-∠ABC ,因为OB⊥CA ,所以∠BEA =90∘,∠ABO =90∘-∠BAC ,则∠AOB =π-∠ABO -∠BAO =π-90∘-∠BAC -90∘-∠ABC =∠BAC +∠ABC =π-∠ACB ,B 正确;C 项:在△AOB 中,由正弦定理易知OA sin ∠ABO =OBsin ∠BAO,因为∠BAO =90∘-∠ABC ,∠ABO =90∘-∠BAC ,所以OA sin 90∘-∠BAC =OBsin 90∘-∠ABC,即OA cos ∠BAC =OB cos ∠ABC ,OA OB =cos ∠BACcos ∠ABC,同理可得OB OC =cos ∠ABCcos ∠ACB ,故OA :OB :OC=cos ∠BAC :cos ∠ABC :cos ∠ACB ,C 错误;D 项:∠AOB =π-∠ACB ,同理可得∠AOC =π-∠ABC ,∠BOC =π-∠BAC ,则S A =12⋅OB ⋅OC ⋅sin ∠BOC =12⋅OB ⋅OC⋅sin π-∠BAC=12⋅OB ⋅OC ⋅sin ∠BAC =12⋅OA⋅OB ⋅OC ⋅sin ∠BAC OA ,同理可得S B =12⋅OA ⋅OB ⋅OC ⋅sin ∠ABC OB ,S C =12⋅OA⋅OB ⋅OC ⋅sin ∠ACB OC,因为S A ⋅OA +S B ⋅OB +S C ⋅OC =0,所以将S A 、S B 、S C 代入,可得sin ∠BAC OA⋅OA+sin ∠ABC OB ⋅OB +sin ∠ACB OC⋅OC =0 ,因为OA :OB :OC=cos ∠BAC :cos ∠ABC :cos ∠ACB ,所以sin ∠BAC OA :sin ∠ABC OB :sin ∠ACBOC=tan ∠BAC :tan ∠ABC :tan ∠ACB ,故tan ∠BAC ⋅OA +tan ∠ABC ⋅OB +tan ∠ACB ⋅OC =0成立,D 正确,故选:ABD .三、填空题19.(2023·全国·高三专题练习)在△ABC 中,点E ,F 分别是线段AB ,AC 的中点,点P 在直线EF 上,若△ABC 的面积为2,则PB ⋅PC +BC 2的最小值是_____________.【答案】23【解析】如图,取BC 中点为M ,做PN ⊥BC ,则PB ⋅PC =14PB +PC 2-PC -PB 2 ,又PB +PC =2PM,PC -PB =BC ,则PB ⋅PC =PM 2-14BC 2,得PB ⋅PC +BC 2=PM 2+34BC 2.注意到S △ABC =12⋅BC⋅2PN =BC ⋅PN =2,则BC =2PN .又由图可得PM ≥PN ,则PM 2+34BC 2≥PN 2+3PN2≥2PN 2⋅3PN 2=23,当且仅当PM ⊥BC ,且PN 2=3PN 2,即PN =43时取等号.故答案为:2320.(2023·四川南充·统考一模)已知向量a 与b 夹角为锐角,且a =b =2,任意λ∈R ,a -λ⋅b 的最小值为3,若向量c 满足c -a ⋅c -b =0,则c的取值范围为______.【答案】3-1,3+1【解析】设向量a 与b 的夹角为θ,0<θ<π2,则a ⋅b =2×2×cos θ=4cos θ,a -λ⋅b =a -λ⋅b 2=a 2-2λa ⋅b +λ2b 2=4-8λcos θ+4λ2=4λ2-8cos θ ⋅λ+4,所以当λ=--8cos θ2×4=cos θ时,a -λ⋅b 取得最小值为3,即4cos θ 2-8cos θ ⋅cos θ+4=41-cos 2θ =2sin θ=3,所以sin θ=32,θ=π3.如图所示,设OA =a ,OB =b ,OC =c,三角形OAB 是等边三角形,设O 1是AB 的中点,则OO 1 =3,由于c -a ⋅c -b =AC ⋅BC =0,所以∠ACB =π2,所以C 点的轨迹是以AB 为直径的圆,圆的半径为12AB =1,根据圆的几何性质可知,OC 即c的取值范围为3-1,3+1 .故答案为:3-1,3+121.(2023·上海徐汇·位育中学校考模拟预测)已知圆O 半径为1,P 、A 、B 是圆O 上不重合的点,则PA ⋅PB的最小值为_____.【答案】-12【解析】取AB 中点C ,劣弧AB 的中点D ,PA ⋅PB =PC +CA ⋅PC +CB =PC 2-CB 2,显然,P 为劣弧AB 的中点D 时,PC 2=DC 2最小,记DC =a ,CB =b ,由垂径定理可得:1-a 2+b 2=1,即b 2=2a -a 2,则PA ⋅PB ≥a 2-b 2=2a 2-2a =2a -12 2-12,当a =12时,PA ⋅PB 取最小值,最小值为-12.故答案为:-1222.(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足|b |⋅|c |=1,若|3a -(b +c )|=|a ⋅b |⋅|c |,则-a 2+2b 2+c2的最小值是_____________.【答案】21-12【解析】设<a ,b >=α,<b ,c >=β,由|3a -(b +c )|=|a ⋅b |⋅|c|,根据三角不等式,有|3a |-|(b +c )|≤|3a -(b +c )|=|a ⋅b |∙|c |=|a ||b |cos α|∙|c |=|a cos α|≤|a|,得|2a|≤|b +c |,故-a 2+2b 2+c 2≥-14|b +c |2+2|b |2+|c |2=74|b |2+34|c |2-12b ⋅c=74|b |2+34|c |2-12|b ||c |cos β≥274|b |2⋅34|c |2-12=21-12.故答案为:21-12.23.(2023·全国·高三专题练习)已知平面向量a 、b 、c 满足:a 与b 的夹角为2π3,c -a⋅c -b =0,a + b =2,记M 是c -a -b的最大值,则M 的最小值是__________.【答案】3+12【解析】如图,设OA =a ,OB =b ,OC =c ,E 为AB 中点,令|a |=x ,|b |=y ,|AB |=2r ,|OE |=t ,则∠AOB =2π3,x +y =2 ①,因为OE =12(OA+OB ),AB =OB -OA ,故有OA ⋅OB =|OE |2-14|AB |2⇒-12xy =t 2-r 2,cos ∠AOB =x 2+y 2-4r 22xy ⇒-xy =x 2+y 2-4r 2⇒4r 2=(x +y )2-xy ②,由①②得r 2=1-xy 4,从而t 2=r 2-12xy =1-34xy ,xy ∈(0,1],因为c -a ⋅c -b=0,所以AC ⊥BC ,即点C 在以AB 为直径的圆E 上.∵|c -a -b |=|c -(a +b)|=|OE +EC -2OE |=|EO +EC |≤|EO |+|EC |,∴M =|c -a -b|max =|EO |+|EC |=t +r =1-34xy +1-14xy ≥1+32,当且仅当|a|=|b |=1时,即xy =1时等号成立.故答案为:3+1224.(2023·全国·高三专题练习)点M 在△ABC 内部,满足2MA +3MB+4MC =0 ,则S △MAC :S △MAB =____________.【答案】34【解析】如图,分别延长MA 至D ,MB 至E ,MC 至F ,使MD =2MA ,ME=3MB ,MF =4MC ,连接DE ,EF ,DF .由2MA +3MB +4MC =0 ,得MD +ME +MF =0 ,∴点M 是△DEF 的重心,延长EM 交DF 于G ,则MG =13EG ,过M 作MH ⊥DF 于H ,过E 作EI ⊥DF 与I ,则MH =13EI ,故S △MDF =13S △DEF ,同理可证S △MDE =S △MEF =13S △DEF ,∴S △MDE =S △MEF =S △MDF ,设S △MDE =1,设S △MEF =S △MDF =S △MDE =12⋅MD ⋅ME ⋅sin ∠DME =1,则S △MAB =12⋅MA ⋅MB ⋅sin ∠DME =12⋅12⋅MD ⋅13⋅ME ⋅sin ∠DME=12×13×12⋅MD⋅ME⋅sin∠DME=16,同理S△MAC=12×14×S△MDF=18,∴S△MAC:S△MAB=18:16=3:4.故答案为:3:4.。
向量知识清单一、向量的有关概念1.向量:既有大小又有方向的量叫做向量.向量的大小叫向量的模(也就是用来表示向量的有向线段的长度).2.向量的表示方法:⑴字母表示法:如,,,a b c r r rL 等.⑵几何表示法:用一条有向线段表示向量.如AB uuu r ,CD uuu r等.⑶坐标表示法:在平面直角坐标系中,设向量OA u u u r的起点O 为在坐标原点,终点A 坐标为(),x y ,则(),x y 称为OA u u u r 的坐标,记为OA u u u r=(),x y .注:向量既有代数特征,又有几何特征,它是数形兼备的好工具.3.相等向量:长度相等且方向相同的向量.向量可以自由平移,平移前后的向量相等.两向量ar与b r相等,记为a b =r r .注:向量不能比较大小,因为方向没有大小.4.零向量:长度为零的向量叫零向量.零向量只有一个,其方向是任意的.5.单位向量:长度等于1个单位的向量.单位向量有无数个,每一个方向都有一个单位向量.6.共线向量:方向相同或相反的非零向量,叫共线向量.任一组共线向量都可以移到同一直线上.规定:0r与任一向量共线.注:共线向量又称为平行向量.7.相反向量: 长度相等且方向相反的向量. 二、向量的运算 (一)运算定义①向量的加减法,②实数与向量的乘积,③两个向量的数量积,这些运算的定义都是 “自然的”,它们都有明显的物理学的意义及几何意义.其中向量的加减法运算结果仍是向量,两个向量数量积运算结果是数量。
研究这些运算,发现它们有很好地运算性质,这些运算性质为我们用向量研究问题奠定了基础,向量确实是一个好工具.特别是向量可以用坐标表示,且可以用坐标来运算,向量运算问题可以完全坐标化.运 算 图形语言 符号语言 坐标语言加法与减法 OA --→+OB --→=OC --→ OB --→OA --→-=AB --→记OA --→=(x 1,y 1),OB --→=(x 1,y 2) 则OA OB +uu u r uuu r =(x 1+x 2,y 1+y 2)OB OA -uuu r uu u r=(x 2-x 1,y 2-y 1)OA --→+AB --→=OB --→实数与向量的乘积 AB --→=λa → λ∈R 记a →=(x ,y ) 则λa →=(λx ,λy )两个向量的数量积 cos ,a b a b a b ⋅=⋅r r r r r r记1122(,),(,)a x y b x y ==r r 则a →·b →=x 1x 2+y 1y 2 加法:①a b b a +=+r r r r (交换律); ②()()a b c a b c ++=++r r r r r r(结合律)实数与向量的乘积:①()a b a b λλλ+=+r r r r ; ②()a a a λμλμ+=+r r r;③()()a a λμλμ=r r两个向量的数量积: ①a →·b →=b →·a →; ②(λa →)·b →=a →·(λb →)=λ(a →·b →);③(a →+b →)·c →=a →·c →+b →·c →注:根据向量运算律可知,两个向量之间的线性运算满足实数多项式乘积的运算法则,正确迁移实数的运算性质可以简化向量的运算, 例如(a →±b →)2=222a a b b →→→→±⋅+ (三)运算性质及重要结论⑴平面向量基本定理:如果12,e e u r u u r是同一平面内两个不共线的向量,那么对于这个平面内任一向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r ,称1122e e λλ+u r u u r 为12,e e u r u u r的线性组合。
平面向量坐标运算例题和知识点总结一、平面向量的坐标表示在平面直角坐标系中,分别取与 x 轴、y 轴方向相同的两个单位向量 i、j 作为基底。
任作一个向量 a,由平面向量基本定理可知,有且只有一对实数 x、y,使得 a = xi + yj。
我们把有序数对(x, y) 叫做向量a 的坐标,记作 a =(x, y)。
其中,x 叫做 a 在 x 轴上的坐标,y 叫做 a 在 y 轴上的坐标。
例如,向量 a =(2, 3),就表示 a 的终点坐标减去起点坐标得到在x 轴上的分量是 2,在 y 轴上的分量是 3。
二、平面向量坐标运算的知识点1、向量加法的坐标运算若 a =(x₁, y₁),b =(x₂, y₂),则 a + b =(x₁+ x₂, y₁+y₂)2、向量减法的坐标运算若 a =(x₁, y₁),b =(x₂, y₂),则 a b =(x₁ x₂, y₁ y₂)3、数乘向量的坐标运算若 a =(x, y),实数λ,则λa =(λx, λy)4、向量的模的坐标运算若 a =(x, y),则|a| =√(x²+ y²)5、向量平行的坐标表示若 a =(x₁, y₁),b =(x₂, y₂),则 a // b 的充要条件是x₁y₂ x₂y₁= 06、向量垂直的坐标表示若 a =(x₁, y₁),b =(x₂, y₂),则 a ⊥ b 的充要条件是 x₁x₂+ y₁y₂= 0三、平面向量坐标运算的例题例 1:已知向量 a =(2, 1),b =(-1, 3),求 a + b 和 a b 的坐标。
解:a + b =(2 +(-1), 1 + 3) =(1, 4)a b =(2 (-1), 1 3) =(3, -2)例 2:已知向量 a =(3, -2),b =(-2, 4),且λa + b 与 a 2b 平行,求实数λ的值。
解:λa + b =λ(3, -2) +(-2, 4) =(3λ 2, -2λ + 4)a 2b =(3, -2) 2(-2, 4) =(3 (-4),-2 8) =(7, -10)因为λa + b 与 a 2b 平行,所以(3λ 2)×(-10) (-2λ + 4)×7 = 0解得λ =-1 / 2例 3:已知向量 a =(4, 3),向量 b 的模为 5,且 a ⊥ b,求向量 b 的坐标。
平面向量模块一、平面向量的基本概念要点一、向量的定义与表示1、向量的概念:既有 又有 的量。
2、向量的表示:向量一般用a ⃗,b ⃗⃗,c ⃗……来表示,或用 的起点与终点的 表示,如:AB ⃗⃗⃗⃗⃗⃗ ()()2211,,,y x B y x A ,则AB ⃗⃗⃗⃗⃗⃗= .几何表示法AB ⃗⃗⃗⃗⃗⃗,a ⃗;坐标表示法a ⃗注意:不能说向量就是有向线段,为什么?3、向量的模:向量的 即向量的模( ),记作|AB ⃗⃗⃗⃗⃗⃗|,|a ⃗|即向量的大小,向量 比较大小,但向量的 可以比较大小.要点二、特殊向量1、零向量:长度为0的向量,记为0⃗⃗,其方向是 的。
注意:在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别)2、单位向量:模为13、平行向量(共线向量):方向 的 向量,称为平行向量,记作a ⃗∥b⃗⃗,由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
规定:零向量和任何向量平行.注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0⃗⃗);④三点A B C 、、共线⇔AB ⃗⃗⃗⃗⃗⃗,AC⃗⃗⃗⃗⃗⃗共线. 4、相等向量: 且 的向量,相等向量经过平移后总可以重合,记为a ⃗=⃗⎧=21x x ),(y x yj xi a =+=5、相反向量:长度 方向 的向量叫做相反向量. a ⃗的相反向量记作−a ⃗。
模块二、向量的线性运算要点三、向量的加法1、定义:2、向量加法的几何法则: “三角形法则”与“平行四边形法则”:当两个向量的 时,用平行四边形法则;当两向量是 时,用三角形法则。
向量加法的三角形法则可推广至多个向量相加: AB ⃗⃗⃗⃗⃗⃗+BC ⃗⃗⃗⃗⃗⃗+CD ⃗⃗⃗⃗⃗⃗+L +PQ ⃗⃗⃗⃗⃗⃗+QR ⃗⃗⃗⃗⃗⃗=AR⃗⃗⃗⃗⃗⃗. 3、向量加法的运算律:交换律和结合律。
平面向量 应试技巧总结一.向量有关概念:1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
如:已知A (1,2),B (4,2),则把向量AB u u u r 按向量a r =(-1,3)平移后得到的向量是_____(答:(3,0))2.零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r共线的单位向量是||AB AB ±u u u r u u u r); 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r); ④三点A B C 、、共线⇔ AB AC u u u r u u u r、共线; 6.相反向量:长度相等方向相反的向量叫做相反向量。
a 的相反向量是-a 。
如下列命题:(1)若a b =r r,则a b =r r 。
(2)两个向量相等的充要条件是它们的起点相同,终点相同。
(3)若AB DC =u u u r u u u r ,则ABCD 是平行四边形。
(4)若ABCD 是平行四边形,则AB DC =u u u r u u u r 。
(5)若,a b b c ==r r r r ,则a c =r r 。
(6)若//,//a b b c r r r r ,则//a c r r 。
其中正确的是_______(答:(4)(5))二.向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=r r r,称(),x y 为向量a 的坐标,a =(),x y 叫做向量的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
三.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。
如(1)若(1,1),a b ==r r (1,1),(1,2)c -=-r ,则c =r______(答:1322a b -r r );(2)下列向量组中,能作为平面内所有向量基底的是A. 12(0,0),(1,2)e e ==-u r u u rB. 12(1,2),(5,7)e e =-=u r u u rC. 12(3,5),(6,10)e e ==u r u u rD. 1213(2,3),(,)24e e =-=-u r u u r(答:B );(3)已知,AD BE u u u r u u u r 分别是ABC ∆的边,BC AC 上的中线,且,AD a BE b ==u u u r r u u u r r ,则BC uuu r可用向量,a br r 表示为_____(答:2433a b +rr );(4)已知ABC ∆中,点D 在BC 边上,且−→−−→−=DB CD 2,−→−−→−−→−+=AC s AB r CD ,则s r +的值是___(答:0)四.实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:()()1,2a a λλ=r r当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反,当λ=0时,0a λ=r r,注意:λa ≠0。
五.平面向量的数量积:1.两个向量的夹角:对于非零向量a ,b ,作,OA a OB b ==u u u r r u u u r r,AOB θ∠=()0θπ≤≤称为向量a ,b 的夹角,当θ=0时,a ,b 同向,当θ=π时,a ,b 反向,当θ=2π时,a ,b 垂直。
2.平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θr r叫做a 与b 的数量积(或内积或点积),记作:a •b ,即a •b =cos a b θr r 。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
如(1)△ABC 中,3||=−→−AB ,4||=−→−AC ,5||=−→−BC ,则=⋅_________(答:-9);(2)已知11(1,),(0,),,22a b c a kb d a b ==-=+=-r r r r r u r r r ,c r 与d u r 的夹角为4π,则k 等于____(答:1);(3)已知2,5,3a b a b ===-rrr rg ,则a b +r r等于____);(4)已知,a b r r是两个非零向量,且a b a b ==-r r r r ,则与a a b +r r r 的夹角为____(答:30o )3.b 在a 上的投影为||cos b θr,它是一个实数,但不一定大于0。
如已知3||=→a ,5||=→b ,且12=⋅→→b a ,则向量→a 在向量→b 上的投影为______(答:512) 4.a •b 的几何意义:数量积a •b 等于a 的模||a r与b 在a 上的投影的积。
5.向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则:①0a b a b ⊥⇔•=r r r r;②当a ,b 同向时,a •b =a b r r ,特别地,22,a a a a a =•==r r r r r ;当a 与b 反向时,a •b =-a b r r;当θ为锐角时,a •b >0,且 a b r r 、不同向,0a b ⋅>r r 是θ为锐角的必要非充分条件;当θ为钝角时,a •b <0,且 a b r r 、不反向,0a b ⋅<r r是θ为钝角的必要非充分条件; ③非零向量a ,b 夹角θ的计算公式:cos a ba bθ•=r rr r ;④||||||a b a b •≤r r r r 。
如(1)已知)2,(λλ=→a ,)2,3(λ=→b ,如果→a 与→b 的夹角为锐角,则λ的取值范围是______(答:43λ<-或0λ>且13λ≠);(2)已知OFQ ∆的面积为S ,且1=⋅−→−−→−FQ OF ,若2321<<S ,则−→−−→−FQ OF ,夹角θ的取值范围是_________(答:(,)43ππ);(3)已知(cos ,sin ),(cos ,sin ),a x x b y y ==r ra r 与b r 之间有关系式,0ka b kb k +=->r r r其中,①用k 表示a b ⋅r r ;②求a b ⋅r r 的最小值,并求此时a r 与b r的夹角θ的大小(答:①21(0)4k a b k k +⋅=>r r ;②最小值为12,60θ=o )六.向量的运算:1.几何运算:①向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加法还可利用“三角形法则”:设,AB a BC b ==u u u r r u u u r r ,那么向量AC uuu r 叫做a r 与br的和,即a b AB BC AC +=+=r r u u u r u u u r u u u r ;②向量的减法:用“三角形法则”:设,,AB a AC b a b AB AC CA ==-=-=u u u r r u u u r r r r u u u r u u u r u u u r那么,由减向量的终点指向被减向量的终点。
注意:此处减向量与被减向量的起点相同。
如(1)化简:①AB BC CD ++=u u u r u u u r u u u r ___;②AB AD DC --=u u u r u u u r u u u r____;③()()AB CD AC BD ---=u u u r u u u r u u u r u u u r _____(答:①AD u u u r ;②CB u u u r ;③0r);(2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===u u u r r u u u r r u u u r r ,则||a b c ++r r r=_____(答:);(3)若O 是ABC V 所在平面内一点,且满足2OB OC OB OC OA -=+-u u u r u u u r u u u r u u u r u u u r,则ABC V 的形状为____(答:直角三角形);(4)若D 为ABC ∆的边BC 的中点,ABC ∆所在平面内有一点P ,满足0PA BP CP ++=u u u r u u u r u u u r r,设||||AP PD λ=u u u r u u u r ,则λ的值为___ (答:2);(5)若点O 是ABC △的外心,且0OA OB CO ++=u u u r u u u r u u u r r,则ABC △的内角C 为____(答:120o );2.坐标运算:设1122(,),(,)a x y b x y ==r r,则: ①向量的加减法运算:12(a b x x ±=±r r,12)y y ±。
如(1)已知点(2,3),(5,4)A B ,(7,10)C ,若()AP AB AC R λλ=+∈u u u r u u u r u u u r,则当λ=____时,点P 在第一、三象限的角平分线上(答:12);(2)已知1(2,3),(1,4),(sin ,cos )2A B AB x y =u u u r 且,,(,)22x y ππ∈-,则x y +=(答:6π或2π-); (3)已知作用在点(1,1)A 的三个力123(3,4),(2,5),(3,1)F F F ==-=u u r u u r u u r ,则合力123F F F F =++u r u u r u u r u u r的终点坐标是(答:(9,1))②实数与向量的积:()()1111,,a x y x y λλλλ==r。