平面向量的所有公式归纳总结
- 格式:docx
- 大小:38.12 KB
- 文档页数:4
必修4 平面向量知识点小结一、向量的基本概念1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示 .注意:不能说向量就是有向线段,为什么?提示:向量可以平移.举例 1 已知A(1,2),B(4,2),则把向量u A u B ur按向量a r( 1,3)平移后得到的向量是. 结果:(3,0)2.零向量:长度为 0 的向量叫零向量,记作:0r,规定:零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与u A uu B r共线uuur的单位向量是u A u B ur );| AB|4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a r、b r叫做平行向量,记作:a r∥b r,规定:零向量和任何向量平行 . 注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有r0);④三点A、B、C 共线u A uu B r、u A u C ur共线.6.相反向量:长度相等方向相反的向量叫做相反向量 . a r的相反向量记作a r.举例 2 如下列命题:(1)若|a r | |b r | ,则a r b r. (2)两个向量相等的充要条件是它们的起点相同,终点相同 . (3)若u A u B uru D u C u r,则ABCD是平行四边形 .(4)若ABCD是平行四边形,则u A uu B r u D u C uur.(5)若a r b r,b r c r,则a r c r.(6)若a r / /b r,b r / /c r则a r / /c r.其中正确的是. 结果:(4)(5)二、向量的表示方法1.几何表示:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;2. 符号表示 :用一个小写的英文字母来表示,如 a r ,b r , c r 等;3. 坐标表示 :在平面内建立直角坐标系,以与 x 轴、 y 轴方向相同 的两个单位向量 i r , r j 为基底,则平面内的任一向量 a r 可表示为 a r xi r y r j (x, y ) ,称 ( x, y )为向量 a r 的坐标, a r (x, y )叫做向量 a r 的坐标表示 .结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标 相同.三、平面向量的基本定理定理 设e r 1,e r 2同一平面内的一组基底向量, a r 是该平面内任一向量, 则存在唯一实数对 ( 1, 2),使 a r 1e r 1 2e r 2.1)定理核心: a rλ1e r 1 λ2er 2;(2)从左向右看,是对向量 a r的分解,且表达式唯一;反之,是对向量 a r的合成 .(3)向量的正交分解:当 e r 1,e r 2时,就说 a r λ1r e 1 λ2r e 2为对向量 a r的正交分 解.举例 3 (1)若 a r(1,1), b r(1, 1), c r( 1,2) ,则 c r. 结果:1r 3 r a b.22(2)下列向量组中, 能作为平面内所有向量基底的是 B A. e r 1(0,0) , e r 2(1, 2) B. r e 1( 1,2) , e r 2(5,7) C. r e 1(3,5) , e r 2(6,10)(1)模:| a r | | | |a r |;(2)方向:当 0时, a r 的方向与 a r 的方向相同,当D. e r 1(2, 3) , 1, 3 ,24(3)已知u A u D ur ,u B u E ur分别是 可用向量 a r,b r表示为 . (4)已知 △ABC 中,点 值是 . 结果: 0 四、实数与向量的积 实数 与向量 a r 的积是 下: △ABC 的边 BC ,AC 上的中线 ,且 u A u D ura r4r a2果 结上 边B u u r Bu u u u ru u ru u u u r C u 的u u r u u 个向量,记作 a r ,它的长度和方向规定如方向与a r的方向相反,当0时,a r r0,注意:a r 0.五、平面向量的数量积1. 两个向量的夹角:对于非零向量a r,b r,)称为向量a r,b r的夹角. uuur r作OAa r,u ru u把r bAOB (0当 0时, a r , b r 同向;当 时, a r , b r 反向;当 2时,a r ,b r 垂直. 2. 平面向量的数量积 :如果两个非零向量 a r , b r ,它们的夹角为 , 我们把数量 | a r || b r | cos 叫做 a r 与b r 的数量积(或内积或点积) ,记作: a r b r , 即 a r b r |a r | |b r |cos .规定:零向量与任一向量的数量积是 0. 注:数量积是一个实数,不再是一个向量 举例 4(1)△ ABC 中,| u A uu B r| 3 ,|u A uu C r| 4 ,|u B u C ur| 5 ,则 9.uuur uuur AB BC果:结果:2)已知a r1,21,b r0, 12,c ra rkb r,d ra rb r,c r与d r的夹角为 4,则k1. 3)已知 |a r| 2,|b r| 5, a rb r3,则 |a rb r| ___ . 结果: 23. 4)已知 ra, rb 是两个非零向量,且| a r| |b r| |a rb r|,则a r与a rb r的夹角为 30o . 结果: 3.向量b r 在向量 a r上的投影: |b r | cos ,它是一个实数,但不一定大于 0. 举例 5 已知|a r| 3,|b r| 5,且 a rb r12 ,则向量 a r在向量 b r上的投影为 ___ . 结果: 152.54. a r b r 的几何意义 :数量积 a r b r 等于a r 的模|a r |与b r 在a r 上的投影的积 .5. 向量数量积的性质 :设两个非零向量 a r , ( 1) a r b a r b 0 ; (2)当 a r 、 b 同向时, a r b |a r | |b|,特别地, a r b r |a r | | b r |是a r 、 b r同向的充要分条件 ; 当a r 、 b r 反向时, a r b r |a r | |b r |,a r b r |a r | 件; 当 为锐角时, a r b r 0,且 a r 、b r 不同向, 充分条件 ; 当 为钝角时, a r b r 0 ,且 a r 、 b r 不反向; 充分条件 .(3)非零向量 a r , b r 夹角b r ,其夹角为 ,则:a r 2|b r |是a r 、 b r 反向的充要分条 ab ab 的计算公式: cos 0 是 为锐角的 必要不 0 是 为钝角的 必要不 | a r a ||b b r | ;④ a r b r |a r ||b r | . 举例 6 取值范1)已知 a r( ,2 ) , b r(3 ,2) ,如果 a r与b r的夹角为锐角,则 的 3或 0且 3;(2)已知△OFQ 的面积为 S ,且u O u F ur u F u Q ur 1,若12 S 23,则u O u F ur, u F u Q ur夹角的 取值范围是 _____ . 结果: 4, 3;43①用 k 表示 a rb r;②求 a rb r的最小值,并求此时 a r与b r的夹角 的大小. 结果:① a rb r k 4k 1(k 0) ;②最小值为 12, 60o. 六、向量的运算1. 几何运算 (1)向量加法运算法则:①平行四边形法则;②三角形法则 . r 运算形式:若 u A uu B r a r , u B uu C r b r ,则向量u A uu C r 叫做 a r与b 的和,即 r r uuur uuur uuur a b AB BC AC ;作图:略 . 注:平行四边形法则只适用于不共线的向量 .(2)向量的减法 运算法则:三角形法则 . 运算形式:若 u A uu B r a r , u A u C ur b r ,则 a r b r u A u B ur u A uu C r C uu A ur ,即由减向量的终 点指向被减向量的终点 .作图:略 .注:减向量与被减向量的起点相同 .举例 7( 1)化简:①u A u B uru B u C urC uuD ur;② u A uu B ru A u D uru D uu C ur;③uuur uuur uuur uuur uuur uuur r (AB CD) (AC BD) . 结果:① AD ;② CB ;③ 0;(2)若正方形 ABCD 的边长为 1,u A u B ura r,u B u C urb r,u A u C ur rc ,则 |a rb rc r|.结果: 2 2 ;(3)若O 是△ABC 所在平面内一点,且满足 O uu B urO uu C ur u O u B urO uu C ur2u O u A ur,则△ABC 的 形状为 . 结果:直角三角形;( 4)若 D 为 △ ABC 的边 BC 的中点, △ ABC 所在平面内有一点 P ,满足 u P u A ur u B u P urC uu P ur r0,设 || u u PAu u DuP ur r || ,则 的值为 . 结果:2;(5)若点O 是 △ABC 的外心,且 u O u A ur u O uu B r u C uu O r r0 ,则△ABC 的内角 C 为 . 结果: 120o.2. 坐标运算 :设 a r (x 1,y 1) ,b (x 2,y 2) ,则(1)向量的加减法运算 :a r b (x 1 x 2,y 1 y 2),a r b (x 1 x 2,y 1 y 2) . 举例 8 (1)已知3)已知 a r(cos x,sin x) , rb (cos y,sin y) ,且满足 |k ra b | 3|a rkb|其中 k 0 )点A(2,3) ,B(5,4) ,C(7,10) ,若u A uu P r u A uu B ru A uu C r( R) ,则当 ______ 时,点P在第一、三象限的角平分线上 . 结果:21;(2)已知 A(2,3) , B(1,4) ,且21 u A u B ur (sin x,cos y), x, y ( 2,2),则 x y . 结 果: 6 或2;(3)已知作用在点 A(1,1)的三个力 F 1(3,4) ,F 2(2, 5) , F 3(3,1) ,则合力 F u r u Fur 1u F ur 2 u F ur 3的终点坐标是 . 结果: (9,1) .(2)实数与向量的积 : a r (x 1,y 1) ( x 1, y 1).(3)若 A(x 1, y 1) , B(x 2, y 2) ,则 u A u B ur (x 2 x 1,y 2 y 1) ,即一个向量的坐标等 于表示这个向量的有向线段的终点坐标减去起点坐标 .举例 9 设A(2,3) , B( 1,5) ,且 u A uu C r 13u A u B ur, u A u D ur 3u A u B ur,则 C,D 的坐标分别是3举例 10 已知向量 a r(sin x,cos x ) , b (sin x ,sin x) , c r( 1,0) .(1)若 x 3,求向量 a r、 c r的夹角;3(2)若x [38 , 4],函数 f(x) a rb r的最大值为 12,求 的值.结果:(1)150o;8 4 22) 21或 2 1.5)向量的模 : a r2 |a r |2 x 2 y 2 |a r | x 2 y 2 . 举例 11 已知 a r ,b r 均为单位向量,它们的夹角为 . 结果: 13 .位向量,则 P 点斜坐标为 (x,y) .1)若点 P 的斜坐标为 (2, 2) ,求 P 到 O 的距离 |PO| ;2)求以O 为圆心, 1为半径的圆在斜坐标系 xOy 中的方程.结果:( 1) 2;(2) x 2y 2xy 1 0 . 七、向量的运算律 1. 交换律: a r 2. 结合律: a r 3. 分配律: ( r b rr arr a)r b rr a r a rr a r c )r br b r( r b r b( r ar ) r b r r a(r r 举例 13 给出下列命题:ar (b c r ) a r b a r c r a r (b c r ) (a r b) c r结果: (1,131),( 7,9).4)平面向量数量积yxx r b60o,那么 |a r3b r|6)两点间的距离 :若 A(x 1, y 1) , B(x 2,y 2),则|AB| (x 2 x 1)2 (y 2 y 1)2 . 举例 12 如图,在平面斜坐标系 于斜坐标系 的斜坐标是这样定义的:若 u O u P urxe r 1方向的单 xOy 中, xOy 60o,平y 面上任一点 P关ye r 2,其中 e r 1,e r 2分别为60o与 x 轴、④ 若a rb r0,则 a r0r或b r r0;⑤若 a r b r c rb r则a r c r;⑥ |a r |2 a r 2;⑦ ar a r2bb a r ; ⑧ (a rb r )2 a r 2 b r 2;⑨ (a rb r )2 a r 22a rb rb r 2. 其中正确的是 . 结果:①⑥⑨ . 说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个 向量等式, 可以移项,两边平方、两边同乘以一个实数, 两边同时取模, 两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一 个向量,切记两向量不能相除 ( 相约) ; (2)向量的“乘法”不满足结合律,即 八、向量平行 (共线) 的充要条件 a r //b a r b (a r b)2 (|a r ||b|)2 举例 14 (1) 若向量 a r (x,1) , 相同. 结果: 2. ( 2)已知 a r (1,1) ,b (4,x) ,u r果:4. uuur uuur (3)设 PA ( k,12) , PB (4,5) , 果: 2 或 11. 九、向量垂直的充要条件0. (4,x) ,当 x x 1 y 2 y 1 x 2r br br rrb ar r 2b , uu urPC r v ar (b c r) (a rb) c r,为什么? 时, a r 与b r共线且方向 2a r b ,且 u r //v r,则 x(10, k) , 则k时, A,B,C 共线 . y 1 y 2 0.|AB AC AB AC特别地 uuur uuuruuur uuur .|AB | |AC | |AB | | AC |举例 15 (1)已知 u O u A ur( 1,2) ,O uu B ur(3,m) , (2)以原点 O 和 A(4,2)为两个顶点作等腰直角三角形 B 的坐标是 .结果: (1,3) 或( 3,-1)); (3)已知 n r(a,b)向量 n rm r,且|n r| |m r| ,则m r的坐标是 ( b,a) . 十、线段的定比分点1. 定义:设点 P 是直线 P 1P 2上异于 P 1、 P 2的任意一点,若存在一个实 数 ,使 u P u 1P ur u P u P ur 2 ,则实数 叫做点 P 分有向线段 P 1P 2 所成的比 , P 点叫 做有向线段 u P u 1u P ur 2的以定比为 的定比分点 . 2. 的符号与分点 P 的位置之间的关系 (1) P 内分线段 P 1P 2 ,即点P 在线段 P 1P 2上 0; (2) P 外分线段 u P u 1u P u 2r 时,①点 P 在线段 P 1P 2的延长线上 P 在线段 P 1P 2的反向延长线上 1 0.x 1x 2 uuuruuur uuur 若OA OB ,则 m. 结果: OAB , B 90 ,则点 32; 结果: (b, a)或1,②点比为 1.举例 16 若点 P 分u A u B ur所成的比为 43,则 A 分u B u P ur所成的比为 .结果: 73.33. 线段的定比分点坐标公式 :设 P 1(x 1, y 1) , P 2( x 2, y 2) ,点P(x, y)分有向线段 u P u 1u P u 2r 所成的比为 ,则定比分x 1 x 21 y 1 y 2x 1时,就得到线段 P 1P 2的中点坐标公式y说明:(1) 的意义,即分别为分点,起点,终点的坐标 . (2)在具体计算时应根据题设条件,灵活地确定起点,分点和 终点,并根据这些点确定对应的定比举例 17 (1)若 M( 3, 2) ,N(6, 1),且 结果: ( 6, 37) ;3(2)已知 A(a,0) , B(3,2 a),直线 y 1ax 与线段 AB 交于M ,且u A u M uur 2u M uu B ur,则 a r. 结果:2或 4 .十一、平移公式如果点 P(x,y)按向量 a r (h,k) 平移至 P(x,y) ,则 x x h,;曲线 f(x,y) 0按 y y k.向量 a r (h,k) 平移得曲线 f(x h,y k) 0.说明:( 1)函数按向量平移与平常“左加右减”有何联系?( 2) 向量平移具有坐标不变性,可别忘了啊!举例 18 (1)按向量 a r 把(2, 3)平移到(1, 2) ,则按向量 a r把点( 7,2)平 移到点 ________ . 结果: ( 8,3) ;(2)函数 y sin 2x 的图象按向量 a r平移后,所得函数的解析式是点坐标公式为特别地,当1).x 1 x 2 , 2 y 1 y 2 .2 在使用定比分点的坐标公式时, 应明确 (x,y) ,(x 1,y 1)、(x 2,y 2)13uM uuN ur,则点 P 的坐标为 uuu ury cos2x 1 ,则a r _________ . 结果:( ,1) .4 十二、向量中一些常用的结论1. 一个封闭图形首尾连接而成的向量和为零向量,要注意运用;2.模的性质:|a r| |b r| |a r b r| |a r| |b r|.(1)右边等号成立条件: (2)左边等号成立条件: (3)当 a r 、b r 不共线 |a r | 3. 三角形重心公式在 △ABC 中,若 A(x 1, y 1) , B(x 2,y 2) , C(x 3,y 3) ,则其重 心的 坐标为举例 19 若△ABC 的三边的中点分别为 心的坐标为 . 结果: 32,34.335. 三角形“三心”的向量表示G 为△ ABC 的重心,特别地 u P uu A r u P u Bur u P u C ur 0r G为△ ABC 的重心 .uuur uuur uuur uuur uuur uuur(2)PA PB PB PC PC PA P 为△ ABC 的垂心 .uuuur uuur uuuur uuur uuuur uuur( 3 ) |AB|PC |BC|PA |CA|PB 0 P 为 △ ABC 的 内 心 ; 向 量 uuur uuur uu A u B ur uu A u C ur ( 0)所在直线过 △ ABC 的内心. |AB | | AC |6.点 P 分有向线段 u P 1uu P ur 2所成的比 向量形式设点 P 分有向线段 P 1P 2所成的比为 ,若 M 为平面内的任一点,则 uuuur uuuur uuuur uuuur u M uu P r MP 1MP 2,特别地 P 为有向线段 u P u 1u P ur 2的中点 u M uu P r MP 1MP 2. 127. 向 量 u P u A ur ,u P u B ur ,u P u C ur 中三终 点 A,B,C 共线 存 在实数 , ,使得 uuuruuur uuur PA PB PC 且1.举例 20 平面直角坐标系中, O 为坐标原点,已知两点 A(3,1) ,B( 1,3), 若点 C满足 OC 1OA 2OB ,其中 1, 2R 且 1 21, 则点 C 的轨迹是 . 结 果:直线 AB .a r 、b 同向或a r 、b a r 、b r 反向或r rr rrG(x 1 x 2 x 3 3y 1y 2y 3 ) 3)A(2,1) 、B( 3,4)、C( 1, 1),则 △ ABC 的重 uuur 1 uuur uuur uuur1) PG (PA PB PC)r。
数学必修4平面向量公式总结平面向量是高中数学必修4新教材中新增加的重要内容之一,是高中学生需要学习的重要知识点。
下面店铺给大家带来数学必修4平面向量公式总结,希望对你有帮助。
数学必修4平面向量公式高中数学必修4平面向量知识点坐标表示法平面向量的坐标表示:在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量作为基底。
由平面向量的基本定理知,该平面内的任一向量可表示成,由于与数对(x,y)是一一对应的,因此把(x,y)叫做向量的坐标,记作=(x,y),其中x叫作在x轴上的坐标,y叫做在y 轴上的坐标。
来表示平面内的各个方向在数学中,我们通常用点表示位置,用射线表示方向.在平面内,从任一点出发的所有射线,可以分别用向量的表示向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.向量也可用字母a①、b、c等表示,或用表示向量的有向线段的起点和终点字母表示.向量的大小,也就是向量的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量.方向相同或相反的非零向量叫做平行向量.向量a、b、c平行,记作a∥b∥c.0向量长度为零,是起点与终点重合的向量,其方向不确定,我们规定0与任一向量平行.长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b.零向量与零向量相等.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.向量的运算1、向量的加法:AB+BC=AC设a=(x,y) b=(x',y')则a+b=(x+x',y+y')向量的加法满足平行四边形法则和三角形法则。
向量加法的性质:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)a+0=0+a=a2、向量的减法AB-AC=CBa-b=(x-x',y-y')若a//b则a=eb则xy`-x`y=0若a垂直b则ab=0则xx`+yy`=0高中数学学习方法抓好基础是关键数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。
初中数学平面向量常用公式归纳数学中的向量是表示大小和方向的物理量,常用于解决空间几何和物理问题。
平面向量是指在平面上的向量,它由两个有序的数或字母组成。
在初中数学中,掌握平面向量的常用公式是非常重要的基础知识。
本文将对初中数学中平面向量的常用公式进行归纳总结。
1. 向量的加法和减法公式向量 $\overrightarrow{AB}$ 的加法和减法公式可以直接应用于平面向量的加法和减法。
加法公式:$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$减法公式:$\overrightarrow{AB} - \overrightarrow{BC} = \overrightarrow{AC}$2. 向量的数量积公式向量的数量积(也称为点积或内积)是指两个向量相乘得到的一个数。
在平面向量中,计算数量积有以下两种常用公式:(1)坐标法公式:设向量 $\overrightarrow{AB} = \overrightarrow{a}(x_1,y_1)$,向量 $\overrightarrow{CD} = \overrightarrow{a}(x_2, y_2)$,则数量积$\overrightarrow{AB} \cdot \overrightarrow{CD} = x_1 \cdot x_2 + y_1 \cdot y_2$(2)模长法公式:设向量 $\overrightarrow{AB}$ 的模长为$|\overrightarrow{AB}|$,向量 $\overrightarrow{CD}$ 的模长为$|\overrightarrow{CD}|$,$\theta$ 为$\overrightarrow{AB}$ 与$\overrightarrow{CD}$ 的夹角,则有数量积公式 $\overrightarrow{AB} \cdot\overrightarrow{CD} = |\overrightarrow{AB}| \cdot |\overrightarrow{CD}| \cdot\cos{\theta}$3. 向量的向量积公式向量的向量积(也称为叉积或外积)是指两个向量相乘得到的另一个向量。
一、共面向量基本定理1.如果两个向量a、b不共线,那么向量p与向量a、b共面的充要条件是:存在唯一实数对x、y,使p=xa+yb。
(x,y不全为零)2.平面向量基本定理是平面向量坐标表示的基础,它说明同一平面内的任一向量都可以表示为其他两个不共线向量的线性组合。
3.在解具体问题时适当地选取基底,使其它向量能够用基底来表示,选择两个不共线的向量,平面内的任何一个向量都可以唯一表示,这样几何问题就可以转化为代数问题。
4.平面向量可以在任意给定的两个方向上分解,任意两个向量都可以合成一个给定的向量,即向量的合成和分解。
5.当两个方向相互垂直时,它们实际上是在直角坐标系中分解的,(x,y)称为矢量的坐标。
(矢量的起点是原点)所以这个定理为矢量的坐标表示提供了理论基础。
二、平面向量的坐标运算AB+BC=AC;ABAC=CB;(λμ)a=λ(μa);(λ+μ)a= λa+μa;a·a=|a|²;a·b=b·a等。
在平面内建立直角坐标系,以与x轴、y轴方向相同的两个单位向量为基底,则平面内的任一向量可表示为,称(x,y)为向量的坐标,=(x,y)叫做向量的坐标表示。
三、向量的数量积的性质(1)a·a=∣a∣²≥0(2)a·b=b·a(3)k(ab)=(ka)b=a(kb)(4)a·(b+c)=a·b+a·c(5)a·b=0<=>a⊥b(6)a=kb<=>a//b(7)e1·e2=|e1||e2|cosθ=cosθ四、基底在向量中的应用:(l)用基底表示出相关向量来解决向量问题是常用的方法之一.(2)在平面中选择基底主要有以下几个特点:①不共线;②有公共起点;③其长度及两两夹角已知.(3)用基底表示向量,就是利用向量的加法和减法对有关向量进行分解。
五、用已知向量表示未知向量:用已知向量表示未知向量,一定要结合图像,可从以下角度如手:(1)要用基向量意识,把有关向量尽量统一到基向量上来;(2)把要表示的向量标在封闭的图形中,表示为其它向量的和或差的形式,进而寻找这些向量与基向量的关系;(3)用基向量表示一个向量时,如果此向量的起点是从基底的公共点出发的,一般考虑用加法,否则用减法,如果此向量与一个易求向量共线,可用数乘。
高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。
2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。
高考平面向量题型归纳总结在高考数学考试中,平面向量是一个常见的考点,也是学生普遍认为较为困难的部分之一。
平面向量题型包括向量的加减、数量积、向量方向等。
本文将对高考平面向量题型进行归纳总结,帮助学生更好地掌握此类题型。
一、向量的加减1. 向量的加法向量的加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。
在解题过程中,可以利用向量的平移性质,将向量平移至同一起点,再连接终点得到新的向量。
2. 向量的减法向量的减法可以转化为加法进行处理,即a - b = a + (-b)。
其中,-b表示b的反向量,即方向相反的向量,模长相等。
二、数量积数量积又称为内积或点积,记作a·b。
1. 定义对于两个向量a(x₁, y₁)和b(x₂, y₂),它们的数量积a·b = x₁x₂ +y₁y₂。
另外,数量积还可以表示为向量模长和夹角的乘积,即a·b =|a| · |b| · cosθ,其中θ为a与b的夹角。
2. 性质(1) 交换律:a·b = b·a(2) 分配律:a·(b + c) = a·b + a·c(3) 结合律:k(a·b) = (ka)·b = a·(kb),其中k为实数(4) 若a·b = 0,则a与b垂直或其中一个为零向量(5) 若a·b > 0,则夹角θ为锐角;若a·b < 0,则夹角θ为钝角。
三、向量方向向量的方向可以用两种方式来表示:1. 向量的方向角:向量a(x, y)的方向角为与x轴正方向之间的夹角α,其中-π < α ≤ π。
2. 方向余弦:向量a(x, y)的方向余弦为与x轴的夹角的余弦值cosα,与y轴的夹角的余弦值cosβ。
在解决平面向量题型时,可以利用这两种方式来确定向量的方向。
向量知识点公式总结一、向量的概念1. 向量的定义在欧氏空间中,向量是指一个有大小和方向的量,可以用箭头表示。
在数学上,向量通常用坐标表示,比如二维空间中的向量可以表示为(x, y),三维空间中的向量可以表示为(x, y, z)。
向量与点不同,向量只有方向和大小,没有固定的位置。
2. 向量的运算(1)向量的加法设有向量a=(a1,a2,a3),b=(b1,b2,b3),则a+b=(a1+b1,a2+b2,a3+b3)。
(2)向量的数乘设有向量a=(a1,a2,a3),k为常数,则ka=(ka1,ka2,ka3)。
3. 向量的模长设有向量a=(a1,a2,a3),则向量a的模长是|a| = √(a1^2 + a2^2 + a3^2)。
4. 向量的方向角设有向量a=(a1,a2,a3),则向量a的方向角分别为α、β、γ,其中cosα = a1/|a|,cosβ =a2/|a|,cosγ = a3/|a|。
二、向量的线性表示1. 点乘设有向量a=(a1,a2,a3),b=(b1,b2,b3),则a•b = a1b1 + a2b2 + a3b3。
2. 叉乘设有向量a=(a1,a2,a3),b=(b1,b2,b3),则a×b = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)。
3. 向量的混合积设有向量a=(a1,a2,a3),b=(b1,b2,b3),c=(c1,c2,c3),则[a,b,c] = a•(b×c) = b•(c×a) = c•(a×b)。
三、向量的坐标表示1. 平面直角坐标系上的向量设有向量a,其起点坐标为A(x1, y1),终点坐标为B(x2, y2),则a=(x2-x1, y2-y1)。
2. 空间直角坐标系上的向量设有向量a,其起点坐标为A(x1, y1, z1),终点坐标为B(x2, y2, z2),则a=(x2-x1, y2-y1, z2-z1)。
高中数学必修4之平面向量 知识点归纳一.向量的基本概念与基本运算1、向量的概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 2、向量加法:设,AB a BC b ==,则a +b =AB BC +=AC (1)a a a=+=+00;(2)向量加法满足交换律与结合律; AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”.3、向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ⋅=λλ; (Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反;当0=λ时,0 =a λ,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线⇔有且只有一个实数λ,使得b =a λ6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a 可表示成a xi yj =+,记作a =(x,y)。
2平面向量的坐标运算: (1) 若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±± (2) 若()()2211,,,y x B y x A ,则()2121,AB x x y y =--(3) 若a =(x,y),则λa =(λx, λy)(4) 若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-=(5) 若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅若a b ⊥,则02121=⋅+⋅y y x x三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·︱b ︱cos θ叫做a 与b 的数量积(或内积) 规定00a ⋅= 2向量的投影:︱b ︱cos θ=||a b a ⋅∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影 3数量积的几何意义: a ·b 等于a 的长度与b 在a 方向上的投影的乘积 4向量的模与平方的关系:22||a a a a ⋅== 5乘法公式成立: ()()2222a b a b a ba b +⋅-=-=-; ()2222a b a a b b ±=±⋅+222a a b b =±⋅+ 6平面向量数量积的运算律:①交换律成立:a b b a ⋅=⋅ ②对实数的结合律成立:()()()()a b a b a bR λλλλ⋅=⋅=⋅∈ ③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅±特别注意:(1)结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅; (2)消去律不成立a b a c ⋅=⋅不能得到b c =⋅ (3)a b ⋅=0不能得到a =0或b =07两个向量的数量积的坐标运算: 已知两个向量1122(,),(,)a x y b x y ==,则a ·b =121x x y y + 8向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (001800≤≤θ)叫做向量a 与b 的夹角 cos θ=cos ,a ba b a b •<>=•=当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题 9垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b 10两个非零向量垂直的充要条件:a ⊥b ⇔a ·b =O ⇔2121=+y y x x 平面向量数量积的性质。
平面向量基本公式大全平面向量是数学中的一个重要概念,用于描述两个方向和大小都有所限定的量。
平面向量有很多重要的基本公式,这些公式在数学和物理学中都有广泛的应用。
下面就来介绍一下平面向量的基本公式。
1、平面向量的模长公式平面向量的模长(也叫长度)是平面向量的重要特性之一,表示向量在平面上的长度。
平面向量的模长公式为:AB,=√(某2-某1)2+(y2-y1)2其中,A(某1,y1)和B(某2,y2)表示向量AB的起点和终点坐标。
2、平面向量的加法和减法公式平面向量的加法和减法公式是指两个向量相加或相减的规则。
其公式为:A+B=(A某+B某,Ay+By)A-B=(A某-B某,Ay-By)其中,A、B分别表示两个向量,A某、Ay、B某、By分别表示两个向量在某轴和y轴上的分量。
3、平面向量的数量积公式数量积是向量中另一个重要的特性,用于描述两个向量之间的夹角。
平面向量的数量积公式为:A·B=,A,B,cosθ其中,A、B分别表示两个向量,A,和,B,表示它们的模长,θ表示两个向量之间的夹角。
4、平面向量的叉积公式叉积也是向量中的一种运算,用于计算两个向量所在平面的法向量,常用于计算力矩和面积等。
平面向量的叉积公式为:A某B=,A,B,sinθ其中,A、B分别表示两个向量,A,和,B,表示它们的模长,θ表示两个向量之间的夹角。
5、平面向量的坐标表示对于向量AB,在平面直角坐标系中,可以用一个有序数组(某,y)表示其坐标。
例如A(1,2)和B(3,4),则向量AB可以表示为(2,2)。
6、平面向量的方向角公式平面向量的方向角指向量与正方向某轴之间的夹角,其公式为:θ=tan-1(y/某)其中,某、y分别表示向量的某轴和y轴分量。
7、平面向量的正交公式两个向量如果互相垂直,则称它们是正交的。
平面向量的正交公式为:A·B=0其中,A、B分别表示两个向量,·表示数量积运算。
总之,平面向量的基本公式是理解和应用平面向量的关键。
高中数学平面向量知识点与典型例题总结(师)《数学》必会基础题型——《平面向量》【基本概念与公式】【任何时候写向量时都要带箭头】1.向量:既有大小又有方向的量。
记作:AB 或a 。
2.向量的模:向量的大小(或长度),记作:||AB 或||a 。
3.单位向量:长度为1的向量。
若e 是单位向量,则||1e =。
4.零向量:长度为0的向量。
记作:0。
【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。
6.相等向量:长度和方向都相同的向量。
7.相反向量:长度相等,方向相反的向量。
AB BA =-。
8.三角形法则:AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数)9.平行四边形法则:以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。
10.共线定理://a b a b λ=?。
当0λ>时,a b 与同向;当0λ<时,a b 与反向。
11.基底:任意不共线的两个向量称为一组基底。
12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a ba b +=+13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?=? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+=题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。
(2)若两个向量不相等,则它们的终点不可能是同一点。
(3)与已知向量共线的单位向量是唯一的。
(4)四边形ABCD 是平行四边形的条件是AB CD =。
(5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。
(6)因为向量就是有向线段,所以数轴是向量。
(7)若a 与b 共线, b 与c 共线,则a 与c 共线。
平面向量题型归纳一.向量有关概念:【任何时候写向量时都要带箭头】1.向量的概念:既有大小又有方向的量,记作:AB 或a 。
注意向量和数量的区别。
向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?〔向量可以平移〕。
例:A 〔1,2〕,B 〔4,2〕,那么把向量AB 按向量a =〔-1,3〕平移后得到的向量是 :向量的大小〔或长度〕,记作:||AB 或||a 。
3.零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; 4.单位向量:单位向量:长度为1的向量。
假设e 是单位向量,那么||1e =。
(与AB 共线的单位向量是||AB AB ±);5.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;6.平行向量〔也叫共线向量〕:方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!〔因为有0);④三点A B C 、、共线⇔ AB AC 、共线; 如图,在平行四边形ABCD 中,以下结论中正确的选项是 〔 〕A.AB CD =B.AB AD BD -=C.AD AB AC +=D.AD BC +=07.相反向量:长度相等方向相反的向量叫做相反向量。
a 的相反向量是-a 、AB BA =-。
例:以下命题:〔1〕假设a b =,那么a b =。
〔2〕假设,a b b c ==,那么a c =。
〔6〕假设//,//a b b c ,那么//a c 。
〔3〕假设AB DC =,那么ABCD 是平行四边形。
〔4〕假设ABCD 是平行四边形,那么AB DC =。
其中正确的选项是_______ 题型1、根本概念 1:给出以下命题:①假设|a |=|b |,那么a =b ;②向量可以比拟大小;③方向不相同的两个向量一定不平行;④假设a =b ,b =c ,那么a =c ;⑤假设a //b ,b //c ,那么a //c ;⑥00a ⋅=;⑦00a ⋅=;其中正确的序号是 。
平面向量的公式的知识点总结定比分点定比分点公式(向量P1P=λ•向量)设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。
则存在一个实数λ,使向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),则有OP=(OP1+λOP2)(1+λ);(定比分点向量公式)x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ)。
(定比分点坐标公式)我们把上面的式子叫做有向线段P1P2的定比分点公式三点共线定理若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线三角形重心判断式在△ABC中,若GA +GB +GC=O,则G为△ABC的重心向量共线的重要条件若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。
a//b的重要条件是 xy'-x'y=0。
零向量0平行于任何向量。
向量垂直的充要条件a⊥b的充要条件是a•b=0。
a⊥b的充要条件是 xx'+yy'=0。
零向量0垂直于任何向量.设a=(x,y),b=(x',y')。
1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
平面向量公式,轻松掌握的关键平面向量的公式是学习向量初步的重要基础。
下面将为大家简单总结平面向量公式,帮助大家轻松掌握。
1.向量的加法向量a+b的结果是以向量a的起点为起点,向量b的起点为终点的向量。
其公式表达为:a+b=(a1+b1,a2+b2)注:其中a1、a2和b1、b2分别是向量a、向量b的横、纵坐标。
2.向量的减法向量a-b的结果是以向量b的终点为起点,向量a的终点为终点的向量。
其公式表达为:a-b=(a1-b1,a2-b2)注:其中a1、a2和b1、b2分别是向量a、向量b的横、纵坐标。
3.向量的数乘数乘指的是一个实数(数学中的标量)乘以向量,结果是一个新向量。
其公式表达为:k*a=(k*a1,k*a2)注:其中a1、a2是向量a的横、纵坐标。
k为标量。
4.向量的模向量的模指向量的长度,可以通过勾股定理来计算。
其公式表达为:|a|=sqrt(a1^2+a2^2)注:其中a1、a2是向量a的横、纵坐标。
5.向量的点积向量的点积也称为向量的内积或数量积,它是两个向量的数量积的夹角余弦值乘以向量模长。
其公式表达为:a·b=|a|×|b|×cosθ注:其中a、b为向量,θ为向量a与向量b之间的夹角。
6.向量的叉积向量的叉积也称为向量的外积或矢量积,它是两个向量所确定的平行四边形的面积的大小与平面法向量的方向所确定的矢量。
其公式表达为:a×b=|a|×|b|×sinθ×n注:其中a、b为向量,θ为向量a与向量b之间的夹角,n是一个与向量a和向量b均垂直的向量。
小结:平面向量的公式不仅是学习向量初步的重要基础,也是在以后学习更高深的数学知识时用到的重要基础。
只有掌握了这些公式,才能够在向量的加、减、数乘、模、点积和叉积等各方面轻松应对。
平面向量的所有公式平面向量是研究平面上的有大小和方向的量,它有三个基本组成部分:模、方向和位移。
在平面向量的运算中,有加法、减法、数量乘法和点乘法等基本运算法则。
平面向量的计算公式如下:一、向量的模:向量的模即向量的长度,用,AB,表示,A、B为向量的起点和终点。
根据两点之间的距离公式,向量AB的长度为:,AB,= sqrt((x2-x1)^2 + (y2-y1)^2)二、向量的方向角:向量的方向角用θ表示,θ的计算公式为:θ = arctan(y/x)三、向量的加法:向量的加法可用平行四边形法则或三角形法则进行运算。
-平行四边形法则:若AB向量与CD向量首位相连,则它们的和向量AC的终点D与向量CD的终点D形成一条与中点O1O2平行的平行线。
-三角形法则:若AB向量与BC向量首位相连,则它们的和向量AC的起点A与向量AB的起点A和向量BC的起点B重合,且终点C与向量BC的终点C重合。
四、向量的减法:向量的减法可用向量加法的逆运算进行。
若向量AB与向量CD首位相连,则它们的差向量AC的终点C与向量CD的起点C重合。
即向量减法A-B=A+(-B),其中-B是向量B的逆向量。
五、数量乘法:向量与标量的乘法可分为两种情况。
-正数乘法:若k为正数,则k倍数的向量k·A与A方向相同,长度为原向量长度的k倍。
-负数乘法:若k为负数,则k倍数的向量k·A与A方向相反,长度为原向量长度的,k,倍。
六、数量积(点乘法):数量积是向量积的另一种形式,它用于计算两个向量之间的夹角以及向量在一些方向上的投影。
-数量积的计算:设A(x1,y1)和B(x2,y2)是平面上的两个向量,它们的数量积为:A·B=x1*x2+y1*y2- 夹角的计算:设向量A(x1, y1)和B(x2, y2)的夹角为θ,则夹角的余弦为:cosθ = (A·B) / (,A, * ,B,)- 向量在一些方向上的投影:设向量A的模为,A,θ为A与一些方向的夹角,则A在该方向上的投影为:P = ,A,* cosθ以上是平面向量的一些基本计算公式。
平面向量的所有公式-向量投影公式本文将介绍平面向量的各种公式,重点讨论向量投影公式及其应用。
向量投影是在平面内将一个向量映射到另一个向量上的过程,具有广泛的应用领域包括物理、工程和计算机图形学等。
向量投影公式给定两个非零向量 $\mathbf{a}$ 和 $\mathbf{b}$,我们可以计算出向量 $\mathbf{a}$ 在向量 $\mathbf{b}$ 上的投影,记为$\mathbf{proj}_\mathbf{b}\mathbf{a}$。
向量投影公式如下:$$\mathbf{proj}_\mathbf{b}\mathbf{a} = \frac{\mathbf{a} \cdot\mathbf{b}}{\|\mathbf{b}\|^2} \mathbf{b}$$其中,$\mathbf{a} \cdot \mathbf{b}$ 表示向量的点积,$\|\mathbf{b}\|$ 表示向量的模长。
向量投影公式的性质向量投影具有一些重要的性质,包括:1. 投影向量 $\mathbf{proj}_\mathbf{b}\mathbf{a}$ 在向量$\mathbf{b}$ 上的分量与向量 $\mathbf{a}$ 在向量 $\mathbf{b}$ 方向上的分量相等。
2. 投影向量 $\mathbf{proj}_\mathbf{b}\mathbf{a}$ 与向量$\mathbf{a}$ 的差向量 $\mathbf{a} -\mathbf{proj}_\mathbf{b}\mathbf{a}$ 垂直于向量 $\mathbf{b}$。
这些性质可以用来解决很多实际问题,例如求解平面内两个向量的夹角、求解直线上某点在另一直线上的投影等等。
应用举例下面是一些向量投影公式的应用举例:1. 物体在斜面上的重力分解:可以将物体的重力向量分解为平行于斜面的分量和垂直于斜面的分量,从而求解物体沿斜面滑动的加速度。
2. 计算向量在坐标轴上的分量:可以利用向量投影公式求解向量在坐标轴上的分量,从而计算向量的长度和方向角。
高中数学必修4之平面向量 知识点归纳一.向量的基本概念与基本运算1、向量的概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 2、向量加法:设,AB a BC b ==,则a+b =AB BC +=AC (1)a a a=+=+00;(2)向量加法满足交换律与结合律; AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”.3、向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ⋅=λλ; (Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反;当0=λ时,0 =a λ,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线⇔有且只有一个实数λ,使得b =a λ6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底 二.平面向量的坐标表示 1平面向量的坐标表示:平面内的任一向量a 可表示成a xi yj =+,记作a =(x,y)。
2平面向量的坐标运算:(1) 若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±±(2) 若()()2211,,,y x B y x A ,则()2121,AB x x y y =--(3) 若a =(x,y),则λa =(λx, λy)(4) 若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-=(5) 若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅若a b ⊥,则02121=⋅+⋅y y x x三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·︱b ︱cos θ叫做a 与b 的数量积(或内积) 规定00a ⋅= 2向量的投影:︱b ︱cos θ=||a b a ⋅∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影 3数量积的几何意义: a ·b 等于a 的长度与b 在a 方向上的投影的乘积4向量的模与平方的关系:22||a a a a ⋅==5乘法公式成立:()()2222a b a b a b a b +⋅-=-=-;()2222a b a a b b ±=±⋅+222a a b b =±⋅+ 6平面向量数量积的运算律:①交换律成立:a b b a ⋅=⋅ ②对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈ ③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅±特别注意:(1)结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅; (2)消去律不成立a b a c ⋅=⋅不能得到b c =⋅(3)a b ⋅=0不能得到a =0或b =07两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =121x x y y + 8向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ(001800≤≤θ)叫做向量a 与b 的夹角cos θ=cos ,a b a b a b ∙<>=∙= 当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题 9垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b 10两个非零向量垂直的充要条件:a ⊥b ⇔a ·b =O ⇔2121=+y y x x 平面向量数量积的性质。
平面向量坐标运算公式总结1. 向量的基本概念向量,顾名思义,就是一种有大小又有方向的量。
你可以把它想象成一个带箭头的直线段,箭头指的就是方向,长度则代表大小。
比如,你看那架飞得飞快的飞机,飞机飞的方向和速度就是一个向量。
简单说,平面上的每一个点都能用一个向量来表示,特别是在坐标系里,真是个好帮手。
1.1 向量的表示在二维坐标系中,向量通常用一个有序的数对来表示,比如(x, y)。
这里的x和y 就是这个向量在水平和垂直方向上的分量。
例如,你站在家门口往东走5步,往北走3步,你的位移就是向量(5, 3)。
这就像你用两个小块积木搭成一辆车,一块是向东的,一块是向北的。
很直观对吧?1.2 向量的加减法如果你有两个向量,比如(2, 3)和(4, 1),要把它们加在一起,其实就是把它们的对应分量相加。
结果就是(2+4, 3+1)=(6, 4)。
这种运算就像你在两块积木上拼拼乐一样,简单直接。
减法也是类似的操作,只不过是把对应分量相减而已。
例如,向量(5, 7)减去(2, 3),结果就是(3, 4)。
感觉就像是在减去一些你不需要的东西,剩下的就是你真正的“家当”了。
2. 向量的长度和单位向量向量的长度,就是这个向量的“长短”,计算起来其实也不复杂。
你只需要用勾股定理来算一算:如果一个向量是(x, y),它的长度就是√(x² + y²)。
这就像你在量一根线段的长度,拿个直尺量一量就好了。
单位向量就是长度为1的向量,你可以通过将原向量除以它的长度来得到它。
这就像把你的鞋子换成标准尺码,这样就能更好地适应各种情况。
2.1 向量的点积点积又叫内积,是两个向量相互“合作”的结果。
计算起来,两个向量(x1, y1)和(x2, y2)的点积是x1*x2 + y1*y2。
这就像在计算两个数的“共同贡献”,如果结果很大,说明它们非常“合拍”。
点积的结果不仅可以告诉你两个向量之间的夹角,还能用来判断它们是否垂直。
平面向量的所有公式归纳总结
平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。
平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
1、向量的加法满足平行四边形法则和三角形法则.
ab+bc=ac.
a+b=(x+x',y+y').
a+0=0+a=a.
2、向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c).
如果a、b就是互为恰好相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0
ab-ac=cb.即“共同起点,指向被减”
a=(x,y)b=(x',y')则a-b=(x-x',y-y').
1、定义:已知两个非零向量a,b.作oa=a,ob=b,则角aob称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
定义:两个向量的数量内积(内积、点内积)就是一个数量,记作ab.若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣.
2、向量的数量积的坐标表示:ab=xx'+yy'.
3、向量的数量内积的运算律
ab=ba(交换律);
(λa)b=λ(ab)(关于数乘法的结合律);
(a+b)c=ac+bc(分配律);
4、向量的数量内积的性质
aa=|a|的平方.
a⊥b〈=〉ab=0.
|ab|≤|a||b|.
5、向量的数量内积与实数运算的主要不同点
(1)向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2.
(2)向量的数量积不满足用户解出律,即为:由ab=ac(a≠0),推不出b=c.
(3)|ab|≠|a||b|
(4)由|a|=|b|,推不出a=b或a=-b.
1、实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣.
当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任一.
当a=0时,对于任意实数λ,都有λa=0.
备注:按定义言,如果λa=0,那么λ=0或a=0.
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.
当∣λ∣>1时,则表示向量a的存有向线段在原方向(λ>0)或反方向(λ<0)上弯曲为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.
2、数与向量的乘法满足用户下面的运算律
结合律:(λa)b=λ(ab)=(aλb).
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘坐向量的解出律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且
λa=μa,那么λ=μ.
1、定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b 和a×b按这个次序构成右手系.若a、b共线,则a×b=0.
2、向量的向量内积性质:
∣a×b∣是以a和b为边的平行四边形面积.
a×a=0.
a‖b〈=〉a×b=0.
3、向量的向量内积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
备注:向量没乘法,“向量ab/向量cd”就是没意义的.
1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
①当且仅当a、b逆向时,左边挑等号;
②当且仅当a、b同向时,右边取等号.
2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.
①当且仅当a、b同向时,左边取等号;
②当且仅当a、b逆向时,右边挑等号.
定比分点公式(向量p1p=λ向量pp2)
设p1、p2就是直线上的两点,p就是l上不同于p1、p2的任一一点.则存有一个实数λ,并使向量p1p=λ向量pp2,λ叫作点p棕斑向线段p1p2阿芒塔的比.
若p1(x1,y1),p2(x2,y2),p(x,y),则有
op=(op1+λop2)(1+λ);(的定比分点向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ).(的定比分点座标公式)
我们把上面的式子叫做有向线段p1p2的定比分点公式
1、三点共线定理
若oc=λoa+μob,且λ+μ=1,则a、b、c三点共线
2、三角形战略重点推论式
在△abc中,若ga+gb+gc=o,则g为△abc的重心
3、向量共线的关键条件
若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb. a//b的关键条件就是xy'-x'y=0.
4、零向量0平行于任何向量.
5、向量横向的充要条件
a⊥b的充要条件是ab=0.
a⊥b的充要条件就是xx'+yy'=0.
6、零向量0垂直于任何向量.。