北师大版2016-2017学年九年级数学第一学期期末测试题
- 格式:doc
- 大小:2.15 MB
- 文档页数:4
2021-2022学年北师大版九年级数学第一学期期末复习综合训练题1(附答案)1.若一元二次方程(k﹣1)x2+3x+k2﹣1=0的一个根为0,则k的值为()A.k=0B.k=1C.k=﹣1D.k=1或k=﹣1 2.菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是()A.cm B.2cm C.1cm D.2cm3.如图,在菱形ABCD中,P是对角线AC上一动点,过点P作PE⊥BC于点E.PF⊥AB 于点F.若菱形ABCD的周长为24,面积为24,则PE+PF的值为()A.4B.C.6D.4.在一个不透明的袋子里,装有6枚白色棋子和若干枚黑色棋子,这些棋子除颜色外都相同.将袋子里的棋子摇匀,随机摸出一枚棋子,记下它的颜色后再放回袋子里.不断重复这一过程,统计发现,摸到白色棋子的频率稳定在0.1,由此估计袋子里黑色棋子的个数为()A.60B.56C.54D.525.已知反比例函数y=(k≠0)与正比例函数y=﹣2x没有交点,且双曲线图象上有三点A(﹣1,a)、B(﹣3,b)、C(4,c),则a、b、c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b6.某广场有一块正方形的空地正中间修建一个圆形喷泉,在四个角修建四个四分之一圆形的水池,其余部分种植花草.若喷泉和水池的半径都相同,喷泉边缘到空地边界的距离为3m,种植花草的区域的面积为100m2,设水池半径为xm,可列出方程()A.(2x+3)2﹣πx2=100B.(x+6)2﹣πx2=100C.(2x+3)2﹣2x2=100D.(2x+6)2﹣2πx2=1007.如图,已知AB∥CD∥EF,它们依次交直线l1,l2于点A、D、F和点B、C、E,如果AD:DF=3:1,BE=12,那么CE等于()A.9B.4C.6D.38.矩形的正投影不可能是()A.矩形B.梯形C.正方形D.线段9.下列四个三角形,与图中的三角形相似的是()A.B.C.D.10.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为()A.6B.24C.26D.1211.下列关于比例线段和相似的叙述,不正确的是()A.若a:b=c:d,则ac=bdB.相似三角形的面积比等于相似比的平方C.点C是线段AB的黄金分割点,且AC>BC,则D.经过位似多边形对应顶点的直线一定交于同一点12.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为()A.48cm3B.72cm3C.144cm3D.288cm313.x2=﹣x方程的根是.14.如图,在△ABC中,AB=6,AC=4,D是AB边上的一点,当AD=时,△ABC ∽△ACD.15.点(m+3,2)和点(3,)是同一个反比例函数图象上的点,则m的值为.16.如图,在边长为4cm的正方形ABCD中,点Q是边CD的中点,点P是边BC上的一点,连接AP,PQ,且∠APQ=∠P AD,则线段PQ的长为cm.17.如图,利用一面墙(墙长25米),用总长度49米的栅栏(图中实线部分)围成一个矩形围栏ABCD,且中间共留两个1米的小门,设栅栏BC长为x米.(1)若矩形围栏ABCD面积为210平方米,求栅栏BC的长;(2)矩形围栏ABCD面积是否有可能达到240平方米?若有可能,求出相应x的值,若不可能,请说明理由.18.新冠肺炎疫情期间,口罩需求量大幅上升.某工厂接到任务紧急生产一批口罩,下面是每时生产口罩的数量与完成任务总共需要的时间的关系.每时生产口罩的数量/万只2346时间/时72483624(1)每时生产口罩的数量与时间有什么关系?(2)如果每时生产8万只口罩,那么完成这项任务一共需要多少时?19.如图,转盘黑色扇形和白色扇形的圆心角分别为120°和240°.(1)让转盘自由转动一次,指针落在白色区域的概率是多少?(2)让转盘自由转动两次,请用树状图或者列表法求出两次指针都落在白色区域的概率.(注:当指针恰好指在分界线上时,无效重转)20.如图,在△ABC中,AB=AC,点D是BC中点,点E是AD中点,延长BE至F,使EF=BE,连接AF,CF,BF与AC交于点G.(1)求证:四边形ADCF是矩形.(2)若AB=5,BC=6,线段CG的长为.21.某一广告墙PQ旁有两根直立的木杆AB和CD,某一时刻在太阳光下,木杆CD的影子刚好不落在广告墙PQ上,(1)你在图中画出此时的太阳光线CE及木杆AB的影子BF;(2)若AB=6米,CD=3米,CD到PQ的距离DQ的长为4米,求此时木杆AB的影长.22.如图,在正方形ABCD中,E是边AD上的点,点F在边CD上,且CF=3FD,∠BEF =90°.(1)求证:△ABE∽△DEF;(2)若AB=6,延长EF交BC的延长线于点G,求CG的长.23.如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,AB=BO,直线y=kx﹣4与反比例函数y=(x>0)的图象交于点A,与y轴分别交于点C.(1)求k的值;(2)点D与点O关于AB对称,连接AD,CD.证明:△ACD是直角三角形;(3)在(2)的条件下,点E在反比例函数的图象上,若S△ECD=S△OCD,直接写出点E 的坐标.参考答案1.解:把x=0代入一元二次方程(k﹣1)x2+3x+k2﹣1=0,得k2﹣1=0,解得k=﹣1或1;又k﹣1≠0,即k≠1;所以k=﹣1.故选:C.2.解:∵菱形ABCD的周长为8cm,∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=2cm,∴OA=1(cm),在Rt△AOB中,由勾股定理得:OB===(cm),∴BD=2OB=2(cm),故选:B.3.解:连接BP,如图,∵四边形ABCD为菱形,菱形ABCD的周长为24,面积为24,∴BA=BC=6,S△ABC=S菱形ABCD=12,∵S△ABC=S△P AB+S△PBC,∴×6×PE+×6×PF=12,∴PE+PF=4,故选:A.4.解:设袋子里黑色棋子的个数为x个,根据题意得:=0.1,解得:x=54,经检验:x=54是分式方程的解,估计袋子里黑色棋子的个数为54个.故选:C.5.解:∵反比例函数y=(k≠0)与正比例函数y=﹣2x没有交点,∴函数y=﹣2x在二、四象限,则反比例函数y=(k≠0)图象在一、三象限,∵﹣3<﹣1<0,∴点A(﹣1,a)、B(﹣3,b)在第三象限,∴a<b<0,∵4>0,∴C(4,c)在第一象限,∴c>0,∴a、b、c的大小关系是c>b>a,故选:C.6.解:设水池半径为xm,则正方形的边长为(2x+6)m,根据题意得:(2x+6)2﹣2πx2=100,故选:D.7.解:∵AB∥CD∥EF,∴=3,∴BC=3CE,∵BC+CE=BE,∴3CE+CE=12,∴CE=3.故选:D.8.解:用平行光线对矩形从不同的方向,不同的角度正投影,可以得到矩形、正方形、线段,不可能是梯形,故选:B.9.解:根据勾股定理,所给图形的两直角边为=,=2,所以,夹直角的两边的比为=,观各选项,只有B选项三角形符合,与所给图形的三角形相似.故选:B.10.解:设图1中分成的直角三角形的长直角边为a,短直角边为b,,得,∴图1中菱形的面积为:×4=12,故选:D.11.解:若a:b=c:d,则ad=bc,A不正确;相似三角形的面积比等于相似比的平方,B正确;点C是线段AB的黄金分割点,且AC>BC,则,C正确;经过位似多边形对应顶点的直线一定交于同一点,D正确.故选:A.12.解:∵俯视图为正方形,根据主视图可得:正方形对角线为6cm,长方体的高为8cm,∴长方体的体积为:6×6÷2×8=144(cm3).故选:C.13.解:x2=﹣x,x2+x=0,x(x+1)=0,∴x=0或x+1=0,∴x1=0,x2=﹣1.14.解:∵△ABC∽△ACD,AB=6,AC=4,∴,即,解得AD=.故答案为:.15.解:∵点(m+3,2)和点(3,)是同一个反比例函数图象上的点,∴2(m+3)=3×,∴m=﹣6.故答案为:﹣6.16.解:如图,延长AD,PQ交于点H,设PC=xcm,∵四边形ABCD是正方形,∴AD=CD=BC=4cm,AD∥BC,∵点Q是边CD的中点,∴DQ=CQ=2cm,∵AD∥BC,∴∠H=∠QPC,又∵∠DQH=∠CQP,∴△DQH≌△CQP(AAS),∴PC=DH=xcm,PQ=QH,∴AH=AD+DH=(4+x)cm,∵∠APQ=∠P AD,∴AH=PH=(4+x)cm,∴PQ=QH=()cm,∵PQ2=CQ2+PC2,∴()2=4+x2,∴x=或x=0(舍),∴PQ=cm,故答案为:.17.解:若设BC=x米,则AB=(49+1+1﹣3x)=(51﹣3x)米.(1)依题意得:x(51﹣3x)=210,整理得:x2﹣17x+70=0,解得:x1=7,x2=10.当x=7时,51﹣3x=51﹣3×7=30>25,不合题意,舍去;当x=10时,51﹣3x=51﹣3×10=21<25,符合题意.答:栅栏BC的长为10米.(2)矩形围栏ABCD的面积不可能达到240平方米,理由如下:依题意得:x(51﹣3x)=240,整理得:x2﹣17x+80=0.∵Δ=(﹣17)2﹣4×1×80=﹣31<0,∴原方程没有实数根,∴矩形围栏ABCD的面积不可能达到240平方米.18.解:(1)因为每时生产口罩的数量与时间的积一定,所以每时生产口罩的数量与时间成反比例;(2)设反比例函数解析式为:y=,把(2,72)代入得:k=144,故反比例函数解析式为:y=,∴y==18(时),答:完成这项任务一共需要18小时.19.解:(1)∵转盘黑色扇形和白色扇形的圆心角分别为120°和240°,∴白色扇形是黑色扇形的2倍,∴让转盘自由转动一次,指针落在白色区域的概率是;(2)画树状图如下:共有9种等可能的结果,两次指针都落在白色区域的结果有4种,∴两次指针都落在白色区域的概率为.20.(1)证明:∵点E是AD中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(SAS),∴AF=DB,∠AFE=∠DBE,∴AF∥DB,∵AB=AC,点D是BC中点,∴DB=DC,AD⊥BC,∴AF=DC,∠ADC=90°,∴四边形ADCF是平行四边形,∵∠ADC=90°,∴平行四边形ADCF是矩形;(2)解:过G作GH⊥CD于H,如图所示:则GH∥AD,∵AB=AC=5,点D是BC中点,∴AD⊥BC,BD=CD=BC=3,∴AD===4,由(1)得:AF=DC=BD=3=BC,AF∥BC,∴△AGF∽△CGB,∴==,∴AG=CG,∴AG=AC=,∴CG=AC﹣AG=5﹣=,故答案为:.21.解:(1)如图所示:(2)设木杆AB的影长BF为x米,由题意,得=,解得x=8.答:木杆AB的影长是8米.22.(1)证明:∵四边形ABCD是正方形,∴∠A=∠D=90°,∵∠BEF=90°,∴∠AEB+∠DEF=90°,又∵∠ABE+∠AEB=90°,∴∠ABE=∠DEF,∴△ABE∽△DEF;(2)解:∵四边形ABCD是正方形,∴AB=AD=CD=6,AD∥BG,∵CF=3FD,∴DF=1.5,设DE=x,∵△ABE∽△DEF,∴,即,解得x=3,∴DE=3,∵DE∥CG,∴△DEF∽△CGF,∴,∵CF=3FD,∴,∴CG=9,23.(1)解:令AB=BO=m,∵∠ABO=90°,∴AB⊥x轴,则设点A的坐标为(m,m),∵反比例函数y=(x>0)的图象交于点A,∴=m,解得m=±2,∵m>0,∴m=2,∵点A(2,2)在直线y=kx﹣4上,∴2=2k﹣4,∴k=3;(2)证明:由(1)可知B(2,0),AB=2,∵AB⊥BO,点D与点O关于AB对称,∴D(4,0),BD=2,∴AD2=AB2+BD2=22+22=8,过点A作AE⊥y轴,垂足为E,则点E(0,2),AE=2,∵直线y=3x﹣4与y轴交于点C,∴C(0,﹣4)则CE=6,∴AC2=AE2+CE2=22+62=40,∵∠OCD=90°,OD=4,OC=4,∴CD2=OD2+OC2=42+42=32,∵8+32=40,∴AD2+CD2=AC2,∴△ACD是直角三角形;(3)解:①当点E在CD上方时,如下图,过点O、A作直线m,由点O、A的坐标知,直线OA的表达式为y=x,由点C、D的坐标知,直线CD的表达式为y=x﹣4,则直线CD∥m,即OA∥CD,∵S△ECD=S△OCD,即两个三角形同底,则点E与点A重合,故点E的坐标为(2,2);②当点E(E′)在CD下方时,在y轴负半轴取CH=OC=4,则点H(0,﹣8),∵则S△ECD=S△OCD,∴过点H作直线m′∥CD,则直线m′与反比例函数的交点即为点E,∴直线m′的表达式为y=x﹣8,联立y=x﹣8和y=并解得(不合题意值已舍去),故点E的坐标为(4+2,2﹣4),综上,点E的坐标为(4+2,2﹣4)或(2,2).。
北师大版九年级数学第一学期期末考试试题及答案一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)有一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A.B.C.D.2.(4分)在△ABC中,∠C=90°,AB=5,BC=3,则sin A的值为()A.B.C.D.3.(4分)小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A.B.C.D.4.(4分)如图,在同一时刻,身高1.6米的小丽在阳光下的影长为2.5米,一棵大树的影长为5米,则这棵树的高度为()A.7.8米B.3.2米C.2.3米D.1.5米5.(4分)一元二次方程x2﹣2x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根6.(4分)若反比例函数y=﹣的图象上有两点A(﹣2,m),B(﹣1,n),则m,n的关系是()A.m>n B.m<n C.m=n D.无法确定7.(4分)如图,正方形ABCD的边长为7,在各边上顺次截取AE=BF=CG=DH=4,则四边形EFGH的面积为()A.20B.25C.30D.358.(4分)二次函数y=2(x﹣4)2+5的开口方向、对称轴、顶点坐标分别是()A.向下、直线x=﹣4、(﹣4,5)B.向上、直线x=﹣4、(﹣4,5)C.向上、直线x=4、(4,﹣5)D.向上、直线x=4、(4,5)9.(4分)已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定10.(4分)如图,小强从热气球上的A点测量一栋高楼顶部的仰角∠DAB=30°,测量这栋高楼底部的俯角∠DAC =60°,热气球与高楼的水平距离为AD=15米,则这栋高楼的高BC为()米.A.45B.60C.75D.9011.(4分)如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数y=的图象经过点B,则k的值是()A.1B.2C.D.12.(4分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:①abc<0②b<c③3a+c=0④当y>0时,﹣1<x<3其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)13.(4分)已知=,则=.14.(4分)如图,在正方形网格中,四边形ABCD为菱形,则tan等于.15.(4分)关于x的方程x2+mx﹣8=0的一个根是2,则m=,另一根是.16.(4分)两个相似多边形的周长之比为2,面积之比为m,则m为.17.(4分)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为.18.(4分)矩形纸片ABCD中,AB=5,AD=4,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.延长B′E交AB的延长线于M,折痕AE上有点P,下列五个结论中正确的是.①∠M=∠DAB';②PB=PB';③AE=;④MB'=CD;⑤若B'P⊥CD,则EB'=B'P.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(﹣1)4﹣2cos60°+tan45°﹣(﹣)0.20.(6分)如图,在菱形ABCD中,点E,F分别是边AB和BC上的点,且BE=BF.求证:∠DEF=∠DFE.21.(6分)在一个不透明的盒子里,装有四个分别标有数字1、2、3、4的小球,它们的形状、大小、质地等完全相同,小明先从盒子里随机取出一个小球,记下数字为x,放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.请用列表法或画树状图法求出点(x,y)落在反比例函数y=的图象上的概率.22.(8分)如图,已知点C、D在线段AB上,且AC=4,BD=9,△PCD是边长为6的等边三角形.(1)求证:△P AC∽△BPD;(2)求∠APB的度数.23.(8分)一种竹制躺椅如图①所示,其侧面示意图如图②③所示,这种躺椅可以通过改变支撑杆CD的位置来调节躺椅舒适度,假设AB所在的直线为地面,已知AE=120cm,当把图②中的支撑杆CD调节至图③中的CD'的位置时,∠EAB由20°变为25°.(1)你能求出调节后该躺椅的枕部E到地面的高度增加了多少吗?(参考数据:sin20°≈0.34,sin25°≈0.42)(2)已知点O为AE的一个三等分点,根据人体工程学,当点O到地面的距离为26cm时,人体感觉最舒适.请你求出此时枕部E到地面的高度.24.(10分)如图,工人师傅用一块长为10分米,宽为6分米的矩形铁皮制作一个无盖长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)请在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;(2)求当长方体底面面积为12平方分米时,裁掉的正方形边长是多少?25.(10分)如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)求这两个函数的表达式:(2)根据图象,直接写出满足k1x+b>的x的取值范围;(3)连接OA,OB,求△AOB的面积;(4)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.26.(12分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.易证:CE=CF.(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE,BE,GD三线段之间的数量关系,并证明你的结论.(2)运用(1)中解答所积累的经验和知识,完成下面两题:①如图2,在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α,∠ECG=β,试探索当α和β满足什么关系时,图1中GE,BE,GD三线段之间的关系仍然成立,并说明理由.②在平面直角坐标系中,边长为1的正方形OABC的两顶点A,C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y =x于点M,BC边交x轴于点N(如图3).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?若不变,请直接写出结论.27.(12分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.2021-2022学年山东省济南市商河县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)有一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可.【解答】解:左边看去是一个正方形,中间有一个圆柱形孔,圆柱的左视图是矩形,所以左视图的正方形里面还要两条虚线.故选:C.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图;注意看到的用实线表示,看不到的用虚线表示.2.(4分)在△ABC中,∠C=90°,AB=5,BC=3,则sin A的值为()A.B.C.D.【分析】根据正弦的定义得到sin A=,然后把AB=5,BC=3代入即可得到sin A的值.【解答】解:如图,∵∠C=90°,AB=5,BC=3,∴sin A==.故选:A.【点评】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于这个角的对边与斜边的比值.3.(4分)小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小华获胜的情况数,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,小华获胜的情况数是3种,∴小华获胜的概率是:=.故选:C.【点评】此题主要考查了列表法和树状图法求概率知识,用到的知识点为:概率=所求情况数与总情况数之比.4.(4分)如图,在同一时刻,身高1.6米的小丽在阳光下的影长为2.5米,一棵大树的影长为5米,则这棵树的高度为()A.7.8米B.3.2米C.2.3米D.1.5米【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:∵同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似,∴,∴=,∴BC=×5=3.2米.故选:B.【点评】本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.5.(4分)一元二次方程x2﹣2x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根【分析】代入一元二次方程中的系数求出根的判别式Δ=﹣8<0,由此即可得出结论.【解答】解:在方程x2﹣2x+3=0中,Δ=(﹣2)2﹣4×1×3=﹣8<0,∴该方程没有实数根.故选:D.【点评】本题考查了根的判别式,解题的关键是代入数据求出△的值.本题属于基础题,难度不大,解决该题型题目时,根据根的判别式的符号判断出方程根的个数是关键.6.(4分)若反比例函数y=﹣的图象上有两点A(﹣2,m),B(﹣1,n),则m,n的关系是()A.m>n B.m<n C.m=n D.无法确定【分析】把点的坐标代入函数解析式可分别求得m、n的值,比较其大小即可.【解答】解:把A(﹣2,m)与B(﹣1,n)代入反比例解析式得:m=1,n=2,则m<n,故选:B.【点评】此题考查了反比例函数图象上点的坐标特征,熟练掌握运算法则是解本题的关键.7.(4分)如图,正方形ABCD的边长为7,在各边上顺次截取AE=BF=CG=DH=4,则四边形EFGH的面积为()A.20B.25C.30D.35【分析】由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,证出AH=BE=CF=DG,由SAS证明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH,∠AEH=∠BFE,证出四边形EFGH是菱形,再证出∠HEF=90°,即可得出四边形EFGH是正方形,由边长为7,AE=BF=CG=DH=4,可得AH =3,由勾股定理得EH,得正方形EFGH的面积.【解答】解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形,∵AB=BC=CD=DA=7,AE=BF=CG=DH=4,∴AH=BE=DG=CF=3,∴EH=FE=GF=GH==5,∴四边形EFGH的面积是:5×5=25,故选:B.【点评】本题主要考查了正方形的性质和判定定理全等三角形的判断和性质以及勾股定理的运用,证得四边形EFGH是正方形是解答此题的关键.8.(4分)二次函数y=2(x﹣4)2+5的开口方向、对称轴、顶点坐标分别是()A.向下、直线x=﹣4、(﹣4,5)B.向上、直线x=﹣4、(﹣4,5)C.向上、直线x=4、(4,﹣5)D.向上、直线x=4、(4,5)【分析】根据二次函数顶点式解析式分别解答即可.【解答】解:二次函数y=2(x﹣4)2+5的开口方向向下;对称轴是直线x=4;顶点坐标是(4,5).故选:D.【点评】本题考查了二次函数的性质,熟练掌握利用二次函数顶点式形式求解对称轴和顶点坐标的方法是解题的关键.9.(4分)已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定【分析】根据矩形的性质,AO=CO,由EF⊥AC,得EA=EC,则△CDE的周长是矩形周长的一半,再根据全等三角形的判定方法可求出△CDE与△ABF全等,进而得到问题答案.【解答】解:∵AO=CO,EF⊥AC,∴EF是AC的垂直平分线,∴EA=EC,∴△CDE的周长=CD+DE+CE=CD+AD=矩形ABCD的周长=10cm,同理可求出△ABF的周长为10cm,根据全等三角形的判定方法可知:△CDE与△ABF全等,故选:B.【点评】本题考查了矩形的对角线互相平分的性质,还考查了线段垂直平分线的性质以及全等三角形的判定方法,题目的难度不大.10.(4分)如图,小强从热气球上的A点测量一栋高楼顶部的仰角∠DAB=30°,测量这栋高楼底部的俯角∠DAC =60°,热气球与高楼的水平距离为AD=15米,则这栋高楼的高BC为()米.A.45B.60C.75D.90【分析】在直角△ABD与直角△ACD中,根据三角函数即可求得BD和CD,即可求解.【解答】解:∵AD⊥BC,垂足为D,在Rt△ABD中,∵∠BAD=30°,AD=15m,∴BD=AD•tan30°=15×=15(m),在Rt△ACD中,∵∠CAD=60°,AD=15m,∴CD=AD•tan60°=15×=45(m),∴BC=15+45=60(m).故选:B.【点评】本题主要考查了解直角三角形的应用﹣仰角与俯角问题,一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算.11.(4分)如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数y=的图象经过点B,则k的值是()A.1B.2C.D.【分析】首先过点B作BC垂直OA于C,根据AO=2,△ABO是等边三角形,得出B点坐标,进而求出反比例函数解析式.【解答】解:过点B作BC垂直OA于C,∵点A的坐标是(2,0),∴AO=2,∵△ABO是等边三角形,∴OC=1,BC=,∴点B的坐标是(1,),把(1,)代入y=,得k=.故选:C.【点评】此题主要考查了反比例函数的综合应用、等边三角形的性质以及图象上点的坐标特点等知识,根据已知表示出B点坐标是解题关键.12.(4分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:①abc<0②b<c③3a+c=0④当y>0时,﹣1<x<3其中正确的结论有()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①对称轴位于x轴的右侧,则a,b异号,即ab<0.抛物线与y轴交于正半轴,则c>0.∴abc<0.故①正确;②∵抛物线开口向下,∴a<0.∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a.∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴b﹣c=﹣2a+3a=a<0,即b<c,故②正确;③∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴3a+c=0.故③正确;④由抛物线的对称性质得到:抛物线与x轴的另一交点坐标是(3,0).∴当y>0时,﹣1<x<3故④正确.综上所述,正确的结论有4个.故选:D.【点评】考查了抛物线与x轴的交点,二次函数图象上点的坐标特征,二次函数图象与系数的关系.二次函数y =ax2+bx+c系数符号的确定由抛物线开口方向、对称轴、与y轴的交点有关.二、填空题(每小题4分,共24分)13.(4分)已知=,则=.【分析】根据=得到x=,代入代数式后约分即可求解.【解答】解:∵=,∴x=,∴==,故答案为:,【点评】本题考查了比例的性质,解题的关键是能够用一个字母表示另一个字母,难度不大.14.(4分)如图,在正方形网格中,四边形ABCD为菱形,则tan等于.【分析】根据菱形的对角线互相垂直平分、对角线平分对角以及锐角三角函数的定义进行解答.【解答】解:如图,设AC、BD交于点O.∵四边形ABCD是菱形,∴AC⊥BD,=∠BAO.∴tan=tan∠BAO=.故答案为:.【点评】本题考查了菱形的性质和解直角三角形,根据菱形的性质推AC⊥BD,=∠BAO是解题的关键.15.(4分)关于x的方程x2+mx﹣8=0的一个根是2,则m=2,另一根是﹣4.【分析】根据一元二次方程根与系数的关系,即可得到一个关于另一根与m的方程组,即可求解.【解答】解:∵方程x2+mx﹣8=0的一个根是2,设另一根是α,∴2α=﹣8,α=﹣4;2+α=﹣m,则2﹣4=﹣m,解得:m=2.故答案为:2,﹣4.【点评】考查了一元二次方程的解及根于系数的关系的知识,解答此题要熟知一元二次方程根与系数的关系.16.(4分)两个相似多边形的周长之比为2,面积之比为m,则m为4.【分析】根据相似多边形的周长比等于相似比,面积比等于相似比的平方,进行计算即可解答.【解答】解:由相似多边形的性质可得:相似多边形的周长比等于相似比,面积比等于相似比的平方,∴两个相似多边形的周长之比为2,面积之比为m,则m为4,故答案为:4.【点评】本题考查了相似多边形的性质,熟练掌握相似多边形的性质是解题的关键.17.(4分)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为10.【分析】设点A的坐标为(a,b),点B的坐标为(c,d),根据反比例函数y=的图象过A,B两点,所以ab =4,cd=4,进而得到S△AOC=|ab|=2,S△BOD=|cd|=2,S矩形MCDO=3×2=6,根据四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO,即可解答.【解答】解:如图,设点A的坐标为(a,b),点B的坐标为(c,d),∵反比例函数y=的图象过A,B两点,∴ab=4,cd=4,∴S△AOC=|ab|=2,S△BOD=|cd|=2,∵点M(﹣3,2),∴S矩形MCDO=3×2=6,∴四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO=2+2+6=10,故答案为:10.【点评】本题主要考查反比例函数的对称性和k的几何意义,根据条件得出S△AOC=|ab|=2,S△BOD=|cd|=2是解题的关键,注意k的几何意义的应用.18.(4分)矩形纸片ABCD中,AB=5,AD=4,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.延长B′E交AB的延长线于M,折痕AE上有点P,下列五个结论中正确的是①②③⑤.①∠M=∠DAB';②PB=PB';③AE=;④MB'=CD;⑤若B'P⊥CD,则EB'=B'P.【分析】根据∠M=∠CB'E,而∠CB'E+∠DB'A=∠DAB'+∠DB'A=90°可判断①;利用折叠的性质可判断出△B'AP≌△BAP,继而可判断出②;设AE=x,表示出EB'=EB=,在Rt△CEB'中利用勾股定理可求出AE的长度,继而可判断出③;利用反证法判断④,最后看得出的结果能证明出来;根据B′P⊥CD,判断出B'P ∥BC,从而有∠B'PE=∠BEP=∠B'EP,从而可判断出⑤.综合起来即可得出最终的答案.【解答】解:如图,连接AB',①由题意得∠M=∠CB'E,而∠CB'E+∠DB'A=∠DAB'+∠DB'A=90°,∴∠M=∠CB'E=∠DAB',故可得①正确;②根据折叠的性质可得AB'=AB,∠B'AP=∠BAP,在△B'AP和△BAP中,,∴△B'AP≌△BAP(SAS),∴PB=PB',故可得②正确;③在Rt△ADB'中,根据勾股定理,得:B'D===3,∴CB'=5﹣3=2,设AE=x,则EB'=EB=,在Rt△CEB'中,∵CE2+CB'2=EB'2,∴(4﹣)2+4=x2﹣25,解得:x=,∴AE=;故可得③正确;④假如MB′=CD,则可得MB'=AB=AB',∴∠M=∠BAB',由①得∠M=∠DAB′,故有∠BAB'=∠DAB',而本题不能判定∠BAB'=∠DAB',即假设不成立.故可得④错误.⑤若B′P⊥CD,则B'P∥BC,∴∠B'PE=∠BEP=∠B'EP,∴EB'=B'P,故可得⑤正确.综上可得①②③⑤正确,共四个.故答案为:①②③⑤.【点评】本题考查了翻折变换,解答过程中涉及了平行四边形的性质、勾股定理,属于综合性题目,解答本题的关键是根据翻折变换的性质得出对应角、对应边分别相等,然后分别判断每个结论,难度较大,注意细心判断.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(﹣1)4﹣2cos60°+tan45°﹣(﹣)0.【分析】首先计算零指数幂、负整数指数幂、开方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:(﹣1)4﹣2cos60°+tan45°﹣(﹣)0==1﹣1+1﹣1=0.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.(6分)如图,在菱形ABCD中,点E,F分别是边AB和BC上的点,且BE=BF.求证:∠DEF=∠DFE.【分析】根据菱形的性质和全等三角形的判定方法“SAS”即可证明△ADE≌△CDF,进而利用全等三角形的性质和等腰三角形的性质解答即可.【解答】证明:∵四边形ABCD是菱形,∴∠A=∠C,AB=CB,AD=DC,∵BE=BF,∴AE=CF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴DE=DF,∴∠DEF=∠DFE.【点评】本题主要考查菱形的性质,同时综合利用全等三角形的判定方法及等腰三角形的性质,解决本题的关键是熟记菱形的性质.21.(6分)在一个不透明的盒子里,装有四个分别标有数字1、2、3、4的小球,它们的形状、大小、质地等完全相同,小明先从盒子里随机取出一个小球,记下数字为x,放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.请用列表法或画树状图法求出点(x,y)落在反比例函数y=的图象上的概率.【分析】根据题意可以列出相应的表格,从而可以求得符合条件的概率,从而可以解答本题.【解答】解:由题意,可列表:1234第一次第二次1(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)4(4,1)(4,2)(4,3)(4,4)由已知,共有16种结果,且每种结果出现的可能性相同,其中满足要求的有3种,∴P(点落在反比例函数y=的图象上)=.【点评】本题考查反比例函数图象上点的坐标特征、列表法与树状图法,解答本题的关键是明确题意,列出相应的表格,求出相应的概率.22.(8分)如图,已知点C、D在线段AB上,且AC=4,BD=9,△PCD是边长为6的等边三角形.(1)求证:△P AC∽△BPD;(2)求∠APB的度数.【分析】(1)根据相似三角形的判定证明即可;(2)利用相似三角形的性质对应角相等和等边三角形的性质可以求出∠APB的度数.【解答】证明:(1)∵等边△PCD的边长为6,∴PC=PD=6,∠PCD=∠PDC=60°,又∵AC=4,BD=9,∴,∵等边△PCD中,∠PCD=∠PDC=60°,∴∠PCA=∠PDB=120°,∴△ACP∽△PDB;(2)∵△ACP∽△PDB,∴∠APC=∠PBD,∵∠PDB=120°,∴∠DPB+∠DBP=60°,∴∠APC+∠BPD=60°,∴∠APB=∠CPD+∠APC+∠BPD=120°.【点评】此题考查相似三角形的判定和性质,要熟练运用相似三角形的性质和等边三角形的性质是关键.23.(8分)一种竹制躺椅如图①所示,其侧面示意图如图②③所示,这种躺椅可以通过改变支撑杆CD的位置来调节躺椅舒适度,假设AB所在的直线为地面,已知AE=120cm,当把图②中的支撑杆CD调节至图③中的CD'的位置时,∠EAB由20°变为25°.(1)你能求出调节后该躺椅的枕部E到地面的高度增加了多少吗?(参考数据:sin20°≈0.34,sin25°≈0.42)(2)已知点O为AE的一个三等分点,根据人体工程学,当点O到地面的距离为26cm时,人体感觉最舒适.请你求出此时枕部E到地面的高度.【分析】(1)分别计算出图①和图②中点E到AB的距离,再计算差即可;(2)过点O作OH⊥AB于点H,根据三角形相似可得EF的长度.【解答】解:(1)如图②,过点E作EF⊥AB于点F,∵∠EAF=20°,AE=120cm,∴sin20°=,即EF≈120×0.34=40.8(cm),如图③,过点E作EF⊥AB于点F,∵∠EAF=25°,AE=120cm,∴sin25°=,即EF≈120×0.42=50.4(cm),50.4﹣40.8=9.6(cm),答:高度增加了9.6cm;(2)如图③,过点O作OH⊥AB于点H,∵∠AHO=∠AFE=90°,∠A=∠A,∴△AHO∽△AFE,∴,∵AO=AE=40cm,AE=120cm,∴,即EF=78,答:枕部E到地面的高度是78cm.【点评】本题考查解直角三角形,解题的关键是正确理解题意以及灵活运用锐角三角函数的定义,本题属于中等题型.24.(10分)如图,工人师傅用一块长为10分米,宽为6分米的矩形铁皮制作一个无盖长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)请在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;(2)求当长方体底面面积为12平方分米时,裁掉的正方形边长是多少?【分析】(1)按题意画出图形;(2)由设裁掉的正方形的边长为x分米,用x的代数式表示长方体底面的长与宽,再根据矩形的面积公式列出方程,可求得答案.【解答】解:(1)如图所示,(2)设裁掉的正方形的边长为x分米,由题意可得(10﹣2x)(6﹣2x)=12,即x2﹣8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2分米.【点评】本题考查了一元二次方程的应用以及几何体的表面积,找准等量关系,正确列出一元二次方程是解题的关键.25.(10分)如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)求这两个函数的表达式:(2)根据图象,直接写出满足k1x+b>的x的取值范围;(3)连接OA,OB,求△AOB的面积;(4)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.【分析】(1)将点A,点B坐标代入两个解析式可求k2,n,k1,b的值,从而求得解析式;(2)根据一次函数图象在反比例图象的上方,可求x的取值范围;(3)设直线AB与y轴的交点为C,根据S△AOB=S△AOC+S△BOC可得答案;(4)根据S△AOP:S△BOP=1:2,求得点P的横坐标,再根据一次函数解析式可得答案.【解答】解:(1)∵反比例函数y=的图象过点A(﹣1,4),B(4,n),∴k2=﹣1×4=﹣4,k2=4n,∴n=﹣1,∴B(4,﹣1),∵一次函数y=k1x+b的图象过点A、点B,∴,解得:k1=﹣1,b=3,∴一次函数的解析式y=﹣x+3,反比例函数的解析式为y=﹣;(2)∵点A的坐标为(﹣1,4),点B的坐标为(4,﹣1).由图象可得:k1x+b>的x的取值范围是x<﹣1或0<x<4;(3)如图,设直线AB与y轴的交点为C,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=;(4)如图,∵S△AOP:S△BOP=1:2,∴S△AOP=×=,∵S△AOC=×3×1=,∴S△AOC<S△AOP,S△COP=﹣=1,∴×3•x P=1,∴x P=,∵点P在线段AB上,∴y=﹣+3=,∴P(,).【点评】本题考查了反比例函数图象与一次函数图象的交点问题,熟练运用图象上的点的坐标满足图象的解析式是本题的关键.26.(12分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.易证:CE=CF.(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE,BE,GD三线段之间的数量关系,并证明你的结论.(2)运用(1)中解答所积累的经验和知识,完成下面两题:①如图2,在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α,∠ECG=β,试探索当α和β满足什么关系时,图1中GE,BE,GD三线段之间的关系仍然成立,并说明理由.②在平面直角坐标系中,边长为1的正方形OABC的两顶点A,C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y =x于点M,BC边交x轴于点N(如图3).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?若不变,请直接写出结论.【分析】(1)由SAS证得△EBC≌△FDC,再由SAS证得△ECG≌△FCG,可得到EG=FG,即可得出结果;(2)①延长AD到F点,使DF=BE,连接CF,可证△EBC≌△FDC,结合条件可证得△ECG≌△FCG,故EG =GF,可得出结论;②延长BA交y轴于E点,可证得△OAE≌△OCN,进一步可证得△OME≌△OMN,可求得MN=AM+AE【解答】解:(1)GE=BE+GD,理由如下:∵四边形ABCD是正方形,F是AD延长线上一点,∴BC=DC,∠FDC=∠EBC=90°,在△EBC和△FDC中,,∴△EBC≌△FDC(SAS),∴∠DCF=∠BCE,CE=CF,∵∠GCE=45°,∴∠BCE+∠DCG=90°﹣45°=45°,∴∠DCG+∠DCF=45°,∴∠ECG=∠FCG,在△ECG和△FCG中,,∴△ECG≌△FCG(SAS),∴EG=GF,∴GE=BE+GD;(2)①α=2β时,GE=BE+GD;理由如下:延长AD到F点,使DF=BE,连接CF,如图(2)所示:∵∠B=∠D=90°,∴∠B=∠FDC=90°,在△EBC和△FDC中,,∴△EBC≌△FDC(SAS),∴∠DCF=∠BCE,CE=CF,∴∠BCE+∠DCG=∠GCF,当α=2β时,∠ECG=∠FCG,在△ECG和△FCG中,,∴△ECG≌△FCG(SAS),∴EG=GF,∴GE=BE+GD;②在旋转正方形OABC的过程中,P值无变化;延长BA交y轴于E点,如图(3)所示:则∠AOE=45°﹣∠AOM,∠CON=90°﹣45°﹣∠AOM=45°﹣∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°﹣90°=90°=∠OCN.在△OAE和△OCN中,∴△OAE≌△OCN(ASA).∴OE=ON,AE=CN.在△OME和△OMN中,.∴△OME≌△OMN(SAS).∴MN=ME=AM+AE.∴MN=AM+CN,∴P=MN+BN+BM=AM+CN+BN+BM=AB+BC=2.∴在旋转正方形OABC的过程中,P值无变化.【点评】本题是四边形综合题,考查了一次函数的综合运用、正方形的性质、全等三角形的判定与性质、三角形的周长等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.27.(12分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【分析】(1)将B、C的坐标代入抛物线的解析式中即可求得待定系数的值;(2)由于菱形的对角线互相垂直平分,若四边形POP′C为菱形,那么P点必在OC的垂直平分线上,据此可求出P点的纵坐标,代入抛物线的解析式中即可求出P点的坐标;(3)由于△ABC的面积为定值,当四边形ABPC的面积最大时,△BPC的面积最大;过P作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线BC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得△BPC的面积,由此可得到关于四边形ACPB的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC的最大面积及对应的P点坐标.【解答】解:(1)将B、C两点的坐标代入得,解得:;所以二次函数的表达式为:y=x2﹣2x﹣3(2)存在点P,使四边形POP′C为菱形;设P点坐标为(x,x2﹣2x﹣3),PP′交CO于E若四边形POP′C是菱形,则有PC=PO;。
2017-2018学年第一学期学业水平阳光评价九年级数学卷一、选择题(本大题共12小题,每小题3分,共36分。
) 1.关于x 的方程2320ax x -+=是一元二次方程,则( ) A .0a > B .0a ≠ C .=1aD .0a ≥2.在下面图形中,不能折成正方体的是( )3.若34y x =,则x y x +的值为( ) A .1 B .47C .54 D .74 4.从直角三角形、等腰三角形、矩形、菱形四个图形中任选一个图形是轴对称图形的概率是( )A .14B .12C .34D .135.下列命题正确的是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .对角线互相垂直的四边形是菱形C .对角线相等的四边形是矩形D .一组邻边相等的矩形是正方形 6.方程2650x x +-=的左边配成完全平方后所得方程为( )A .2(3)14x += B .2(3)14x -= C .2(3)4x +=D .2(3)4x -=7.某种商品原价是100元,经过两次降价后的价格是90元,设平均每次降价的百分率为x ,可列方程为( )A .100(12)90x -=B .2100(1)90x -= C .100(1)90x -=D .2100(1)90x -=8.一本书的宽与长之比为黄金比。
已知这本书的长为20cm ,则它的宽约为( )A .12.36cmB .13.6cmC .7.64cmD .6.66cm9.下列4×4的正方形网格中,小正方形的边长为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在 的网格图形是( )A .B .C .D .10.如图,线段AB 两个端点的坐标分别为A (6, 6),B (8, 2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到 线段CD ,则线段CD 的长为( )A .5B .25C .10D .311.如图,在△ABC 中,∠ACB =90°,∠ABC =60°,则BD 平分∠ABC ,P 点是BD 的中点,若CP =2, 则AC 的长为( ) A .4 B .5 C .6 D .812.已知:如图,正方形ABCD ,P 是BD 上任意一点,DQ ⊥AP , 垂足是Q ,交AC 于R ,给出下列结论: ①△APB ≌△DRA ; ②△AQR ∽△DQP ; ③DP =CR ;④当P 为BO 的中点时,AQ :DQ =1:3. 其中正确的结论有( )个 A .1 B .2 C .3 D .4 二、填空题(本大题共4小题,每小题3分,共12分) 13.方程23x x =的解是_________________14.在同一时刻阳光下,身高1.6m 的小强的影长是1.2m ,旗杆的影长是15m ,则旗杆高为__________m15.E 、F 分别是边长为4的菱形ABCD 中边BC 、CD 上的点,∠B =∠EAF =60°,△AEF 的周长为m ,则m 的最小值为___________16.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ',折痕为EF ,已知AB =AC =3,BC =4,若以点B '、F 、C 为顶点的三角形与△ABC 相似,那么BF 的长度是________________第16题图三、解答题(17、18题各6分,19题7分,20、21、22题各8分,23题9分,共52分) 17.计算:1012()8|12|(3.14)22π--⨯+-+- 18.解方程24120x x +-=A B C D E F 第15题图19.有3张不透明的卡片,除了正面写有不同的数字外,其它均相同。
北师大新版九年级上学期《第2章 一元二次方程》2019年单元测试卷一.选择题(共10小题)1.(2017秋•白云区期末)下列是一元二次方程的为( ) A .210x y -+=B .2230x x --=C .230x +=D .22100x y +-=2.(2015秋•游仙区校级期末)方程2(1)(1)246y y y y +-=--化为一般形式为( ) A .2450y y -+=B .2450y y --=C .2450y y +-=D .2450y y ++=3.(2018秋•江岸区校级月考)方程2410x -=的根是( ) A .12x =B .112x =,212x =- C .2x =D .12x =,22x =-4.(2016秋•鼎城区期末)把方程2650x x ++=化为2()x h k +=的形式( ) A .2(3)2x +=- B .2(3)2x +=C .2(3)4x +=D .2(3)4x +=-5.利用求根公式求21562x x +=的根时,其中5a =,则b 、c 的值分别是( ) A .1,62B .6,12C .6-,12 D .6-,12-6.(2019•红桥区二模)方程23180x x +-=的两个根为( ) A .16x =-,23x = B .13x =-,26x =C .12x =-,29x =D .19x =-,22x =7.若关于x 的一元二次方程2240bx bx ++=有两个相等的实数根,则b 的值为( ) A .0B .4C .0 或 4D .0 或4-8.若一元二次方程260x x --=的两根为1x ,2x ,则12x x +的值为( ) A .1B .1-C .0D .6-9.(2018秋•营口期末)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x ,可列方程为( ) A .2300(1)1500x += B .300(12)1500x +=C .2300(1)1500x +=D .30021500x +=10.(2009春•西湖区校级期中)一个跳水运动员从10m 高台上跳水,他每一时刻所在高度(单位:)m 与所用时间(单位:)s 的关系是:5(2)(1)h t t =--+,则运动员起跳到入水所用的时间是( ) A .5s -B .2sC .1s -D .1s二.填空题(共5小题)11.(2019秋•宝山区校级月考)方程:2320x x --=的根为 . 12.已知m 是方程210x x +-=的一个根,则2(1)(1)(1)m m m +++-= . 13.解方程222()4()120x x x x ----=,若设2y x x =-,则原方程可化为 . 14.(2017秋•吉州区期末)写一个没有实数根的一元二次方程 . 15.(2019•河东区一模)已知2(1)1x x x +=+,则x = . 三.解答题(共8小题)16.(2015秋•石林县校级月考)解方程.(1)2450x x +-=(用配方法) (2)22710x x -+=(用公式法)(3)2(2)250x +-= (4)(2)20x x x -+-=.17.(2010•佛山)教材或资料会出现这样的题目:把方程2122x x -=化为一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项. 现在把上面的题目改编为下面的两个小题,请解答.(1)下列式子中,有哪几个是方程2122x x -=所化的一元二次方程的一般形式?(答案只写序号) ①21202x x --=;②21202x x -++=;③224x x -=;④2240x x -++=;⑤20--=.(2)方程2122x x -=化为一元二次方程的一般形式,它的二次项系数,一次项系数,常数项之间具有什么关系?18.(2018秋•沙依巴克区期末)已知关于x 的方程2(3)(2)0x x p ---=. (1)求证:方程总有两个不相等的实数根; (2)当2p =时,求该方程的根.19.(2011秋•双峰县期末)已知:关于x 的方程222(1)30x m x m -++-=. (1)当m 为何值时,方程总有两个实数根?(2)设方程的两实根分别为1x 、2x ,当22121278x x x x +-=时,求m 的值.20.(2017秋•江都区期中)用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为230a …,所以231a +就有最小值1,即2311a +…,只有当0a =时,才能得到这个式子的最小值1.同样,因为230a -…,所以231a -+有最大值1,即2311a -+…,只有在0a =时,才能得到这个式子的最大值1.(1)当x = 时,代数式23(3)4x ++有最 (填写大或小)值为 . (2)当x = 时,代数式2243x x -++有最 (填写大或小)值为 . (3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m ,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?21.(2017秋•宝应县期中)“双11”即将到来,某网上微店准备销售一种服装,每件成本为50元.市场调查发现其日销售量y (件)是销售价x (元)的一次函数,经试销后发现,当销售价定为60元时,日销售量为800件;当销售价定为65元时,日销售量为700件. (1)试求出日销售量y (件)与销售价x (元)之间的函数关系式;(2)若该网上微店为减少库存积压利用“双11”促销这批服装,打算日获利达到12000元,问这种服装每件售价是多少元?22.(2018秋•高邮市期中)“鲜乐”水果店购进一优质水果,进价为10元/千克,售价不低于10元/千克,且不超过16元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系(1)某天这种水果的售价为14元/千克,求当天该水果的销售量;(2)如果某天销售这种水果获利100元,那么该天水果的售价为多少元?23.(2019春•西湖区校级月考)方方同学在寒假社会调查实践活动中,对某罐头加工厂进行采访,获得了该厂去年的部分生产信息如下:①该厂一月份罐头加工量为a吨;②该厂三月份的加工量比一月份增长了44%;③该厂第一季度共加工罐头182吨;④该厂二月、三月加工量每月按相同的百分率增长;⑤该厂从四月份开始设备整修更新,加工量每月按相同的百分率开始下降;⑥六月份设备整修更新完毕,此月加工量为一月份的2.1倍,与五月份相比增长了46.68吨.利用以上信息求:(1)该厂第一季度加工量的月平均增长率;(2)该厂一月份的加工量a的值;(3)该厂第二季度的总加工量.北师大新版九年级上学期《第2章 一元二次方程》2019年单元测试卷参考答案与试题解析一.选择题(共10小题)1.(2017秋•白云区期末)下列是一元二次方程的为( ) A .210x y -+=B .2230x x --=C .230x +=D .22100x y +-=【解答】解:A 、210x y -+=,是二元一次方程,故此选项错误;B 、2230x x --=,是一元二次方程,故此选项正确;C 、230x +=,是一元一次方程,故此选项错误;D 、22100x y +-=,是二元二次方程,故此选项错误;故选:B .2.(2015秋•游仙区校级期末)方程2(1)(1)246y y y y +-=--化为一般形式为( ) A .2450y y -+=B .2450y y --=C .2450y y +-=D .2450y y ++=【解答】解:方程整理得:2450y y --=, 故选:B .3.(2018秋•江岸区校级月考)方程2410x -=的根是( ) A .12x =B .112x =,212x =- C .2x =D .12x =,22x =-【解答】解:214x =, 12x =±.故选:B .4.(2016秋•鼎城区期末)把方程2650x x ++=化为2()x h k +=的形式( )A .2(3)2x +=- B .2(3)2x +=C .2(3)4x +=D .2(3)4x +=-【解答】解:2650x x ++=,265x x ∴+=-,26959x x ∴++=-+,即2(3)4x +=,故选:C .5.(2018春•仓山区期末)利用求根公式求21562x x +=的根时,其中5a =,则b 、c 的值分别是( ) A .1,62B .6,12C .6-,12 D .6-,12-【解答】解:215602x x -+=, 所以5a =,6b =-,12c =. 故选:C .6.(2019•红桥区二模)方程23180x x +-=的两个根为( ) A .16x =-,23x = B .13x =-,26x = C .12x =-,29x = D .19x =-,22x =【解答】解:方程分解得:(3)(6)0x x -+=, 可得30x -=或60x +=, 解得:16x =-,23x =, 故选:A .7.(2019春•庐阳区期末)若关于x 的一元二次方程2240bx bx ++=有两个相等的实数根,则b 的值为( ) A .0B .4C .0 或 4D .0 或4-【解答】解:根据题意得:△22(2)444160b b b b =-⨯⨯=-=, 解得4b =或0b =(舍去). 故选:B .8.若一元二次方程260x x --=的两根为1x ,2x ,则12x x +的值为( ) A .1B .1-C .0D .6-【解答】解:方程260x x --=的两根为1x ,2x , 121x x ∴+=,故选:A .9.(2018秋•营口期末)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x ,可列方程为( ) A .2300(1)1500x += B .300(12)1500x +=C .2300(1)1500x +=D .30021500x +=【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为x ,可列方程为:2300(1)1500x +=. 故选:A .10.(2009春•西湖区校级期中)一个跳水运动员从10m 高台上跳水,他每一时刻所在高度(单位:)m 与所用时间(单位:)s 的关系是:5(2)(1)h t t =--+,则运动员起跳到入水所用的时间是( ) A .5s -B .2sC .1s -D .1s【解答】解:设运动员起跳到入水所用的时间是xs , 根据题意可知:5(2)(1)0x x --+=, 解得:11x =-(不合题意舍去),22x =, 那么运动员起跳到入水所用的时间是2s . 故选:B .二.填空题(共5小题)11.(2019秋•宝山区校级月考)方程:2320x x --=的根为 123x =-,21x = .【解答】解:2320x x --=, (32)(1)0x x +-=, 320x +=,10x -=, 123x =-,21x =,故答案为:123x =-,21x =.12.(2017秋•抚州期中)已知m 是方程210x x +-=的一个根,则2(1)(1)(1)m m m +++-= 2 . 【解答】解:m 是方程210x x +-=的一个根,21m m ∴+=,22222(1)(1)(1)211222()212m m m m m m m m m m ∴+++-=+++-=+=+=⨯=, 故答案为:2.13.解方程222()4()120x x x x ----=,若设2y x x =-,则原方程可化为24120y y --= .【解答】解:原方程可变形为:222()4()120x x x x ----=2y x x =-,∴原方程可化为:24120y y --=.14.(2017秋•吉州区期末)写一个没有实数根的一元二次方程 210y y ++= . 【解答】解:210y y ++=,只要满足240b ac -<即可. 故答案为:210y y ++=15.(2019•河东区一模)已知2(1)1x x x +=+,则x = 1-或12. 【解答】解:2(1)(1)0x x x +-+=, (1)(21)0x x +-=, 10x +=或210x -=,所以11x =-,212x =, 故答案为1-或12. 三.解答题(共8小题)16.(2015秋•石林县校级月考)解方程. (1)2450x x +-=(用配方法) (2)22710x x -+=(用公式法) (3)2(2)250x +-= (4)(2)20x x x -+-=. 【解答】解:(1)245x x +=, 2449x x ++=,2(2)9x +=, 23x +=±,所以11x =,25x =-; (2)△2(7)42141=--⨯⨯=,722x ±=⨯所以1x ,2x =; (3)(25)(25)0x x +-++=, 250x +-=或250x ++=,所以13x =,27x =-; (4)(2)(1)0x x -+=, 20x -=或10x +=,所以12x =,21x =-.17.(2010•佛山)教材或资料会出现这样的题目:把方程2122x x -=化为一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项. 现在把上面的题目改编为下面的两个小题,请解答.(1)下列式子中,有哪几个是方程2122x x -=所化的一元二次方程的一般形式?(答案只写序号) ①21202x x --=;②21202x x -++=;③224x x -=;④2240x x -++=;⑤20--.(2)方程2122x x -=化为一元二次方程的一般形式,它的二次项系数,一次项系数,常数项之间具有什么关系?【解答】解:(1)一元二次方程的一般形式是:20(ax bx c a ++=,b ,c 是常数且0)a ≠,因此①,②,④,⑤是方程2122x x -=所化的一元二次方程的一般形式.(2)一元二次方程的一般形式是:20(ax bx c a ++=,b ,c 是常数且0)a ≠,在一般形式中2ax 叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.若设方程2122x x -=的二次项系数为(0)a a ≠,则一次项系数为2a -,常数项为4a -,因此二次项系数:一次项系数:常数项1:(2):(4)=--. 答:这个方程的二次项系数:一次项系数:常数项1:(2):(4)=--. 18.(2018秋•沙依巴克区期末)已知关于x 的方程2(3)(2)0x x p ---=. (1)求证:方程总有两个不相等的实数根; (2)当2p =时,求该方程的根.【解答】(1)证明:方程可变形为22560x x p -+-=, △222(5)41(6)14p p =--⨯⨯-=+.20p …,2410p ∴+>,即△0>,∴这个方程总有两个不相等的实数根.(2)解:当2p =时,原方程为2520x x -+=,∴△254217=-⨯=,x ∴,1x ∴,2x =. 19.(2011秋•双峰县期末)已知:关于x 的方程222(1)30x m x m -++-=. (1)当m 为何值时,方程总有两个实数根?(2)设方程的两实根分别为1x 、2x ,当22121278x x x x +-=时,求m 的值. 【解答】解:(1)△0…时,一元二次方程总有两个实数根,△22[2(1)]41(3)8160m m m =+-⨯⨯-=+…, 2m -…,所以2m -…时,方程总有两个实数根. (2)22121278x x x x +-=,21212()378x x x x ∴+-=,12b x x a +=-,12c x x a=, 22[2(1)]31(3)78m m ∴-+-⨯⨯-=,解得5m =或13-(舍去),故m 的值是5m =.20.(2017秋•江都区期中)用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为230a …,所以231a +就有最小值1,即2311a +…,只有当0a =时,才能得到这个式子的最小值1.同样,因为230a -…,所以231a -+有最大值1,即2311a -+…,只有在0a =时,才能得到这个式子的最大值1.(1)当x = 3- 时,代数式23(3)4x ++有最 (填写大或小)值为 .(2)当x = 时,代数式2243x x -++有最 (填写大或小)值为 .(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m ,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?【解答】解:(1)2(3)0x +…, ∴当3x =-时,2(3)x +的最小值为0,则当3x =-时,代数式23(3)4x ++的最大值为4;(2)代数式222432(1)5x x x -++=--+,则当1x =时,代数式2243x x -++的最大值为5;(3)设垂直于墙的一边为xm ,则平行于墙的一边为(162)x m -,∴花园的面积为222(162)2162(816)322(4)32x x x x x x x -=-+=--++=--+,则当边长为4米时,花园面积最大为232m .故答案为:(1)3-,小,4;(2)1,大,5;21.(2017秋•宝应县期中)“双11”即将到来,某网上微店准备销售一种服装,每件成本为50元.市场调查发现其日销售量y (件)是销售价x (元)的一次函数,经试销后发现,当销售价定为60元时,日销售量为800件;当销售价定为65元时,日销售量为700件.(1)试求出日销售量y (件)与销售价x (元)之间的函数关系式;(2)若该网上微店为减少库存积压利用“双11”促销这批服装,打算日获利达到12000元,问这种服装每件售价是多少元?【解答】解:(1)设y 与x 之间的函数关系式为y kx b =+,将(60,800)、(65,700)代入y kx b =+,6080065700k b k b +=⎧⎨+=⎩,解得:202000k b =-⎧⎨=⎩, y ∴与x 之间的函数关系式为202000y x =-+.(2)根据题意得:(50)(202000)12000x x --+=,整理,得:215056000x x -+=,解得:170x =,280x =.减少库存积压,70x ∴=.答:这种服装每件售价是70元.22.(2018秋•高邮市期中)“鲜乐”水果店购进一优质水果,进价为10元/千克,售价不低于10元/千克,且不超过16元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系(1)某天这种水果的售价为14元/千克,求当天该水果的销售量;(2)如果某天销售这种水果获利100元,那么该天水果的售价为多少元?【解答】解:(1)设y 与x 之间的函数关系式为(0)y kx b k =+≠,将(11,28),(12,26)代入y kx b =+,得:11281226k b k b +=⎧⎨+=⎩,解得:250k b =-⎧⎨=⎩,y ∴与x 之间的函数关系式为250y x =-+.当14x =时,2145022y =-⨯+=,∴当天该水果的销售量为22千克.(2)根据题意得:(10)(250)100x x --+=,整理得:2353000x x -+=,解得:115x =,220x =.又1016x 剟,15x ∴=.答:该天水果的售价为15元/千克.23.(2019春•西湖区校级月考)方方同学在寒假社会调查实践活动中,对某罐头加工厂进行采访,获得了该厂去年的部分生产信息如下:①该厂一月份罐头加工量为a 吨;②该厂三月份的加工量比一月份增长了44%;③该厂第一季度共加工罐头182吨;④该厂二月、三月加工量每月按相同的百分率增长;⑤该厂从四月份开始设备整修更新,加工量每月按相同的百分率开始下降;⑥六月份设备整修更新完毕,此月加工量为一月份的2.1倍,与五月份相比增长了46.68吨. 利用以上信息求:(1)该厂第一季度加工量的月平均增长率;(2)该厂一月份的加工量a 的值;(3)该厂第二季度的总加工量.【解答】解:(1)设该厂第一季度加工量的月平均增长率为x ,由题意得:2(1)(144%)a x a +=+2(1) 1.44x ∴+=10.220%x ∴==,2 2.2x =-(舍)答:该厂第一季度加工量的月平均增长率为20%.(2)由题意得:2(1)(1)182a a x a x ++++=将20%x =代入得:2(120%)(120%)182a a a ++++=解得50a =答:该厂一月份的加工量a 的值为50.(3)由题意可知,三月份加工量为:250(120%)72+= 六月份加工量为:50 2.1105⨯=(吨)五月份加工量为:10546.6858.32-=(吨)设四、五两个月的加工量下降的百分率为y ,由题意得: 272(1)58.32y -=解得:10.110%y ==,2 1.9y =(舍)∴四、五两个月的加工量下降的百分率为10% 72(110%)58.32105228.12∴⨯-++=(吨)答:该厂第二季度的总加工量为228.12吨.。
第一章特殊平行四边形测试卷一、选择题(本大题共10小题,每小題3分,共30分)1.(2019内蒙古赤峰中考)如下图所示,菱形ABCD的周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A.2.5B.3C.4D,52.(2020辽宁沈阳沈北新区期末)如下图所示,在矩形COED中,点D的坐标是(1,3),则CE的长是( )A.3B.22C10D.43.在判断“一个四边形门框是不是矩形”的数学活动课上,一个合作学习小组的4位同学分别拟定了如下的方案,其中正确的是( )A.测量对角线是否相等B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中三个角是否都为直角4.(2018辽宁丹东期末)下列说法中,正确的有()①对角线相等且互相垂直的四边形是菱形;②有一组邻边相等的平行四边形是正方形;③对角线相等且互相垂直平分的四边形是矩形;④顺次连接菱形各边中点所得的四边形是矩形;⑤有一个内角是60°的平行四边形是菱形.A.1个B.2个C.3个D.4个5.(2015云南昆明中考)如下图所示,在菱形ABCD中,对角线AC、BD相交于点O,下列结论:①AC⊥BD;②OA=OB;③∠ADB=∠CDB;④△ABC是等边三角形,其中一定成立的是( )A.①②B.③④C.②③D.①③6.(2019山东枣庄滕州三月模拟)如下图所示,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为42cm,则OC的长为( )A.2 cmB.3 cmC.4 cmD.5 cm7. 如下图所示,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF DE、DF,则添加下列条件:①∠ABE∠CBF;②AE=CF;③AB=AF;④BE=BF.可以判定四边形BEDF是菱形的条件有( )A.1个B.2个C.3个D.4个8. 如下图所示,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个内角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°9.(2020独家原创试题)如下图所示,点C的坐标为(-1,1),点D的坐标为(3,1),将正方形ABCD绕原点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A对应的坐标为()A .(2,4)B .(2,5)C .(3,5)D .(-3,-5)10. 如下图所示,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:①AE =BF ;②AE ⊥BF ;③AO =OE ;④AOB DEOF S S 四边形,其中正确的有( )A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题4分,共24分)11.(2018四川凉山州期末)如下图所示,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,CD 是AB 边上的中线,则CD 的长是______.12.如下图所示,两个完全相同的三角板ABC 和DEF 在直线l 上滑动.要使四边形CBFE 为菱形,还需添加的一个条件是_____(写出一个即可).13.(2019江苏连云港东海期末)如下图所示,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,2),则点C的坐标为_____.14.(2019江西吉安永新期末)如下图所示,菱形ABCD中,∠D=60°,CD=4,过AD上一点E作AC的垂线,交AB于点M,交CB的延长线于点F,则EF的长为____.15.(2018内蒙古巴彦淖尔中考)如下图所示,菱形ABCD的面积为1202cm,正方形AECF的面积为722cm,则菱形的边长为_____cm.(结果中如有根号保留根号)16.(2017贵州安顺中考)如下图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____.三、解答题(共46分)17.(7分)如下图所示,AF⊥DE于F,且DF=15cm,EF=6cm,AE=10cm.(1)求AF的长;(2)求正方形ABCD的面积.18.(2019山东济南济阳期末)(7分)如下图所示,在菱形ABCD中,对角线AC与BD交于点O,过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E,判断四边形OCED的形状,并说明理由.19.(2017汇苏南通中考)(8分)如下图所示,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、EQ.(1)求证:四边形BPEQ是菱形;(2)若AB=6,F为AB的中点,OF+OB=9,求PQ的长.20.(8分)如下图所示,在四边形ABCD中,AD∥BC,E,F在边BC上,AB ∥DE,AF∥DC,且四边形AEFD是平行四边形.(1)AD与BC有何数量关系?请说明理由;(2)当AB=DC时,求证:AEFD是矩形.21.(8分)如下图所示①,有一张平行四边形纸片,将纸片沿着对角线剪开,形成两个全等的三角形,∠A=100°,∠ACB=60°,将△DBC沿着BC的方向以每秒2cm的速度运动到如下图所示②中△DFE的位置,连接AF、CD.(1)求证:四边形AFDC是平行四边形;(2)若AC=4cm,BC=10 cm,△DEF沿着BE的方向运动时间为t秒,(i)当t为何值时,AFDC是菱形?请说明理由;(ii)AFDC能是矩形吗?若能,求出t的值及此矩形的面积;若不能,说明理由.22.(2016甘肃兰州中考)(8分)在数学课上,老师请同学思考如下问题:如下图所示①,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFCH是平行四边形吗?小敏在思考问题时,有如下思路:连接AC.结合小敏的思路作答:(1)若只改变如下图所示①中四边形ABCD的形状(如下图所示②),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题的方法,解决下列问题:(2)如下图所示②,在(1)的条件下,若连接AC,BD.(i)当AC与BD满足什么条件时,四边形EFGH是菱形?写出结论并证明;(ii)当AC与BD满足什么条件时,四边形EFGH是矩形?直接写出结论.参考答案一、选择题1.A解析 ∵四边形ABCD 为菱形,周长为20,∴BC =204=5,O 为BD 的中点,又∵E 为CD 的中点,∴OE 为△BCD 的中位线,∴OE =12CB =2.5,故选A .2.C解析 连接OD .∵四边形COED 是矩形,∴CE =OD ,∵点D 的坐标是(1,3),∴OD CE 故选C .3.D解析 A .对角线相等的四边形不一定是矩形,例如等腰梯形;B .两组对边分别相等的四边形不一定是矩形,例如平行四边形;C .一组对角都为直角的四边形不一定是矩形,因为另外两个角的度数不确定;D .根据矩形的判定定理,三个角都为直角的四边形是矩形.故选D .4.B解析 对角线互相垂直且平分的四边形是菱形,故①错误;有一组邻边相等的矩形是正方形,故②错误;对角线相等且互相垂直平分的四边形是正方形,正方形是特殊的矩形,故③正确;顺次连接菱形各边中点所得的四边形是矩形,故④正确;有一个内角是60°的平行四边形不一定是菱形,故⑤错误.故选B .5.D解析 根据菱形的对角线互相垂直平分可得①一定成立,②不一定成立;根据菱形的对角线平分一组对角可得③一定成立;④不一定成立.故选D .6.C解析 根据作图知,AC =BC =OA ,∵OA =OB ,∴OA =OB =BC =AC ,∴四边形OACB 是菱形,∵AB =2cm ,四边形OACB 的面积为42cm , ∴112422AB OC OC ⋅=⨯⨯=,解得OC =4cm.故选C .7.C解析 连接BD ,交AC 于点O ,在正方形ABCD 中,AB =BC ,∠BAC =∠ACB ,AC ⊥BD ,OA =OC ,OB =OD .①在△ABE 与△CBF 中,BAE BCF AB CB ABE CBF ∠=∠=∠=∠⎧⎪⎨⎪⎩,,, ∴△ABE ≌△CBF (ASA ),∴AE =CF ,∵OA =OC ,∴OE =OF ,又∵AC ⊥BD ,OB =OD ,∴四边形BEDF 是菱形,故①正确.②由①知②正确.③由AB =AF 不能推出四边形BEDF 是菱形,故③错误.④∵BE =BF ,EF ⊥BD ,OE =OF ,由①知④正确.故选C .8.D解析 画出所剪的图形示意图如图.∵四边形ABCD 是菱形,∴∠ABD =12∠ABC ,∠BAC =12∠BAD ,AD ∥BC ∵∠BAD =120°,∴∠BAC =60°,∠ABC =180°-∠BAD =180°-120°=60°,∴∠ABD =30°,∴剪口与第二次折痕所成角的度数应为30°或60°.故选D .9.D解析 ∵点C 的坐标为(-1,1),点D 的坐标为(3,1),∴正方形的边长为4,∴点A 的坐标为(3,5),将正方形ABCD 绕原点O 顺时针旋转,每次旋转90°,每4次一个循环,∵2022÷4=505…2,∴第2022次旋转结束时,相当于正方形ABCD 绕点O 顺时针旋转2次,每次旋转90°,此时点A 旋转后的对应点和点A 关于原点对称,所以此时点A 对应的坐标为(-3,-5).10.B解析 ∵四边形ABCD 为正方形,∴AB =AD =DC ,∠D =∠BAD =90°,∵CE =DF ,∴DE =AF ,∴△DEA ≌△AFB ,∴AE =BF ,∠DEA =∠AFB ,又∠DEA +∠DAE =90°,∴∠AFB +∠DAE =90°,∴∠AOF =90,即AE ⊥BF .由△DEA ≌△AFB 得DEA AFB S S =,∴DEA AOF AFB AOF S S S S -=-,∴AOB DEOF S S =四边形,所以正确的是①②④,共3个,故选B .二、填空题11.答案 5解析 ∵在Rt △ABC 中,∠ACB =90°,AC =8,BC =6, ∴2222AB=8610AC BC +=+=.又∵CD 是AB 边上的中线,∴CD =12AB =5.12.答案 CB =BF (答案不唯一)解析 由已知得CB ∥EF ,CB =EF ,∴四边形CBFE 是平行四边形,因此可以添加CB =BF (答案不唯一).13.答案 (-2,1)解析 过点A 作AD ⊥x 轴于D ,过点C 作CE ⊥x 轴于E ,如图所示.∵四边形OABC 是正方形,∴OA =OC ,∠AOC =90°,∴∠COE +∠AOD =90°,又∵∠OAD +∠AOD =90°,∴∠OAD=∠COE ,在△AOD 和△OCE 中,OAD COE ADO OEC OA CO ∠=∠∠=∠⎧⎪⎪⎩=⎨,,, △AOD ≌△OCE (AAS ),∴OE =AD =2,CE =OD =1,∵点C 在第二象限,∴点C 的坐标为(-2,1).故答案为(-2,1).14.答案 3解析 连接BD 交AC 于O ,如图所示. ∵四边形ABCD 是菱形,∴AD ∥BC ,∠CDB =12∠AMC =30°,AC ⊥BD ,∴OC =12CD =2,根据勾股定理可得OD =23∴BD =2OD =43,∵EF ⊥AC ,∴BD ∥EF .∴四边形EFBD 为平行四边形,∴EF =BD =43.故答案为43.15.答案234解析连接AC、BD,相交于点O.∵正方形AECF的面积为722cm,∴AE=62cm,∴AC=622⨯=12(cm). ∵菱形ABCD的面积为1202cm,∴12AC·BD=120,∵AC=12 cm,∴BD=20 cm,∵四边形ABCD是菱形,∴AO=12AC=6cm,BO=12BD=10cm,AO⊥BO,∴2222AB=610234AO BO+=+=(cm).16.答案 6解析如图,连接BD,∵点B与D关于AC对称,点P在AC上,∴PD=PB,∴当P在AC与BE的交点上时,PD+PE最小,为BE的长度,∵正方形ABCD的边长为6,∴AB=6.∵△ABE是等边三角形,∴BE=AB=6,故PD+PE的最小值为6.三、解答题17.解析(1)∵AF⊥DE,EF=6cm,AE=10cm,∴在Rt△AEF中,8cm==. (2)在Rt△AFD中,AF=8cm,DF=15cm,∴17cm,∴正方形ABCD的面积为22217289AD cm==.18.解析四边形OCED是矩形,理由如下:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形. 19.解析(1)证明:∵PQ垂直平分BE,∴PB=PE,OB=OE,∵四边形ABCD是矩形,∴AD∥BC,∴∠PEO=∠QBO,在△BOQ与△EOP中,QB PEO OB OEQOB POE ∠=∠=∠=∠⎧⎪⎨⎪⎩,,,∴△BOQ≌△EOP(ASA),∴PE=QB,又∵AD∥BC,∴四边形BPEQ是平行四边形,又∵PB=PE,∴四边形BPEQ是菱形.(2)∵O、F分别为BE、AB的中点,∴AE+BE=2OF+2OB=18,设AE=x,则BE=18-x,在Rt△ABE中,2226+(18)x x=-,解得x=8,∴BE=18-x=10,∴OB=12BE=5,设PE=y,则AP=8-y,BP=PE=y,在Rt△ABP中,2226+(8)y y-=,解得y=254,在Rt△BOP中,154PO==,∴PQ =2PO =152. 20.解析 (1)BC =3AD .理由如下:∵AD ∥BC ,AB ∥DE ,AF ∥DC ,∴四边形ABED 和四边形AFCD 都是平行四边形,∴AD =BE ,AD = FC .∵四边形AEFD 是平行四边形,∴AD =EF ,∴AD =BE =EF =FC ,∴.BC =3AD .(2)证明:∵四边形ABED 和四边形AFCD 都是平行四边形, ∴DE =AB ,AF =DC .又AB =DC ,∴DE =AF .又∵四边形AEFD 是平行四边形, ∴AEFD 是矩形.21.解析 (1)证明:易知△ABC ≌△DEF ,∴∠ABC =∠DEF ,AB =DE .根据平移的性质得BF =EC .在△ABF 与△DEC 中,AB DE ABF DEC BF EC =∠=∠=⎧⎪⎨⎪⎩,,, ∴△ABF ≌△DEC (SAS ),∴AF =CD ,∠AFB =∠DCE ,∴∠AFC =∠DCF ,∴AF ∥DC ,∴四边形AFDC 是平行四边形(2)(i )当t=3时,四边形AFDC 是菱形,理由如下: ∵t =3,∴BF =3×2=6cm ,∴CF =BC -BF =10-6=4 cm ,∵AC =4cm ,∠ACB =60°,∴△ACF 是等边三角形,∴AC =AF ,由(1)知四边形AFDC 是平行四边形,∴四边形AFDC 是菱形.(ii )能.∵四边形AFDC 为矩形,∴∠CAF =90°<∠CAB =100°,∵∠ACF =60°,∴∠AFC =30°,∵AC =4cm ,∴FC =8cm ,∴=,BF =BC -FC =2cm ,即当t =1时,四边形AFDC 为矩形,24AFDC S AC AF =⋅=⨯=矩形.22.解析 (1)四边形 EFGH 还是平行四边形.理由如下:连接AC .∵E ,F 分别是AB ,BC 的中点,∴EF ∥AC ,EF =12AC .∵G ,H 分别是CD ,AD 的中点,∴GH ∥AC ,GH =12AC ,∴EF ∥GH ,EF =GH ,∴四边形EFGH 是平行四边形.(2)(i )当AC =BD 时,四边形EFGH 是菱形.理由如下: 由(1)可知四边形EFGH 是平行四边形,易知FG =12BD ,EF =12AC ,∵AC =BD ,∴FC =EF ,∴四边形EFCH 是菱形.(ii )当AC ⊥BD 时,四边形EFCH 是矩形.理由如下: 由(1)可知四边形EFGH 是平行四边形,∵E ,F 分别是AB ,BC 的中点,∴EF ∥AC .∵AC ⊥BD ,∴EF ⊥BD ,∵G ,F 分别是CD ,BC 的中点,∴FG ∥BD .∵EF ⊥BD ,∴EF ⊥FG ,即∠EFG =90°, ∴EFGH 是矩形.。
2022-2023学年第一学期期末模拟试题九年级数学一、选择题(本部分共10小题,每小题3分,共30分)1.如图所示的工件,其俯视图是()A.B.C.D.2.函数y=中,自变量x的取值范围是()A.x>0B.x<0C.x≠0的一切实数D.x取任意实数3.一元二次方程(x﹣2)2=0的根是()A.x=2B.x1=x2=2C.x1=﹣2,x2=2D.x1=0,x2=2 4.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,AC =4,CE=6,BD=3,DF=()A.7B.7.5C.8D.4.55.已知反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,6)C.(﹣2,﹣6)D.(﹣3,﹣4)6.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个7.下列命题中,不正确的是()A.对角线相等的矩形是正方形B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等D.顺次连结菱形各边中点所得的四边形是矩形8.如图,A,B是函数的图象上关于原点O的任意一对对称点,AC平行于y轴,BC 平行于x轴,△ABC的面积为S,则()A.S=1B.S=2C.1<S<2D.S>29.如图,在△ABC中,DE∥FG∥BC,且AD:AF:AB=1:2:4,则S△ADE:S四边形DFGE:S四边形FBCG等于()A.1:2:4B.1:4:16C.1:3:12D.1:3:710.如图,在正方形ABCD中,点E为AB边的中点,点F在DE上,CF=CD,过点F作FG⊥FC交AD于点G.下列结论:①GF=GD;②AG>AE;③AF⊥DE;④DF=4EF.正确的是()A.①②B.①③C.①③④D.③④二、填空题(本部分共5小题,每小题3分,共15分)11.一元二次方程x2﹣16=0的解是.12.已知=,则=.13.深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.小智和小慧被分到同一个项目组进行志愿服务的概率14.如图,Rt△ABC,∠BAC=90°,AB=2,AC=3,斜边BC绕点B逆时针方向旋转90°至BD的位置,连接AD,则AD的长是于点B,交x轴于点C,以BC为边的正方形ABCD的顶点A(﹣1,a)在双曲线y=﹣(x <0)上,D点在双曲线y=(x>0)上,则k的值为6.三、解答题(第16题5分,第17题8分,第18题8分,第19题7分,第20题8分,第21题9分,第22题10分,共55分)16.(5分)解一元二次方程:2x2﹣5x+3=0.17.如图,已知A(﹣4,2),B(n,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)根据图象写出使一次函数的函数值小于反比例函数的函数值的x的取值范围.18.“低碳生活,绿色出行”是我们倡导的一种生活方式,某校为了解学生对共享单车的使用情况,随机抽取部分学生进行问卷调查,并将这次调查的结果绘制了以下两幅不完整的统计图.根据所给信息,解答下列问题:(1)m=;(2)补全条形统计图;(3)这次调查结果的众数是;(4)已知全校共3000名学生,请估计“经常使用”共享单车的学生大约有多少名?19.某超市经销一种成本为40元/kg的水产品,市场调查发现,按50元/kg销售,一个月能售出500kg,销售单位每涨0.1元,月销售量就减少1kg,针对这种水产品的销售情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,请你帮忙算算,销售单价定为多少?20.(8分)如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.21.如图,已知四边形ABCD中,AB⊥AD,BC∥AD,E为AB的中点,且EC、ED分别为∠BCD、∠ADC的角平分线,EF⊥CD交BC的延长线于点G,连接DG.(1)求证:CE⊥DE;(2)若AB=6,求CF•DF的值;(3)当△BCE与△DFG相似时,的值是.22.如图1,在菱形ABCD中,AB=,∠BCD=120°,M为对角线BD上一点(M不与点B、D重合),过点MN∥CD,使得MN=CD,连接CM、AM、BN.(1)当∠DCM=30°时,求DM的长度;(2)如图2,延长BN、DC交于点E,求证:AM•DE=BE•CD;(3)如图3,连接AN,则AM+AN的最小值是3.2022-2023学年第一学期期末模拟试题九年级数学一、选择题(本部分共10小题,每小题3分,共30分)1.如图所示的工件,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B.2.函数y=中,自变量x的取值范围是()A.x>0B.x<0C.x≠0的一切实数D.x取任意实数【分析】根据分式有意义可得中x≠0.【解答】解:函数y=中,自变量x的取值范围是x≠0,故选:C.3.一元二次方程(x﹣2)2=0的根是()A.x=2B.x1=x2=2C.x1=﹣2,x2=2D.x1=0,x2=2【分析】方程两边开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(x﹣2)2=0,则x1=x2=2,故选:B.4.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,AC =4,CE=6,BD=3,DF=()A.7B.7.5C.8D.4.5【分析】根据平行线分线段成比例定理得到=,即=,然后利用比例性质求DF的长.【解答】解:∵直线a∥b∥c,∴=,即=,∴DF=.故选:D.5.已知反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,6)C.(﹣2,﹣6)D.(﹣3,﹣4)【分析】依次把各个选项的横坐标代入反比例函数y=的解析式中,得到纵坐标的值,即可得到答案.【解答】解:A.把x=3代入y=得:y==﹣4,即A项错误,B.把x=﹣2代入y=得:y==6,即B项正确,C.把x=﹣2代入y=得:y==6,即C项错误,D.把x=﹣3代入y=得:y==4,即D项错误,故选:B.6.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:设袋中白球有x个,根据题意得:=0.75,解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选:A.7.下列命题中,不正确的是()A.对角线相等的矩形是正方形B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等D.顺次连结菱形各边中点所得的四边形是矩形【分析】根据矩形的性质和正方形的判定方法对A进行判断;根据菱形的判定方法对B 进行判断;根据矩形的性质对C进行判断;根据三角形中位线的性质和矩形的判定方法对D进行判断.【解答】解:A、对角线垂直的矩形是正方形,所以A选项为假命题;B、对角线垂直平分的四边形是菱形,所以B选项为真命题;C、矩形的对角线平分且相等,所以C选项为真命题;D、顺次连结菱形各边中点所得的四边形是矩形,所以D选项为真命题.故选:A.8.如图,A,B是函数的图象上关于原点O的任意一对对称点,AC平行于y轴,BC 平行于x轴,△ABC的面积为S,则()A.S=1B.S=2C.1<S<2D.S>2【分析】设出点A的坐标,可得点B的坐标.易得△ABC为直角三角形,面积等于×AC×BC,把相关数值代入求值即可.【解答】解:设点A的坐标为(x,y),点A在反比例函数解析式上,∴点B的坐标为(﹣x,﹣y),k=xy=1∵AC平行于y轴,BC平行于x轴,∴△ABC的直角三角形,∴AC=2y,BC=2x,∴S=×2y×2x=2xy=2.故选:B.9.如图,在△ABC中,DE∥FG∥BC,且AD:AF:AB=1:2:4,则S△ADE:S四边形DFGE:S四边形FBCG等于()A.1:2:4B.1:4:16C.1:3:12D.1:3:7【分析】由于DE∥FG∥BC,那么△ADE∽△AFG∽△ABC,根据AD:AF:AB=1:2:4,可求出三个相似三角形的面积比.进而可求出△ADE、四边形DFGE、四边形FBCG 的面积比.【解答】解:∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∵AD:AF:AB=1:2:4,∴S△ADE:S△AFG:S△ABC=1:4:16,设△ADE的面积是a,则△AFG和△ABC的面积分别是4a,16a,则S四边形DFGE和S四边形FBCG分别是3a,12a,∴S△ADE:S四边形DFGE:S四边形FBCG=1:3:12.故选:C.10.如图,在正方形ABCD中,点E为AB边的中点,点F在DE上,CF=CD,过点F作FG⊥FC交AD于点G.下列结论:①GF=GD;②AG>AE;③AF⊥DE;④DF=4EF.正确的是()A.①②B.①③C.①③④D.③④【分析】证明Rt△CFG≌Rt△CDG,得出①正确;在证明△ADE≌△DCG得出AE=DG,得出AE=AG,②不正确;证出GH是△AFD的中位线,得出GH∥AF,证出∠AFD=90°,即AF⊥DE,③正确;证明△ADE∽△F AE,得出===2,得出DE=2AE,AE=2EF,因此DF=4EF,④正确;即可得出答案.【解答】解:连接CG交ED于点H.如图所示:∵四边形ABCD是正方形,∴∠ADC=90°,∵FG⊥FC,∴∠GFC=90°,在Rt△CFG与Rt△CDG中,,∴Rt△CFG≌Rt△CDG(HL),∴GF=GD,①正确.∵CF=CD,GF=GD,∴点G、C在线段FD的中垂线上,∴FH=HD,GC⊥DE,∴∠EDC+∠DCH=90°,∵∠ADE+∠EDC=90°,∴∠ADE=∠DCH,∵四边形ABCD是正方形,∴AD=DC=AB,∠DAE=∠CDG=90°,在△ADE和△DCG中,,∴△ADE≌△DCG(ASA),∴AE=DG,∵点E是边AB的中点,∴点G是边AD的中点,∴AE=AG,②不正确;∵点H是边FD的中点,∴GH是△AFD的中位线,∴GH∥AF,∴∠AFD=∠GHD,∵GH⊥FD,∴∠GHD=90°,∴∠AFD=90°,即AF⊥DE,③正确;∵AD=AB,AB=2AE,∴AD=2AE,∵∠AFE=90°=∠DAE,∠AEF=∠DEA,∴△ADE∽△F AE,∴===2,∴DE=2AE,AE=2EF,∴DF=4EF,④正确;故选:C.二、填空题(本部分共5小题,每小题3分,共15分)11.一元二次方程x2﹣16=0的解是x1=﹣4,x2=4.【分析】方程变形后,开方即可求出解.【解答】解:方程变形得:x2=16,开方得:x=±4,解得:x1=﹣4,x2=4.故答案为:x1=﹣4,x2=412.已知=,则=.【分析】依据比例的性质,即可得到=.【解答】解:∵=,∴7a﹣7b=3a+3b,∴4a=10b,∴=,故答案为:.13.深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.小智和小慧被分到同一个项目组进行志愿服务的概率【分析】先画树状图展示所有9种等可能的结果数,再找出其中小智和小慧被分到同一个项目标组进行志愿服务的结果数,然后根据概率公式计算.【解答】解:画树状图为:共有9种等可能的结果数,其中小智和小慧被分到同一个项目标组进行志愿服务的结果数为3,所以小智和小慧被分到同一个项目标组进行志愿服务的概率为=.14.如图,Rt△ABC,∠BAC=90°,AB=2,AC=3,斜边BC绕点B逆时针方向旋转90°至BD的位置,连接AD,则AD的长是【解答】解:过D作DE⊥AB交AB的延长线于E,∴∠E=∠CAB=90°,∵斜边BC绕点B逆时针方向旋转90°至BD的位置,∴BD=BC,∠CBD=90°,∴∠DBE+∠CBA=∠CBA+∠C=90°,∴∠DBE=∠C,∴△ABC≌△EDB(AAS),∴DE=AB=2,BE=AC=3,∴AE=2+3=5,∴AD===,15.如图,直线y=mx﹣1交y轴于点B,交x轴于点C,以BC为边的正方形ABCD的顶点A(﹣1,a)在双曲线y=﹣(x<0)上,D点在双曲线y=(x>0)上,则k的值为6.【分析】先确定出点A的坐标,进而求出AB,再确定出点C的坐标,利用平移即可得出结论.【解答】解:∵A(﹣1,a)在双曲线y=﹣(x<0)上,∴a=2,∴A(﹣1,2),∵点B在直线y=mx﹣1上,∴B(0,﹣1),∴AB==,∵四边形ABCD是正方形,∴BC=AB=,设C(n,0),∴=,∴n=﹣3(舍)或n=3,∴C(3,0),∴点B向右平移3个单位,再向上平移1个单位,∴点D是点A向右平移3个单位,再向上平移1个单位,∴点D(2,3),∵D点在双曲线y=(x>0)上,∴k=2×3=6,故答案为:6.三、解答题(第16题5分,第17题8分,第18题8分,第19题7分,第20题8分,第21题9分,第22题10分,共55分)16.(5分)解一元二次方程:2x2﹣5x+3=0.【分析】利用因式分解法求解可得.【解答】解:∵2x2﹣5x+3=0,∴(x﹣1)(2x﹣3)=0,则x﹣1=0或2x﹣3=0,解得x=1或x=1.5.17.如图,已知A(﹣4,2),B(n,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)根据图象写出使一次函数的函数值小于反比例函数的函数值的x的取值范围.【分析】(1)利用待定系数法即可求得函数的解析式;(2)一次函数的值大于反比例函数的值的x的取值范围,就是对应的一次函数的图象在反比例函数的图象的上边的自变量的取值范围.【解答】解:(1)把A(﹣4,2)代入y=得:m=﹣8,则反比例函数的解析式是:y=﹣;把y=﹣4代入y=﹣,得:x=n=2,则B的坐标是(2,﹣4).根据题意得:,解得:,则一次函数的解析式是:y=﹣x﹣2;(2)使一次函数的函数值小于反比例函数的函数值的x的取值范围是:﹣4<x<0或x >2.18.“低碳生活,绿色出行”是我们倡导的一种生活方式,某校为了解学生对共享单车的使用情况,随机抽取部分学生进行问卷调查,并将这次调查的结果绘制了以下两幅不完整的统计图.根据所给信息,解答下列问题:(1)m=15%;(2)补全条形统计图;(3)这次调查结果的众数是偶尔使用;(4)已知全校共3000名学生,请估计“经常使用”共享单车的学生大约有多少名?【分析】(1)由“从不使用”的人数及其对应百分比求得总人数,继而用“经常使用”的人数除以总人数可得m的值;(2)根据各类别人数之和等于总人数求得“偶尔使用”的人数即可补全条形图;(3)根据众数的定义求解可得;(4)用总人数乘以样本中“经常使用”的人数对应的百分比可得.【解答】解:(1)∵被调查的学生总人数为25÷25%=100(人),∴经常使用的人数对应的百分比m=×100%=15%,故答案为:15%;(2)偶尔使用的人数为100﹣(25+15)=60(人),补全条形统计图如下:(3)∵偶尔使用的人数最多,∴这次调查结果的众数是偶尔使用,故答案为:偶尔使用;(4)估计“经常使用”共享单车的学生大约有3000×15%=450(人).19.某超市经销一种成本为40元/kg的水产品,市场调查发现,按50元/kg销售,一个月能售出500kg,销售单位每涨0.1元,月销售量就减少1kg,针对这种水产品的销售情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,请你帮忙算算,销售单价定为多少?【分析】先根据销售利润=每件利润×数量,再设出单价应定为x元,再根据这个等式列出方程,即可求出答案.【解答】解:设销售单价定为x元,根据题意得:(x﹣40)[500﹣(x﹣50)÷0.1]=8000.解得:x1=60,x2=80当售价为60时,月成本[500﹣(60﹣50)÷0.1]×40=16000>10000,所以舍去.当售价为80时,月成本[500﹣(80﹣50)÷0.1]×40=8000<10000.答:销售单价定为80元.20.(8分)如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.【分析】(1)利用相似三角形的判定得出△ABE∽△ACB,进而求出答案;(2)首先证明AD=BF,进而得出AD∥BF,即可得出四边形ABFD是平行四边形,再利用AD=AB,得出四边形ABFD是菱形.【解答】证明:(1)∵AB=AD,∴∠ADB=∠ABE,又∵∠ADB=∠ACB,∴∠ABE=∠ACB,又∵∠BAE=∠CAB,∴△ABE∽△ACB,∴=,又∵AB=AD,∴=;(2)设AE=x,∵AE:EC=1:2,∴EC=2x,由(1)得:AB2=AE•AC,即AB2=x•3x∴AB=x,又∵BA⊥AC,∴BC=2x,∴∠ACB=30°,∵F是BC中点,∴BF=x,∴BF=AB=AD,连接AF,则AF=BF=CF,∠ACB=30°,∠ABC=60°,又∵∠ABD=∠ADB=30°,∴∠CBD=30°,∴∠ADB=∠CBD=∠ACB=30°,∴AD∥BF,∴四边形ABFD是平行四边形,又∵AD=AB,∴四边形ABFD是菱形.21.如图,已知四边形ABCD中,AB⊥AD,BC∥AD,E为AB的中点,且EC、ED分别为∠BCD、∠ADC的角平分线,EF⊥CD交BC的延长线于点G,连接DG.(1)求证:CE⊥DE;(2)若AB=6,求CF•DF的值;(3)当△BCE与△DFG相似时,的值是或.【分析】(1)证明∠ECD+∠EDC=90°即可解决问题.(2)由△CFE∽△EFD,得,由此即可解决问题.(3)分两种情形,当△BCE∽△FGD时,当△BCE∽△FDG时,分别计算即可.【解答】(1)证明:∵EC、ED分别为∠BCD、∠ADC的角平分线,∴∠BCE=∠DCE,∠ADE=∠CDE,∵BC∥AD,∴∠BCD+∠ADC=180°,∴2∠ECD+2∠EDC=180°,∴∠ECD+∠EDC=90°,22.如图1,在菱形ABCD中,AB=,∠BCD=120°,M为对角线BD上一点(M不与点B、D重合),过点MN∥CD,使得MN=CD,连接CM、AM、BN.(1)当∠DCM=30°时,求DM的长度;(2)如图2,延长BN、DC交于点E,求证:AM•DE=BE•CD;(3)如图3,连接AN,则AM+AN的最小值是3.【分析】(1)先根据菱形的性质求出BC=3,再利用含30度角的直角三角形的性质求出BM,即可得出结论;(2)先判断出四边形ABNM是平行四边形,得出∠AMB=∠EBD,进而判断出△ABM ∽△EDB,即可得出结论;(3)先判断出AM+AN=BN+AN,再判断出点N的运动轨迹是线段CP,进而判断出再CP上取一点N使AN+BN最小,最后利用轴对称构造出图形,计算即可得出结论.【解答】解:(1)如图1,连接AC交BD于O,∵四边形ABCD是菱形,∴AC⊥BD,BD=2OB,CD=BC=AB=,∵∠BCD=120°,∴∠CBD=30°,∴OC=BC=,∴OB=OC=,∴BD=3,∵∠BCD=120°,∠DCM=30°,∴∠BCM=90°,∴CM=BC=1,∴BM=2CM=2,∴DM=BD﹣BM=1;(2)∵四边形ABCD是菱形,∴AB∥CD,AB=CD,∵MN∥CD,MN=CD,∴AB∥MN,AB=MN,∴四边形ABNM是平行四边形,∴AM∥BN,∴∠AMB=∠EBD,∵AB∥CD,∴∠ABM=∠EDB,∴△ABM∽△EDB,∴,∴AM•DE=BE•AB,∵AB=CD,∴AM•DE=BE•CD;(3)如图2,∵四边形ABCD是菱形,∴∠ABD=∠ABC,CD∥AB,∵∠BCD=120°,∴∠ABC=60°,∴∠ABD=30°,连接CN并延长交AB的延长线于P,∵CD∥MN,CD=MN,∴四边形CDMN是平行四边形,∴当点M从点D向B运动时,点N从点C向点P运动(点N的运动轨迹是线段CP),∠APC=∠ABD=30°,由(2)知,四边形ABNM是平行四边形,∴AM=BN,∴AM+AN=AN+BN,而AM+AN最小,即:AN+BN最小,作点B关于CP的对称点B',当点A,N,B'在同一条线上时,AN+BN最小,即:AM+AN的最小值为AB',连接BB',B'P,由对称得,BP=B'P=AB=,∠BPB'=2∠APC=60°,∴△BB'P是等边三角形,B'P过点B'作B'Q⊥BP于Q,∴BQ=B'P=,∴B'Q=BQ=,∴AQ=AB+BQ=,在Rt△AQB'中,根据勾股定理得,AB'==3,即:AM+AN的最小值为3,故答案为3.∴∠CED=90°.即CE⊥DE;(2)解:∵∠EAD=∠EFD,∠ADE=∠FDE,DE=DE,∴△EAD≌△EFD(AAS),∴EF=EA,∵E为AB的中点,∴AE=EF=3∵∠CED=90°,∴∠CEF+∠FED=90°,∵EF⊥CD,∴∠FED+∠EDF=90°,∴∠CEF=∠EDF,∴△CFE∽△EFD,∴,即CF•DF=EF•EF,∴CF•DF=9.(3)解:①当△BCE∽△FGD时,∵∠BCE=∠AED,∴∠FED=∠FGD,∴ED=DG,∴∠EDF=∠GDF,∴△EDC≌△GDC(SAS),∴∠ECD=∠GCD,∵∠BCE+∠ECD+∠DCG=180°,∴∠BCE=∠AED=60°,设BC=x,则BE=x,∴AE=x,∴AD=3x,∴.②当△BCE∽△FDG时,∠BCE=∠FDG,∵∠BCE=∠ECF,∴∠ECF=∠FDG,∴EC∥DG,∴∠BCE=∠CGD,∴∠CGD=∠FDG,∴CD=CG.∵S△CDG=,∴FG=AB.∵EC∥DG,∴=,∴.综合以上可得的值为或.故答案为:或.。
第二章单元测试卷[时间:120分钟分值:150分]一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.方程(x+1)(x-2)=0的根是( )A.x=-1 B.x=2C.x1=1,x2=-2 D.x1=-1,x2=22.用配方法解一元二次方程x2+8x+7=0,则方程可变形为( )A.(x-4)2=9 B.(x+4)2=9C.(x-8)2=16 D.(x+8)2=573.已知α是一元二次方程x2-x-1=0较大的根,则下面对α的估计正确的是( )A.0<α<1 B.1<α<1.5C.1.5<α<2 D.2<α<34.已知关于x的一元二次方程3x2+4x-5=0,下列说法正确的是( B )A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定5.若x=-2 是关于x的一元二次方程x2-52ax+a2=0的一个根,则A的值为( )A.1或4 B.-1或-4C.-1或4 D.1或-46.某县为了大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造和更新.2016年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2018年投资7.2亿元人民币,那么每年投资的增长率为( )A.20%或-220% B.40%C.120% D.20%7.三角形两边长分别为3和6,第三边是方程x2-13x+36=0的根,则三角形的周长为( )A.13 B.15C.18 D.13或188.从正方形的铁片上截去2 c m宽的长方形,余下的面积是48 c m2,则原来的正方形铁片的面积是( )A.8 c m2 B.32 c m2C.64 c m2 D.96 c m29.若关于x的方程x2+2x+A=0不存在实数根,则A的取值范围是( ) A.A<1 B.A>1C.A≤1 D.A≥110.x1,x2是关于x的一元二次方程x2-mx+m-2=0的两个实数根,是否存在实数m使1x1+1x2=0成立?则正确的结论是( )A.m=0 时成立 B.m=2 时成立C.m=0 或2时成立 D.不存在二、填空题(本大题共6个小题,每小题4分,共24分)11.已知x1=3是关于x的一元二次方程x2-4x+C=0的一个根,则方程的另一个根x2=__ ____.12.一小球以15 m/s的速度竖直向上抛出,它在空中的高度h(m)与时间t(s)满足关系式:h=15t-5t2,当t=_________时,小球高度为10 m.小球所能达到的最大高度为________m.13.若关于x的一元二次方程x2-x+m=0有两个不相等的实数根,则m的值可能是_____________(写出一个即可).14.菱形的两条对角线长分别是方程x2-14x+48=0的两实根,则菱形的面积为________.15.已知关于x的一元二次方程x2+(2k+1)x+k2-2=0的两根为x1,x2,且(x1-2)(x1-x2)=0,则k的值是___________.16.如果关于x的方程Ax2+2x+1=0有两个不相等的实数根,则实数A的取值范围是________________.三、解答题(本大题共9个小题,共96分)17.(16分)解方程:(1)(x+8)2=36;(2)x(5x+4)-(4+5x)=0;(3)x2+3=3(x+1);(4)2x2-x-1=0(用配方法).18.(8分)已知关于x的方程x2+x+n=0有两个实数根-2,m,求m,n的值.19.(10分)先化简,再求值:m-33m2-6m ÷⎝⎛⎭⎪⎫m+2-5m-2,其中m是方程x2+2x-3=0的根.20.(10分)有一个两位数等于其各位数字之积的3倍,其十位数字比个位数字小2,求这个两位数.21.(10分)利用一面墙(墙的长度不限),另三边用58 m长的篱笆围成一个面积为200 m2的矩形场地,求矩形的长和宽.22.(10分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2015年市政府共投资3亿元人民币建设了廉租房12万平方米,2017年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,2017年建设了多少万平方米廉租房?23.(10分)当m为何值时,一元二次方程(m2-1)x2+2(m-1)x+1=0?(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?24.(10分)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?25.(12分)在矩形ABCD中,AB=6 cm,BC=12 cm,点P从点A沿边AB向点B以1 cm/s的速度移动;同时点Q从点B沿边BC向点C以2 cm/s的速度移动,设运动时间为t s.问:(1)几秒后△PBQ的面积等于8 cm2?(2)是否存在t,使△PDQ的面积等于26 cm2?参考答案一、1.D 2.B 3.C【解析】 解方程x 2-x -1=0,得x =1±52,∵α是方程x 2-x -1=0较大的根,∴α=1+52.∵2<5<3,∴3<1+5<4,∴32<1+52<2.4.B 5.B 6.D 7. A 8.C 9.B【解析】 ∵方程不存在实数根,∴Δ=4-4A <0,解得A >1. 10.A【解析】 ∵x 1,x 2是关于x 的一元二次方程x 2-mx +m -2=0的两个实数根,∴x 1+x 2=m ,x 1x 2=m -2.假设存在实数m 使1x 1+1x 2=0成立,则x 1+x 2x 1x 2=0,∴m m -2=0,∴m =0. 当m =0时,方程为x 2-2=0,此时Δ=8>0,∴m =0符合题意.二、11.1 【解析】 ∵x 1+x 2=4,x 1=3,∴x 2=1. 12. 1或2 454【解析】 当小球高度为10 m 时,有10=15t -5t 2,解得t 1=1,t 2=2.小球达到的高度h =15t -5t 2=-5(t 2-3t )=-5⎝⎛⎭⎪⎫t -322+454,故当t =32时,小球达到的最大高度为454m.13. 0(答案不唯一) 14. 24 15.-2或-94【解析】 先由(x 1-2)(x 1-x 2)=0, 得出x 1-2=0或x 1-x 2=0, 再分两种情况进行讨论: ①如果x 1-2=0,将x =2代入x 2+(2k +1)x +k 2-2=0, 得4+2(2k +1)+k 2-2=0,解得k =-2; ②如果x 1-x 2=0,由Δ=(2k +1)2-4(k 2-2)=0,解得k =-94.综上所述,k 的值是-2或-94.16. A <1且A ≠0【解析】 由题意,得Δ=4-4A >0且A ≠0, 解得A <1且A ≠0.三、17.(1) 解:直接开平方,得x +8=±6, ∴x 1=-2,x 2=-14. 4分(2) 解:提公因式,得(4+5x )(x -1)=0, 则4+5x =0或x -1=0. ∴x 1=-45,x 2=1. 8分(3)解:整理,得x 2-3x =0, 分解因式,得x (x -3)=0, 则x =0或x -3=0, ∴x 1=0,x 2=3. 12分(4)解:方程两边同除以2,得x 2-12x -12=0,移项,得x 2-12x =12,配方,得⎝⎛⎭⎪⎫x -142=916,开平方,得x -14=±34,∴x 1=1,x 2=-12.16分18.解:将x =-2代入原方程,得(-2)2-2+n =0, 1分 解得n =-2, 3分因此原方程为x 2+x -2=0, 5分 解得x 1=-2,x 2=1, 7分 ∴m =1. 8分19. 解:原式=m -33m (m -2)÷⎝ ⎛⎭⎪⎫m 2-4m -2-5m -2 =m -33m (m -2)·m -2(m +3)(m -3)=13m (m +3), 4分 ∵m 是方程x 2+2x -3=0的根,∴m =-3或m =1. 6分当m =-3时,原式无意义; 8分当m =1时,原式=13m (m +3)=13×1×(1+3)=112. 10分 20.解:设个位数字为x ,则十位数字为(x -2),这个两位数是[10(x -2)+x ].2分根据题意,得10(x -2)+x =3x (x -2),整理,得3x 2-17x +20=0,5分解得x 1=4,x 2=53(不合题意,舍去).8分 当x =4时,x -2=2,∴这个两位数是24. 10分21. 解:设垂直于墙的一边为x 米, 1分依题意得x (58-2x )=200. 3分解得x 1=25,x 2=4. 6分∴另一边为8米或50米. 9分故矩形长为25米,宽为8米或长为50米,宽为4米. 10分22. 解:(1)设每年市政府投资的增长率为x , 1分根据题意,得3(1+x )2=6.75, 3分解得x 1=0.5=50%,x 2=-2.5(不合题,舍去). 5分则每年市政府投资的增长率为50%. 6分(2)6.753×12=27(万平方米).则2017年建设了27万平方米廉租房. 10分23. 解:Δ=[2(m -1)]2-4(m 2-1)=-8m +8. 1分(1)根据题意,得-8m +8>0,且m 2-1≠0, 2分解得m <1且m ≠-1. 4分(2)根据题意,得-8m +8=0,且m 2-1≠0,可知无解, 6分则方程不可能有两个相等的实数根. 7分(3)根据题意,得-8m +8<0,且m 2-1≠0, 8分解得m >1. 10分24.解:设应降价x 元,则售价为(60-x )元,销售量为(300+20x )件,1分根据题意,得(60-x -40)(300+20x )=6 080, 5分解得x 1=1,x 2=4, 8分又需使顾客得实惠,故取x =4,即定价为56元,故应将销售单价定为56元. 10分25.解:(1)设x 秒后△PBQ 的面积等于8 cm 2.∵AP =x ,QB =2x .∴PB =6-x . ∴12(6-x )·2x =8, 2分解得x 1=2,x 2=4, 4分故2秒或4秒后△PBQ 的面积等于8 cm 2. 5分(2)假设存在t 使得△PDQ 的面积为26 cm 2, 6分则72-6t-t(6-t)-3(12-2t)=26, 8分整理得,t2-6t+10=0,∵Δ=36-4×1×10=-4<0,∴原方程无解, 11分∴不存在t,使△PDQ的面积等于26 cm2. 12分附赠材料:考试做题技巧会学习,还要会考试时间分配法:决定考场胜利的重要因素科学分配答题时间,是决定考场能否胜利的重要因素。
第2课时建立一元二次方程解决利润问题【基础巩固】知识点一:建立一元二次方程解决利润问题1. 某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15D.(x+1)(4﹣0.5x)=151.A2. 将进货单价为40元的商品按50元售出时,能卖500个,已知该商品每涨价1元时,其销售量就减少10个,为了赚8000元利润,售价应定为多少?2. 解:设定价为每件x元,则每件涨价(x-50)元.根据题意得(x-40)[500-10(x-50)]=8000,解得x1=60,x2=80.答:定价为每件60元或80元.3. (2017•孝感)某商店从厂家以21元的价格购进一批商品,该商店可以自行定价,若每件商品售价为a元,则可卖(350-10a)件,但物价局限定每件商品加价不能超过进价的20%.商店计划要赚400元,需要卖出多少件商品?每件商品的售价为多少元?3. 解:由题意,得(a-21)(350-10a)=400,解得a1=25,a2=31.∵31>21×(1+20%),∴a=31舍去,∴a=25.∴400÷(25-21)=100.因此需卖出100件商品,每件的售价为25元.知识点二:建立一元二次方程解决增长率问题4. 随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2017年底某市汽车拥有量为16.9万辆.已知2015年底该市汽车拥有量为10万辆,设2015年底至2017年底该市汽车拥有量的平均增长率为x,根据题意列方程得( )A.10(1+x)2=16.9 B.10(1+2x)=16.9C.10(1-x)2=16.9 D.(1-2x)=16.94.A5.(2016•邯郸25中模拟)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为( )A.48(1-x)2=36 B.48(1+x)2=36C.36(1-x)2=48 D.36(1+x)2=485.D6.某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是( )A. 289(1-2x) 2=256B. 256(1-x) 2=289C.289(1-2x)=256D.256(1-2x)=2896.A7. (2017•烟台)广州市政府决定改善城市面貌,绿化环境,计划经过两年时间,绿化面积增加44%,这两年平均每年绿化面积的增长率为_ __.7.20%8. (2016•石家庄十八县重点中学一模)为落实“两免一补”政策,某市2014年投入教育经费2 500万元,预计2016年要投入教育经费3 600万元.已知2014年至2016年的教育经费投入以相同的百分率逐年增长,则2015年该市要投入的教育经费为____万元.8.3000知识点三:建立一元二次方程解决其他实际问题9. 有一人患了流感,经过两轮传染后共有256人患了流感,则每轮传染中平均一个人传染( )A.17人 B.16人C.15人 D.10人9. A【能力提升】10.某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?10.解:设每千克核桃应降价x元.根据题意,得(60﹣x﹣40)(100+×20)=2240.化简,得 x2﹣10x+24=0 解得x1=4,x2=6.答:每千克核桃应降价4元或6元.(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),.答:该店应按原售价的九折出售.11. 某汽车销售公司6月份销售某厂家汽车,在一定范围内,每辆汽车的进价与销售量有如下关系,若当月仅售出1辆汽车,则该汽车的近价为27万元;每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.5万元,销售量在10辆以上,每辆返利1万.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为万元;(2)如果汽车的售价为28万元/辆,该公司计划当月盈利12万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)11. 解:(1)27-(3-1)×0.1=26.8.[来源:Z&(2)设销售汽车x辆,则汽车的进价为27-(x-1)×0.1=27.1-0.1x万元,若x≤10,则(28-27.1+0.1x)x+0.5x=12,解得x1=6,x2=-20(不合题意,舍去)若x>10,则(28-27.1+0.1x)x+x=12,解得x3=5(与x>10舍去,舍去),x4=-24(不合题意,舍去).所以,公司计划当月盈利12万元,需要售出6辆汽车.12. (2017•达州)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为________万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率.12.解: (1)2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146.解得x1=0.1,x2=-2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.【综合探究】13. 某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3 210元.问第一次降价后至少要售出该种商品多少件?13.解:(1)设该种商品每次降价的百分率为x%,依题意,得400×(1-x%)2=324,解得x=10或x=190(舍去).答:该种商品每次降价的百分率为10%;(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100-m)件,第一次降价后的单件利润为:400×(1-10%)-300=60(元/件);第二次降价后的单件利润为:324-300=24(元/件).依题意得:60m+24×(100-m)=36m+2 400≥3 210,解得m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3 210元,第一次降价后至少要售出该种商品23件.14. 商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,正常销售情况下,每件商品降价多少元时,商场日盈利可达到2 100元?14.解:设每件商品降价x元,则商场日销售量增加2x件,每件商品盈利(50-x)元.由题意,得(50-x)(30+2x)=2 100.整理,得x2-35x+300=0.解得x1=15,x2=20.∵要尽快减少库存,∴x=15不合题意,舍去,只取x=20.答:每件商品降价20元时,商场日盈利可达到2 100元.。
北师大版九年级数学第一学期期末试题及答案一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)已知a、b、c、d是成比例线段,其中a=3,b=0.6,c=2,则线段d的长为()A.0.4B.0.6C.0.8D.42.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)如图,四边形ABCD与四边形AEFG是位似图形,点A是位似中心,且AC:AF=2:3,则四边形ABCD 与四边形AEFG的面积之比等于()A.2:3B.4:9C.1:4D.1:24.(3分)关于x的一元二次方程x2﹣3x+n=0没有实数根,则实数n的值可以为()A.0B.1C.2D.35.(3分)已知反比例函数y=,在下列结论中,不正确的是()A.图象必经过点(1,2)B.图象在第一、二象限C.图象在第一、三象限D.若x=2,则y=16.(3分)如图,在矩形ABCD中,AC,BD相交于点O,若△AOB的面积是3,则矩形ABCD的面积是()A.6B.9C.12D.157.(3分)笼子里关着一只小松鼠(如图).笼子主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先过第一道门(A或B),再过第二道门(C,D或E)才能出去,则松鼠走出笼子的路线是“先经过A门、再经过D门”的概率为()A.B.C.D.8.(3分)如图,△ABC中,∠ACB=90°,分别以AB,AC为边作正方形ABPQ,ACFH,BP交FH于点O.若BC=BF=2,则OP的长为()A.B.2C.D.2二、填空题(共5小题,每小题3分,计15分)9.(3分)已知关于x的一元二次方程x2﹣mx+6=0.其中一个解x=3,则m的值为.10.(3分)地面上有一支蜡烛,蜡烛前面有一面墙,王涛同学在蜡烛与墙之间运动,则他在墙上的投影长度随着他离墙的距离变小而(增大、变小).11.(3分)在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是.12.(3分)如图,点A在反比例函数的图象上,点B在反比例函数的图象上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为.13.(3分)如图,在平行四边形ABCD中,E是AB的中点,F在AD上,且AF:AD=1:3,EF交AC于G.若AC=40,则AG=.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:y(y﹣7)+2y﹣14=0.15.(5分)画出如图所示的正三棱柱的三视图.16.(5分)如图,菱形ABCD的边长为4,∠B=60°,以AC为边长作正方形ACEF,求这个正方形的周长.17.(5分)已知反比例函数y=,当x<0时,y随x的增大而减小,求正整数m的值.18.(5分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形.19.(5分)某游泳池有1200立方米水,设放水的平均速度为v立方米/小时,将池内的水放完需t小时.(1)求v关于t的函数表达式;(2)若要求在3小时之内把游泳池的水放完,则每小时应至少放水多少立方米?20.(5分)如图,延长正方形ABCD的一边CB至E,ED与AB相交于点F,过F作FG∥BE交AE于点G,求证:GF=FB.21.(6分)解读诗词(通过列方程算出周瑜去世时的年龄):大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?诗词大意:周瑜三十岁当东吴都督,去世时的年龄是两位数,十位数字比个位数字小三,个位数字的平方等于他去世时的年龄.22.(7分)学习了相似三角形相关知识后,小明和同学们想利用“标杆”测量大楼的高度.如图,小明站立在地面点F处,他的同学在点B处竖立“标杆”AB,使得小明的头顶E、标杆顶端A、大楼顶端C在一条直线上(点F、B、D也在一条直线上).已知小明的身高EF=1.5米,“标杆“AB=2.5米,BD=23米,FB=2米,EF、AB、CD均垂直于地面BD.求大楼的高度CD.23.(7分)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有三个种类的奶制品:A:纯牛奶,B:酸奶,C:核桃奶;伊利品牌有两个种类的奶制品:D:纯牛奶,E:核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请用列表法或画树状图法求出两人选购到同一种类奶制品的概率.24.(8分)如图,在△ABC中,D为AC延长线上一点,AC=3CD,∠CBD=∠A,过点D作DE∥AB交BC的延长线于点E.(1)求证:△ECD∽△EDB;(2)求△DCE与△ACB的周长比.25.(8分)如图,直角坐标系中,点B坐标为(6,0),且AO=AB=5,AH⊥x轴于点H,过B作BC⊥x轴交过点A的双曲线于点C,连接OC交AB于点D,交AH于点M.(1)求双曲线的表达式;(2)求的值.26.(10分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长交AD于点E,交BA的延长线于点F.(1)求证:△APD≌△CPD;(2)求证:△APE∽△FP A;(3)若PE=4,PF=12,求PC的长.参考答案与试题解析一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)已知a、b、c、d是成比例线段,其中a=3,b=0.6,c=2,则线段d的长为()A.0.4B.0.6C.0.8D.4【分析】由a、b、c、d四条线段是成比例的线段,根据成比例线段的定义,即可得=,又由a=3,b=0.6,c=2,即可求得d的值.【解答】解:∵a、b、c、d四条线段是成比例的线段,∴=,∵a=3,b=0.6,c=2,∴=解得:d=0.4.故选:A.【点评】此题考查了比例线段,此题比较简单,解题的关键是注意掌握比例线段的定义.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是两个同心圆,内圆要画成实线.故选:C.【点评】本题考查了简单几何体的三视图,从左边看得到的图形是左视图.3.(3分)如图,四边形ABCD与四边形AEFG是位似图形,点A是位似中心,且AC:AF=2:3,则四边形ABCD 与四边形AEFG的面积之比等于()A.2:3B.4:9C.1:4D.1:2【分析】根据位似图形的概念得到EF∥BC,证明△BAC∽△EAF,根据相似三角形的性质求出,根据相似多边形的性质计算即可.【解答】解:∵四边形ABCD与四边形AEFG是位似图形,∴四边形ABCD∽四边形AEFG,EF∥BC,∴△BAC∽△EAF,∴==,∴四边形ABCD与四边形AEFG的面积之比为4:9,故选:B.【点评】本题考查的是位似变换的概念和性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.4.(3分)关于x的一元二次方程x2﹣3x+n=0没有实数根,则实数n的值可以为()A.0B.1C.2D.3【分析】根据方程没有实数根得出(﹣3)2﹣4×1×n<0,解之求出n的范围,结合各选项可得答案.【解答】解:根据题意,得:(﹣3)2﹣4×1×n<0,解得:n>,∴n的值可以是3,故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.5.(3分)已知反比例函数y=,在下列结论中,不正确的是()A.图象必经过点(1,2)B.图象在第一、二象限C.图象在第一、三象限D.若x=2,则y=1【分析】由k=2>0即可判断B,C;把x=2,代入y=可判断A,D.【解答】解:A.把(2,1)代入y=得:左边=右边,故本选项不符合题意;B.k=2>0,图象在第一、三象限内,故本选项符合题意;C.k=2>0,图象在第一、三象限内,故本选项不符合题意;D.把x=2,代入y=得y=1,故本选项不符合题意;故选:B.【点评】本题主要考查了反比例函数的性质,能熟练地根据反比例函数的性质进行判断是解此题的关键.6.(3分)如图,在矩形ABCD中,AC,BD相交于点O,若△AOB的面积是3,则矩形ABCD的面积是()A.6B.9C.12D.15【分析】由矩形的性质可得AO=CO=BO=DO,可得S△AOB=S△BOC=S△AOD=S△OCD=3,即可求解.【解答】解:∵四边形ABCD是矩形,∴AO=CO=BO=DO,∴S△AOB=S△BOC=S△AOD=S△OCD=3,∴矩形ABCD的面积=12,故选:C.【点评】本题考查了矩形的性质,掌握矩形的对角线互相平分且相等是解题的关键.7.(3分)笼子里关着一只小松鼠(如图).笼子主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先过第一道门(A或B),再过第二道门(C,D或E)才能出去,则松鼠走出笼子的路线是“先经过A门、再经过D门”的概率为()A.B.C.D.【分析】画树状图,即可得出答案.【解答】解:画树状图如下:共有6种等可能的结果,先经过A门、再经过D门只有1种结果,所以先经过A门、再经过D门的概率为,故选:D.【点评】此题考查的是用树状图法.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;正确画出树状图是解题的关键.8.(3分)如图,△ABC中,∠ACB=90°,分别以AB,AC为边作正方形ABPQ,ACFH,BP交FH于点O.若BC=BF=2,则OP的长为()A.B.2C.D.2【分析】根据正方形的性质得到△FOB∽△CBA,根据相似三角形的性质得到OF,利用勾股定理分别求出OB,PB进而可求.【解答】解:∵四边形ABPQ,ACFH为正方形,∴PB=AB,AC=CF=CB+BF=4,∠F=∠C=90°,∠PBA=90°,∴∠FOB+∠FBO=90°,∠ABC+∠FBO=90°∴∠FOB=∠ABC,∴△FOB∽△CBA,∴=,即=,∴OF=1,在Rt△FBO中,由勾股定理得,OB===,在Rt△ABC中,由勾股定理得,AB===2,∴OP=PB﹣OB=,故选:A.【点评】本题考查了正方形的性质和相似三角形的性质与判定,利用正方形的性质得到△FOB∽△CBA,根据相似三角形的性质得到OF是解题的关键.二、填空题(共5小题,每小题3分,计15分)9.(3分)已知关于x的一元二次方程x2﹣mx+6=0.其中一个解x=3,则m的值为5.【分析】把x=3代入方程x2﹣mx+6=0得到关于m的方程,然后解关于m的方程即可.【解答】解:把x=3代入方程x2﹣mx+6=0得9﹣3m+6=0,解得m=5.故答案为:5.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.(3分)地面上有一支蜡烛,蜡烛前面有一面墙,王涛同学在蜡烛与墙之间运动,则他在墙上的投影长度随着他离墙的距离变小而变小(增大、变小).【分析】可连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.【解答】解:连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.则他在墙上投影长度随着他离墙的距离变小而变小.故答案为变小.【点评】本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.11.(3分)在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是10.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,=0.2,解得,a=10.故可以推算出a大约是10个.故答案为:10.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.12.(3分)如图,点A在反比例函数的图象上,点B在反比例函数的图象上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.【分析】首先延长BA交y轴于点E,易得四边形ADOE与四边形BCOE是矩形,又由点A在反比例函数的图象上,点B在反比例函数的图象上,即可得S矩形ADOE=1,S矩形BCOE=3,继而求得答案.【解答】解:延长BA交y轴于点E,∵四边形ABCD为矩形,且AB∥x轴,点C、D在x轴上,∴AE⊥y轴,∴四边形ADOE与四边形BCOE是矩形,∵点A在反比例函数的图象上,点B在反比例函数的图象上,∴S矩形ADOE=1,S矩形BCOE=3,∴S矩形ABCD=S矩形BCOE﹣S矩形ADOE=3﹣1=2.故答案为:2.【点评】此题考查了反比例函数的系数k的几何意义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.(3分)如图,在平行四边形ABCD中,E是AB的中点,F在AD上,且AF:AD=1:3,EF交AC于G.若AC=40,则AG=8.【分析】设AC的中点为O,连接EO,根据题意可得OE是△ABC的中位线,从而可得OE=BC,OE∥BC,进而可证8字模型相似三角形△AFG∽△OEG,然后利用相似三角形的性质进行计算即可解答.【解答】解:设AC的中点为O,连接EO,∴AO=AC=20,∵E是AB的中点,∴OE是△ABC的中位线,∴OE=BC,OE∥BC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD∥OE,∴∠F AG=∠AOE,∠AFG=∠OEG,∴△AFG∽△OEG,∴=,∵AF:AD=1:3,∴=,∴==,∴=,∴AG=8,故答案为:8.【点评】本题考查了平行四边形的性质,相似三角形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:y(y﹣7)+2y﹣14=0.【分析】根据因式分解法即可求出答案.【解答】解:y(y﹣7)+2y﹣14=0,y(y﹣7)+2(y﹣7)=0,分解因式得:(y﹣7)(y+2)=0,则y﹣7=0或y+2=0,解得:y1=7,y2=﹣2.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.15.(5分)画出如图所示的正三棱柱的三视图.【分析】根据题意可得正三棱柱的主视图为中间有一条竖的实心线的矩形,左视图为矩形,俯视图为正三角形,从而可画出三视图.【解答】解:如图所示:【点评】此题考查了作图﹣三视图,属于基础题,解答本题的关键是掌握三视图的观察方法,要求一定的空间想象能力.16.(5分)如图,菱形ABCD的边长为4,∠B=60°,以AC为边长作正方形ACEF,求这个正方形的周长.【分析】根据已知可求得△ABC是等边三角形,从而得到AC=AB,再根据正方形的周长公式计算即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是16.【点评】本题考查菱形与正方形的性质,关键是根据已知可求得△ABC是等边三角形.17.(5分)已知反比例函数y=,当x<0时,y随x的增大而减小,求正整数m的值.【分析】先根据反比例函数的性质列出关于m的不等式,求出m的取值范围即可.【解答】解:∵反比例函数y=,当x<0时,y随x的增大而减小,∴3﹣2m>0,解得m<,∴正整数m的值是1.【点评】本题考查的是反比例函数的性质,即反比例函数y=(k≠0)的图象是双曲线;当k>0时,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.18.(5分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形.【分析】根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.【点评】本题考查了平行四边形的性质,矩形的判定,熟练掌握矩形的判定定理是解题关键.19.(5分)某游泳池有1200立方米水,设放水的平均速度为v立方米/小时,将池内的水放完需t小时.(1)求v关于t的函数表达式;(2)若要求在3小时之内把游泳池的水放完,则每小时应至少放水多少立方米?【分析】(1)由题意得vt=900,即v=,自变量的取值范围为t>0,(2)把t=3代入求出相应的v的值,即可求出放水速度.【解答】解:(1)由题意得:vt=1200,即:v=,答:v关于t的函数表达式为v=,自变量的取值范围为t>0.(2)当t=3时,v==400,所以每小时应至少放水400立方米.【点评】考查求反比例函数的应用,根据常用的数量关系得出函数关系式是解题的关键.20.(5分)如图,延长正方形ABCD的一边CB至E,ED与AB相交于点F,过F作FG∥BE交AE于点G,求证:GF=FB.【分析】结合条件可得到GF∥AD,则有=,由BF∥CD可得到=,又因为AD=CD,可得到GF =FB.【解答】证明:∵四边形ABCD为正方形,∴BF∥CD,∴=,∵FG∥BE,∴GF∥AD,∴=,∴=,且AD=CD,∴GF=BF.【点评】本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等.21.(6分)解读诗词(通过列方程算出周瑜去世时的年龄):大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?诗词大意:周瑜三十岁当东吴都督,去世时的年龄是两位数,十位数字比个位数字小三,个位数字的平方等于他去世时的年龄.【分析】设周瑜去世时的年龄的个位数字为x,则十位数字为x﹣3.根据题意建立方程求出其值就可以求出其结论.【解答】解:设周瑜去世时的年龄的个位数字为x,则十位数字为x﹣3,依题意得:10(x﹣3)+x=x2,解得x1=5,x2=6,当x=5时,25<30,(不合题意,舍去),当x=6时,36>30(符合题意),答:周瑜去世时的年龄为36岁.【点评】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人30岁的年龄是关键.22.(7分)学习了相似三角形相关知识后,小明和同学们想利用“标杆”测量大楼的高度.如图,小明站立在地面点F处,他的同学在点B处竖立“标杆”AB,使得小明的头顶E、标杆顶端A、大楼顶端C在一条直线上(点F、B、D也在一条直线上).已知小明的身高EF=1.5米,“标杆“AB=2.5米,BD=23米,FB=2米,EF、AB、CD均垂直于地面BD.求大楼的高度CD.【分析】如图1中,过点E作EH⊥CD于点H,交AB于点J.则四边形EFBJ,四边形EFDH都是矩形.利用相似三角形的性质求出CH,可得结论.【解答】解:如图中,过点E作EH⊥CD于点H,交AB于点J.则四边形EFBJ,四边形EFDH都是矩形.∴EF=BJ=DH=1.5米,BF=EJ=2米,DB=JH=23米,∵AB=2.5米.∴AJ=AB﹣BJ=2.5﹣1.5=1(米),∵AJ∥CH,∴△EAJ∽△ECH,∴=,∴=,∴CH=12.5(米),∴CD=CH+DH=12.5+1.5=14(米).答:大楼的高度CD为14米.【点评】本题考查相似三角形的应用,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.23.(7分)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有三个种类的奶制品:A:纯牛奶,B:酸奶,C:核桃奶;伊利品牌有两个种类的奶制品:D:纯牛奶,E:核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请用列表法或画树状图法求出两人选购到同一种类奶制品的概率.【分析】(1)根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是,故答案为:;(2)列表如下:A B CD(A,D)(B,D)(C,D)E(A,E)(B,E)(C,E)由表知,共有6种等可能结果,其中两人选购到同一种类奶制品的有2种结果,所以两人选购到同一种类奶制品的概率为=.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.24.(8分)如图,在△ABC中,D为AC延长线上一点,AC=3CD,∠CBD=∠A,过点D作DE∥AB交BC的延长线于点E.(1)求证:△ECD∽△EDB;(2)求△DCE与△ACB的周长比.【分析】(1)由DE∥AB得∠EDC=∠A,因为∠CBD=∠A,所以∠EDC=∠EBD,而∠A=∠A,可证明△ECD ∽△EDB;(2)由DE∥AB可证明△DCE∽△ACB,而AC=3CD,所以△DCE的周长:△ACB的周长=CD:AC=1:3,即可得出问题的答案.【解答】(1)证明:如图,∵DE∥AB,∴∠EDC=∠A,∵∠CBD=∠A,∴∠EDC=∠CBD,即∠EDC=∠EBD,∵∠E=∠E,∴△ECD∽△EDB;(2)解:∵DE∥AB,∴△DCE∽△ACB,∵AC=3CD,∴△DCE的周长:△ACB的周长=CD:AC=1:3=,∴△DCE与△ACB的周长比为.【点评】此题考查平行线的性质、相似三角形的判定与性质等知识,其中证明△DCE∽△ACB是解题的关键.25.(8分)如图,直角坐标系中,点B坐标为(6,0),且AO=AB=5,AH⊥x轴于点H,过B作BC⊥x轴交过点A的双曲线于点C,连接OC交AB于点D,交AH于点M.(1)求双曲线的表达式;(2)求的值.【分析】(1)根据B坐标为(6,0),得到OB=6,根据等腰三角形的性质得到OH=BH=OB=3,根据勾股定理得到AH===4,求得A坐标为(3,4),于是得到结论;(2)设C坐标为(6,m),根据y=(x>0)经过点C,求得BC=2,根据相似三角形的性质得到=,根据三角形的中位线定理得到MH=BC=×2=1于是得到结论.【解答】解:(1)∵B坐标为(6,0),∴OB=6,∵AO=AB=5,AH⊥x轴于点H,∴OH=BH=OB=3,在Rt△AOH中,AO2=AH2+OH2,∴AH===4,∴A坐标为(3,4),∵y=(x>0)经过点A,∴4=,∴k=12,∴双曲线表达式为y=(x>0);(2)设C坐标为(6,m),∵y=(x>0)经过点C,∴m==2,∴BC=2,∵AH⊥x轴,BC⊥x轴,∴AM∥CB,∴△ADM∼△ABC,∴=,∵OH=BH,∴OM=CM,∴MH是△OBC的中位线,∴MH=BC=×2=1,∴AM=AH﹣MH=3,∴=.【点评】本题考查了待定系数法求反比例函数的解析式,相似三角形的判定和性质,三角形的中位线定理,熟练掌握待定系数法求函数的解析式是解题的关键.26.(10分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长交AD于点E,交BA的延长线于点F.(1)求证:△APD≌△CPD;(2)求证:△APE∽△FP A;(3)若PE=4,PF=12,求PC的长.【分析】(1)由四边形ABCD是菱形,根据菱形的性质得AD=CD=AB=CB,还有BD是公共边,可证明△ADB ≌△CDB,得∠PDA=∠PDC,再证明△APD≌△CPD即可;(2)由CD∥AB得∠F=∠PCD,由△APD≌△CPD得∠P AE=∠PCD,所以∠P AE=∠F,而∠P AE=∠FP A,即可证明△APE∽△FP A;(3)由△APE∽△FP A得=,其中PE=4,PF=12,可求出P A的长,由△APD≌△CPD可知PC=P A,即可求得PC的长.【解答】(1)证明:如图,∵四边形ABCD是菱形,∴AD=CD=AB=CB,在△ADB和△CDB中,,∴△ADB≌△CDB(SSS),∴∠PDA=∠PDC,在△APD和△CPD中,,∴△APD≌△CPD(SAS).(2)证明:如图,∵CD∥AB,∴∠F=∠PCD,∵∠P AE=∠PCD,∴∠P AE=∠F,∵∠P AE=∠FP A,∴△APE∽△FP A.(3)解:如图,∵△APE∽△FP A,∴=,∵PE=4,PF=12,∴P A2=PE•PF=4×12=48,∴P A==4,∴PC=P A=4.∴PC的长为4.【点评】此题考查菱形的性质、全等三角形的判定与性质、相似三角形的判定与性质等知识,根据菱形的性质找出相等的角并证明角相等是解题的关键.。
北师大版九年级数学上册(1-2)单元试卷(含答案)第一章精选试卷(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.菱形的对称轴的条数为( )A .1B .2C .3D .42.下列说法中,正确的是( )A .相等的角一定是对顶角B .四个角都相等的四边形一定是正方形C .平行四边形的对角线互相平分D .矩形的对角线一定垂直3.平面直角坐标系中,四边形ABCD 的顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD 是( )A .矩形B .菱形C .正方形D .平行四边形4.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线相等的平行四边形是矩形C .对角线垂直的四边形是菱形D .对角线垂直的平行四边形是菱形5.如图,矩形纸片ABCD 中,AB =6 cm ,BC =8 cm ,现将其沿AE 对折,使得点B 落在边AD 上的点B 1处,折痕与边BC 交于点E ,则CE 的长为( )A .6 cmB .4 cmC .2 cmD .1 cm6如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( )A.245B.125 C .5 D .4错误! ,第6题图) ,第7题图)7.如图,每个小正方形的边长为1,A ,B ,C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°8.已知四边形ABCD 的两条对角线AC 与BD 互相垂直,则下列结论正确的是( )A .当AC =BD 时,四边形ABCD 是矩形B .当AB =AD ,CB =CD 时,四边形ABCD 是菱形C .当AB =AD =BC 时,四边形ABCD 是菱形D .当AC =BD ,AD =AB 时,四边形ABCD 是正方形9.如图,矩形ABCD 中,AD =2,AB =3,过点A ,C 作相距为2的平行线段AE ,CF ,分别交CD ,AB 于点E ,F ,则DE 的长是( ) A. 5 B.136 C .1 D.56,第9题图) ,第10题图)10.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE =13AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF =2BE ;②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确的是( )A .①②B .②③C .①③D .①④二、填空题(每小题3分,共18分)11.已知菱形的两条对角线长分别为2 cm ,3 cm ,则它的面积是____cm 2.12.如图,已知点P 是正方形ABCD 对角线BD 上一点,且BP =BC ,则∠ACP 的度数是____度.13.如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,添加一个条件____,使四边形ABCD 为矩形.,第12题图),第13题图),第14题图),第15题图)14.已知矩形ABCD,AB=3 cm,AD=4 cm,过对角线BD的中点O作BD的垂直平分线EF,分别交AD,BC于点E,F,则AE的长为____cm.15.如图,菱形ABCD的边长为4,过点A,C作对角线AC的垂线,分别交CB和AD的延长线于点E,F,AE=3,则四边形AECF的周长为____.16.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,则点E的坐标为__ __.三、解答题(共72分)17.(10分)如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86 cm,对角线长是13 cm,那么矩形的周长是多少?18.(10分)如图,在△ABC中,AB=AC,点D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.19.(10分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.20.(10分)如图,已知在▱ABCD中,点E,F分别是边AB,CD的中点,BD是对角线,AG∥BD交CB的延长线于点G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?证明你的结论.21.(10分)如图,已知菱形ABCD,AB=AC,点E,F分别是BC,AD的中点,连接AE,CF.(1)求证:四边形AECF是矩形;(2)若AB=8,求菱形的面积.22.(10分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至G,使OG=OD,连接EG,FG,判断四边形DEGF是否是菱形,并说明理由.23.(12分)如图,在矩形ABCD中,点M,N分别是AD,BC的中点,点P,Q分别是BM,DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么特殊四边形?请说明理由.答 案一、选择题(每小题3分,共30分)1-5 BCBCC 6-10ACCDD二、填空题(每小题3分,共18分)11.已知菱形的两条对角线长分别为2 cm ,3 cm ,则它的面积是__3__cm 2.12.如图,已知点P 是正方形ABCD 对角线BD 上一点,且BP =BC ,则∠ACP 的度数是__22.5__度.13.如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,添加一个条件__∠B =90°或∠BAC +∠BCA =90°__,使四边形ABCD 为矩形.,第12题图) ,第13题图) ,第14题图) ,第15题图)14.已知矩形ABCD ,AB =3 cm ,AD =4 cm ,过对角线BD 的中点O 作BD 的垂直平分线EF ,分别交AD ,BC 于点E ,F ,则AE的长为__78__cm. 15.如图,菱形ABCD 的边长为4,过点A ,C 作对角线AC 的垂线,分别交CB 和AD 的延长线于点E ,F ,AE =3,则四边形AECF 的周长为__22__.16.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,则点E 的坐标为__(3,43)__. 三、解答题(共72分)17.(10分)如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86 cm,对角线长是13 cm,那么矩形的周长是多少?∵△AOB,△BOC,△COD和△AOD四个小三角形的周长和为86 cm,且AC=BD=13 cm,∴AB+BC+CD+DA=86-2(AC +BD)=86-4×13=34(cm),即矩形ABCD的周长是34 cm18.(10分)如图,在△ABC中,AB=AC,点D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.(1)∵AB=AC,∴∠B=∠ACB,又∵四边形ABDE是平行四边形,∴AB∥DE,AB=DE,∴∠ABD=∠EDC,AC=DE,∴∠EDC =∠ACD,又DC=CD,∴△ADC≌△ECD(2)若BD=CD,又∵AB =AC,∴AD⊥BC.又∵四边形ABDE是平行四边形,∴AE綊BD,∴AE綊DC,∴四边形ADCE是平行四边形,∵AD⊥DC,∴▱ADCE 是矩形19.(10分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.(1)∵四边形ABCD是菱形,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形,∴BD =EC(2)∠BAO=40°20.(10分)如图,已知在▱ABCD中,点E,F分别是边AB,CD的中点,BD是对角线,AG∥BD交CB的延长线于点G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?证明你的结论.(1)∵四边形ABCD是平行四边形,∴AD綊BC,∠A=∠C,CD=AB,又∵点E,F为AB,DC的中点,∴CF=AE,∴△ADE ≌△CBF(2)四边形AGBD是矩形.连接EF,∵▱BEDF是菱形,∴BD⊥EF,又DF綊AE,∴四边形ADFE是平行四边形,∴EF∥AD,∴∠ADB=90°,又∵AD∥BC,DB∥AG,∴四边形AGBD 是平行四边形,∴▱AGBD是矩形21.(10分)如图,已知菱形ABCD,AB=AC,点E,F分别是BC,AD的中点,连接AE,CF.(1)求证:四边形AECF是矩形;(2)若AB=8,求菱形的面积.(1)∵四边形ABCD是菱形,∴AB=BC.又∵AB=AC, ∴△ABC 是等边三角形.∵点E是BC的中点,∴AE⊥BC,∴∠AEC=90°.∵点E,F分别是BC,AD的中点,∴AF=12AD,EC=12BC.∵四边形ABCD为菱形,∴AD綊BC,∴AF綊EC,∴四边形AECF是平行四边形.又∵∠AEC=90°,∴四边形AECF是矩形(2)在Rt △ABE 中,AE =82-42=43,∴S 菱形ABCD =8×43=32322.(10分)如图,在正方形ABCD 中,点E ,F 分别在边AB ,BC 上,∠ADE =∠CDF.(1)求证:AE =CF ;(2)连接DB 交EF 于点O ,延长OB 至G ,使OG =OD ,连接EG ,FG ,判断四边形DEGF 是否是菱形,并说明理由.(1)在正方形ABCD 中,AD =CD ,∠A =∠C =90°,在△ADE 和△CDF 中,⎩⎪⎨⎪⎧∠ADE =∠CDF ,AD =CD ,∠A =∠C =90°,∴△ADE ≌△CDF (ASA ),∴AE =CF (2)四边形DEGF 是菱形.理由如下:在正方形ABCD 中,AB =BC ,∵AE =CF ,∴AB -AE =BC -CF ,即BE =BF ,∵△ADE ≌△CDF ,∴DE =DF ,∴BD 垂直平分EF ,∴EO =FO.又∵OG =OD ,DE =DF ,∴四边形DEGF 是菱形23.(12分)如图,在矩形ABCD 中,点M ,N 分别是AD ,BC 的中点,点P ,Q 分别是BM ,DN 的中点.(1)求证:△MBA ≌△NDC ;(2)四边形MPNQ 是什么特殊四边形?请说明理由. (1)∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠A =∠C=90°,∵在矩形ABCD 中,点M ,N 分别是AD ,BC 的中点,∴AM =12AD ,CN =12BC ,∴AM =CN.在△MBA 和△NDC 中,∵AB =CD ,∠A =∠C =90°,AM =CN ,∴△MBA ≌△NDC (SAS )(2)四边形MPNQ 是菱形,理由如下:连接AN ,易证:△ABN ≌△BAM ,∴AN =BM.∵△MAB ≌△NCD ,∴BM =DN.∵点P ,Q 分别是BM ,DN 的中点,∴PM =NQ.∵DM =BN ,DQ =BP ,∠MDQ =∠NBP ,∴△MQD ≌△NPB (SAS ).∴MQ =NP.∴四边形MPNQ 是平行四边形.∵点M 是AD 的中点,点Q 是DN 的中点,∴MQ =12AN ,∴MQ =12BM.又∵MP =12BM ,∴MP =MQ.∴四边形MPNQ 是菱形第二章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列方程中,关于x 的一元二次方程是( )A .3(x +1)2=2(x +1) B.1x 2+1x -2=0C .ax 2+bx +c =0D .x 2+2x =x 2-12.方程(x -2)(x +3)=0的解是( )A .x =2B .x =-3C .x 1=-2,x 2=3D .x 1=2,x 2=-33.若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( C )A .-1或4B .-1或-4C .1或-4D .1或44.用配方法解一元二次方程x 2-2x -3=0时,方程变形正确的是( B )A .(x -1)2=2B .(x -1)2=4C .(x -1)2=1D .(x -1)2=75.下列一元二次方程中,没有实数根的是( B )A .x 2+2x +1=0B .x 2+x +2=0C .x 2-1=0D .x 2-2x -1=06.解方程(x +1)(x +3)=5较为合适的方法是( C )A .直接开平方法B .配方法C .公式法或配方法D .分解因式法7.已知一元二次方程x 2-2x -1=0的两个根分别是x 1,x 2,则x 12-x 1+x 2的值为( )A .-1B .0C .2D .38.关于x 的方程x 2-ax +2a =0的两根的平方和是5,则a 的值是( )A .-1或5B .1C .5D .-19.某县政府2015年投资0.5亿元用于保障性住房建设,计划到2017年投资保障性住房建设的资金为0.98亿元,如果从2015年到2017年投资此项目资金的年增长率相同,那么年增长率是( B )A .30%B .40%C .50%D .10%10.有一块长32 cm ,宽24 cm 的长方形纸片,在每个角上截去相同的正方形,再折起来做一个无盖的盒子,已知盒子的底面积是原纸片面积的一半,则盒子的高是( )A .2 cmB .3 cmC .4 cmD .5 cm二、填空题(每小题3分,共18分)11.一元二次方程2x 2+6x =9的二次项系数、一次项系数、常数项和为____.12.方程(x +2)2=x +2的解是____.13.若代数式4x 2-2x -5与2x 2+1的值互为相反数,则x 的值是____.14.写一个你喜欢的实数k 的值____,使关于x 的一元二次方程(k +1)x 2+2x -1=0有两个不相等的实数根.15.某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元.则这种药品的成本的年平均下降率为____.16.设m ,n 分别为一元二次方程x 2+2x -2018=0的两个实数根,则m 2+3m +n =____.三、解答题(共72分)17.(12分)解方程:(1) x 2+4x -1=0; (2)x 2+3x +2=0;(3)3x 2-7x +4=0.18.(10分)如图,已知A ,B ,C 是数轴上异于原点O 的三个点,且点O 为AB 的中点,点B 为AC 的中点.若点B 对应的数是x ,点C 对应的数是x 2-3x ,求x 的值.19.(8分)一元二次方程x 2-2x -54=0的某个根,也是一元二次方程x 2-(k +2)x +94=0的根,求k 的值.20.(10分)某种商品的标价为400元/件,经过两次降价后的要价为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3 210元.问第一次降价后至少要售出该种商品多少件?21.(10分)小林准备进行如下操作试验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2,”他的说法对吗?请说明理由.22.(10分)某市电解金属锰厂从今年元月起安装了回收净化设备(安装时间不计),这样既保护环境,又节省原料成本,据统计使用回收净化设备后1~x月的利润的月平均值W(万元)满足W=10 x+90.请问多少个月后的利润和为1620万元?23.(12分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20 000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了109a%,求a 的值.答 案一、选择题(每小题3分,共30分)1-5ADCBB 6-10CDDBC二、填空题(每小题3分,共18分)11.一元二次方程2x 2+6x =9的二次项系数、一次项系数、常数项和为__-1__.12.方程(x +2)2=x +2的解是__x 1=-2,x 2=-1__.13.若代数式4x 2-2x -5与2x 2+1的值互为相反数,则x 的值是__1或-23__. 14.写一个你喜欢的实数k 的值__0(答案不唯一,只要满足k>-2且k ≠-1都行)__,使关于x 的一元二次方程(k +1)x 2+2x -1=0有两个不相等的实数根.15.某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元.则这种药品的成本的年平均下降率为__10%__.16.(2016·达州)设m ,n 分别为一元二次方程x 2+2x -2018=0的两个实数根,则m 2+3m +n =__2016__.三、解答题(共72分)17.(12分)解方程:(1) x 2+4x -1=0; (2)x 2+3x +2=0;x 1=-2+5,x 2=-2-5 x 1=-1,x 2=-2(3)3x 2-7x +4=0.x 1=43,x 2=118.(10分)如图,已知A ,B ,C 是数轴上异于原点O 的三个点,且点O 为AB 的中点,点B 为AC 的中点.若点B 对应的数是x ,点C 对应的数是x 2-3x ,求x 的值.由已知,点O 是AB 的中点,点B 对应的数是x ,∴点A 对应的实数为-x.∵点B 是AC 的中点,点C 对应的数是x 2-3x ,∴(x 2-3x )-x =x -(-x ).整理,得x 2-6x =0,解得x 1=0,x 2=6.∵点B 异于原点,故x =0舍去,∴x 的值为619.(8分)一元二次方程x 2-2x -54=0的某个根,也是一元二次方程x 2-(k +2)x +94=0的根,求k 的值.当x 2-2x -54=0得(x -1)2=94,解得x 1=52,x 2=-12.当x =52时,(52)2-52(k +2)+94=0,∴k =75;当x =-12时,(-12)2+12(k +2)+94=0,∴k =-7.答:k 的值为75或-720.(10分)某种商品的标价为400元/件,经过两次降价后的要价为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3 210元.问第一次降价后至少要售出该种商品多少件?(1)10% (2)设第一次降价后售出该种商品m 件,则第二次降价后售出该种商品(100-m )件,第一次降价后的单件利润为:400×(1-10%)-300=60元/件,第二次降价后单价利润为:324-300=24元/件,依题意得:60m +24×(100-m )=36m +2400≥3210,解得m ≥22.5,即m ≥23.答:为使两次降价销售的总利润不少于3210元,第一次降价后至少要售出该商品23件21.(10分)小林准备进行如下操作试验:把一根长为40 cm 的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm 2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm 2,”他的说法对吗?请说明理由.(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(10-x )cm.由题意,得x 2+(10-x )2=58,解得x 1=3,x 2=7,即两个正方形的边长分别为3 cm ,7 cm.4×3=12,4×7=28,∴小林应把铁丝剪成12 cm 和28 cm 的两段 (2)假设能围成.由(1)得x 2+(10-x )2=48.化简得x 2-10x +26=0.∵Δ=b 2-4ac =(-10)2-4×1×26=-4<0,∴此方程没有实数根,∴小峰的说法是对的22.(10分)某市电解金属锰厂从今年元月起安装了回收净化设备(安装时间不计),这样既保护环境,又节省原料成本,据统计使用回收净化设备后1~x 月的利润的月平均值W(万元)满足W =10 x +90.请问多少个月后的利润和为1620万元?由题意得x (10x +90)=1620,解得x 1=9,x 2=-18(舍去),即9个月后利润和为1620万元23.(12分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20 000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了109a%,求a 的值.(1)设用于购买书桌、书架等设施的资金为x 元,则购买书籍的有(30 000-x )元,根据题意得:30 000-x ≥3x ,解得x ≤7 500.答:最多用7 500元购买书桌、书架等设施 (2)根据题意得:200(1+a%)×150(1-109a%)=20 000,整理得a 2+10a -3 000=0,解得a =50或a =-60(舍去),所以a 的值是50。
试卷类型:A (北师大版)2022-2023学年度九年级数学第一学期期末测试卷-北师大版(含答案) 注意事项:1.本试卷共6页,满分120分,时间120分钟,学生直接在试题上答卷;2.答卷前将装订线内的项目填写清楚.一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.一元二次方程2(3)0x +=的解是( )A .123x x ==B .123x x ==-C .120x x ==D .13x =,23x =- 2.如图,已知两条直线m 、n 被三条平行线a 、b 、c 所截,若4DE =,7EF =,则AB BC的值为( )A .47B .74C .411D .7113.关于如图所示的几何体的三视图,下列说法正确的是( )A .主视图和俯视图都是矩形B .俯视图和左视图都是矩形C .主视图和左视图都是矩形D .只有主视图是矩形 4.把方程2620x x -+=化成2()x m n -=的形式,则m n +的值是( )A .4-B .4C .10-D .105.已知正比例函数y ax =(0a ≠)和反比例函数k y x =(0k ≠)的一个交点为(1,2),则另一个交点坐标为( )A .(1,2)--B .(2,1)--C .(1,2)-D .(2,1) 6.如图,在ABCD 中,对角线AC 与BD 相交于点O ,如果添加一个条件,可推出ABCD 是菱形,那么这个条件可以是( )A .AB AC = B .AC BD = C .AC BD ⊥ D .AB AC ⊥7.将分别标有“最”、“美”、“陕”、“西”四个汉字的小球装在一个不透明的口袋中,这些球除汉字不同外其他完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字可以组成“陕西”的概率是( )A .16B .14C .13D .128.如图,在矩形ABCD 中,5AB =,12AD =,点P 在对角线BD 上,且BP BA =,连接AP 并延长,交DC 的延长线于点Q ,则DQ 的长为( )A .5B .6C .7D .8二、填空题(共5小题,每小题3分,计15分)9.如图,地面上的A 处有一支燃烧的蜡烛(长度不计),一个人在A 与墙BC 之间运动,则他在墙上的投影长度随着他离墙的距离变小而________(填“变大”、“变小”或“不变”).10.如图,四边形ABCD ∽四边形EFGH ,若2AB =,3BC =,4EF =,则FG 的长为________.11.已知关于x 的一元二次方程2320x x m +-=没有实数根,则m 的值可能是________(写出一个即可)12.如图,点A 是反比例函数(0)k y x x=<图象上一点,过点A 作AB y ⊥轴于点D ,且点D 为线段AB 的中点,若点C 为x 轴上任意一点,且ABC △的面积为4,则k 的值为________.13.如图,BE ,BF 分别是ABC ∠与它的邻补角ABD ∠的平分线,AE BE ⊥,垂足为点E ,AF BF ⊥,垂足为点F ,EF 分别交边AB ,AC 于点M 和N .若7AB =,4BC =,则MF NE +的长为________.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:2(1)2(1)x x x -=-.15.(5分)在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,请你估计n 的值.16.(5分)从棱长为2的正方体的一角,挖去一个棱长为1的小正方体,得到如图所示的几何体,请画出该几何体的三视图.17.(5分)在某一电路中,保持电压U 不变,电流I (单位:A )与电阻R (单位:Ω)成反比例关系,当电阻5ΩR =时,电流2A I =.(1)求I 与R 之间的函数关系式;(2)当电流0.5A I =时,求电阻R 的值.18.(5分)为铸牢中华民族共同体意识,不断巩固民族大团结,某中学即将举办“中华民族一家亲,同心共筑中国梦”主题活动,学校拟定了演讲比赛、文艺汇演、书画展览、知识竞赛四种活动方案,九年级(1)班的王磊和李欣同学都准备参加此次活动,但不知选择哪一种活动方案,于是他们制定了A 、B 、C 、D 四张卡片(卡片背面完全相同),如图,将四张卡片背面朝上洗匀后,王磊先从中任意抽取一张,记录下卡片上的内容并放回,李欣再从中任意抽取一张.(1)王磊抽取的卡片上的活动方案是文艺汇演的概率为________;(2)请用列表法或画树状图的方法求王磊和李欣所抽取卡片上的活动方案相同的概率.19.(5分)如图,在平面直角坐标系中,ABC △的顶点均在网格格点上,且点A 、B 、C 的坐标分别为(3,0)A ,(4,2)B ,(2,4)C .(1)以点O 为位似中心,在第一象限画出ABC △的位似图形111A B C △,使111A B C △与ABC △的相似比为2:1;(2)在(1)的条件下,分别写出点B 、C 的对应点1B 、1C 的坐标.20.(5分)已知关于x 的一元二次方程22(21)20x k x k -++=的两根1x 、2x 满足22125x x +=,求k 的值.21.(6分)如图,小亮利用所学的数学知识测量某旗杆AB 的高度,旗杆AB 垂直于地面.(1)请你根据小亮在阳光下的投影,画出此刻旗杆AB 在阳光下的投影;(2)已知直立于地面的小亮的身高为1.72m ,在同一时刻测得小亮和旗杆AB 在太阳光下的影长分别为0.86m 和6m ,求旗杆AB 的高.22.(7分)如图,已知四边形ABCD 是菱形,且AE BC ⊥于点E ,AF CD ⊥于点F .(1)求证:AE AF =;(2)若10AB =,4CE =,求菱形ABCD 的面积.23.(7分)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势.某汽车4S 店销售某种型号的电动汽车,每辆进货价为19万元,该店经过一段时间的市场调研发现,当销售单价为25万元时,平均每月能售出18辆,而当销售价每降低1万元时,平均每月能多售出6辆,该4S 店要想平均每月的销售利润为120万元,并且使每辆车的利润尽可能高,则每辆汽车应降价多少万元?24.(8分)如图,在平面直角坐标系中,已知点(0,4)A ,(3,0)B -,(2,0)C ,点D 为点B 关于AC 所在直线的对称点,反比例函数(0,0)k y k x x=≠>的图象经过点D .(1)求证:四边形ABCD 为菱形;(2)求反比例函数的表达式.25.(8分)如图,ABC △和ADE △均为等腰三角形,且ABC ADE ∠=∠,AB BC =,AD DE =.(1)求证:ABC ADE △∽△;(2)连接BD 、CE ,若32AB AC =,ABD △的面积为9,求ACE △的面积.26.(10分)【问题探究】(1)如图①,在正方形ABCD 中,点E 在边AD 上,点F 在边CD 上,且AE DF =,线段BE 与AF 相交于点G ,GH 是BFG △的中线.①求证:ABE DAF △≌△;②试判断线段BF 与GH 之间的数量关系,并说明理由.【问题拓展】(2)如图,在矩形ABCD 中,4AB =,6AD =,点E 在边AD 上,点F 在边CD 上,且2AE =,3DF =,线段BE 与AF 相交于点G ,若GH 是BFG △的中线,求线段GH 的长.试卷类型:A (北师大版)九年级数学参考答案及评分标准一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.B 2.A 3.C 4.D 5.A 6.C 7.A 8.D二、填空题(共5小题,每小题3分,计15分)9.变小10.6 11.3-(答案不唯一)12.4- 13.5 三、解答题(共13小题,计81分.解答应写出过程)14.解:2(1)2(1)x x x -=-, 2(1)2(1)0x x x ---=,(1)(12)0x x x ---=, ································································································· (3分) ∴10x -=或10x --=,解得11x =,21x =-. ·································································································· (5分)15.解:由题意,得20.2n=, ························································································ (3分) 解得,10n =,经检验得:10n =是原方程的解,且符合题意,∴估计n 的值为10. ······································································································ (5分)16.解:所画三视图如图所示.(画对主视图得1分,画对左视图和俯视图各得2分,共5分)17.解:(1)根据题意,得U I R=. ∵当电阻5ΩR =时,电流2A I =, ∴25U =,∴10U =, ∴I 与R 之间的函数关系式为10I R =. ··············································································· (3分)(2)当0.5A I =时,100.5R= 解得20ΩR =. ············································································································ (5分)18.解:(1)14············································································································ (1分) (2)根据题意画树状图如下:··························································· (3分)由树状图可知,共有16种等可能的结果,其中王磊和李欣所抽取卡片上的活动方案相同的情况有4种, ∴王磊和李欣所抽取卡片上的活动方案相同的概率为41164=. ··············································· (5分) 19.解:(1)111A B C △如图所示. ··················································································· (3分)(2)1(8,4)B 、1(4,8)C . ······························································································ (5分)20.解:根据题意,得1221x x k +=+,2122x x k =. ························································································ (2分) ∵()2221212122x x x x x x +=+- ∴22(21)22415k k k +-⋅=+=,解得1k =. ················································································································· (5分)21.解:(1)如图所示,BC 即为此刻旗杆AB 在阳光下的投影. ······························································································· (2分)(2)∵DE ,AB 都垂直于地面,且光线DF AC ∥,∴90DEF ABC ∠=∠=︒,DFE ACB ∠=∠,∴DEF ABC △∽△, ··································································································· (4分) ∴AB BC DE EF =,即61.720.86AB =, ∴12m AB =,即旗杆AB 的高为12 m . ··········································································· (6分)22.(1)证明:∵四边形ABCD 是菱形,∴BC CD =. ······················································ (2分) ∵ABCD S BC AE CD AF =⋅=⋅菱形,∴AE AF =. ······························································ (3分)(2)解:∵四边形ABCD 是菱形,∴10AB BC ==.∵4CE =,∴6BE =, ································································································ (5分) ∴228AE AB BE =-=,∴10880ABCD S BC AE =⋅=⨯=菱形. ··············································································· (7分)23.解:设每辆汽车应降价x 万元,根据题意,得(2519)(186)120x x --+=, ······································································· (4分) 解得11x =,22x =,∵使每辆车的利润尽可能高,∴1x =.答:每辆汽车应降价1万元. ·························································································· (7分)24.(1)证明:∵(0,4)A ,(3,0)B -,(2,0)C , ∴22345AB =+=,5BC =, ···················································································· (2分) ∵D 点为B 点关于AC 所在直线的对称点,∴5AD AB ==,5CD CB ==, ··················································································· (3分) ∴AB BC CD DA ===,∴四边形ABCD 为菱形 ·································································································· (4分)(2)解:∵四边形ABCD 为菱形,AD BC ∥, ································································· (5分) 又∵5AD =,(0,4)A ,∴(5,4)D , ················································································ (6分) 把(5,4)D 代入k y x=得5420k =⨯=, ∴反比例函数的表达式为20y x=. ··················································································· (8分) 25.(1)证明:∵AB BC =,AD DE =,∴AB BC AD DE =. ·················································· (2分) 又∵ABC ADE ∠=∠,∴ABC ADE △∽△. ··································································· (3分)(2)解:∵ABC ADE △∽△,∴BAC DAE ∠=∠,AB AC AD AE=, ·················································································· (4分) ∴BAC DAC DAE DAC ∠-∠=∠-∠,即BAD CAE ∠=∠, ∴BAD CAE △∽△,且相似比为32AB AC =. ····································································· (6分) ∴ABD △与ACE △的面积比为94. ∵ABD △的面积为9,∴ACE △的面积为4. ··································································· (8分)26.(1)①证明:∵四边形ABCD 是正方形,∴90BAD D ∠=∠=︒,AB DA =.在ABE △和DAF △中,AE DF =,BAE D ∠=∠,AB DA =,∴(SA )S ABE DAF △≌△. ··························································································· (2分) ②解:2BF GH =,理由如下:∵ABE DAF △≌△,∴ABE DAF ∠=∠.∵90DAF BAG BAD ∠+∠=∠=︒,∴90ABE BAG ∠+∠=︒,∴90BGF ABE BAG ∠=∠+∠=︒.∵GH 是BFG △的中线,∴2BF GH =. ········································································· (5分)(2)解:∵四边形ABCD 是矩形,∴90BAE ADF ∠=∠=︒.∵4AB =,6AD =,2AE =,3DF =, ∴12AE DF AB AD ==,∴ABE DAF △∽△, ········································································ (6分) ∴ABE DAF ∠=∠.∵90DAF BAG BAD ∠+∠=∠=︒,∴90ABE BAG ∠+∠=︒,∴90AGB ∠=︒,∴90BGF ∠=︒. ················································································ (8分) ∵GH 是BFG △的中线,∴2BF GH =.∵四边形ABCD 是矩形,∴90C ∠=︒,6BC AD ==,4CD AB ==,∴1CF CD DF =-=, ∴22226137BF BC CF ++= ∴1372GH BF ==. ······························································································ (10分)。
【关键字】高中2016-2017学年高中数学第三章指数函数和对数函数章末检测北师大版必修1班级__________ 姓名__________ 考号__________ 分数__________ 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.函数y=的值域是( )A.(0,1] B.[1,+∞)C.(0,1) D.(1,+∞)答案:A解析:由题意得0<≤0=1.2.已知函数f(x)=ln |x-1|,则f(x)( )A.在区间(-∞,1)和(1,+∞)上都是增函数B.在区间(-∞,1)上是增函数,在区间(1,+∞)上是减函数C.在区间(-∞,1)和(1,+∞)上都是减函数D.在区间(-∞,1)上是减函数,在区间(1,+∞)上是增函数答案:D解析:∵|x-1|在区间(-∞,1)上是减函数,在区间(1,+∞)上是增函数,y=ln x 在区间(0,+∞)上是增函数,所以f(x)在区间(-∞,1)上是减函数,在区间(1,+∞)上是增函数.3.若函数f(x)=,则f[f(-3)]=( )A.2 B.3C.4 D.5答案:B解析:f(-3)=(-3)2-1=8,所以f[f(-3)]=f(8)=log28=3.4.不等式x>x-1的解集是( )A.(-1,+∞) B.C.(-∞,-1) D.(-∞,-2)答案:C解析:2x<x-1,x<-1.5.已知a=log20.6,b=20.2,c=log2,则( )A.a<b<c B.b<a<cC.c<b<a D.a<c<b答案:D解析:∵a=log20.6<0,b=20.2>1,c=log2=,∴a<c<b.6.函数f(x)=的定义域是( )A. B.C. D.答案:A解析:log0.5(3-4x)≥0,0<3-4x≤1,≤x<.7.函数y=是奇函数,则实数a=( )A.1 B.0C.-1 D.任意实数答案:A解析:f(0)=(1-a)=0,∴a=1.16.如右图,开始时,桶1中有a L 水,t min 后剩余的水符合指数衰减曲线y 1=a e -nt,那么桶2中水就是y 2=a -a e -nt,假设过5 min 时,桶1和桶2的水相等,则再过________ min 桶1中的水只有a8L.答案:10解析:由题意,5 min 后,y 1=a e -5n,y 2=a -a e-5n,y 1=y 2,∴n =15ln2.设再过t min桶1中的水只有a8L ,则y 1=a e-n (5+t )=a8,解得t =10. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(1)计算:3-63+41-34+80.25×42+125÷425.(2)lg 14-2lg 73+lg 7-lg 18.解:(1)原式=-6+(3-1)+(23)14×214+53224-=-6+3-1+2+5= 3.(2)解法一:lg 14-2lg 73+lg 7-lg 18=lg (2×7)-2(lg 7-lg 3)+lg 7-lg (32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.解法二:lg 14-2lg 73+lg 7-lg 18=lg 14-lg ⎝ ⎛⎭⎪⎫732+lg 7-lg 18=lg 14×7⎝ ⎛⎭⎪⎫732×18=lg 1=0.18.(12分)现有命题P 和Q 如下. P :函数y =c x 在R 上单调递减.Q :函数f (x )=ln(2x 2+4x +1c)的值域为R .如果P 和Q 中有且只有一个命题是真命题,求非负实数c 的取值范围.解:函数y =c x在R 上单调递减⇔0<c <1.函数f (x )=ln(2x 2+4x +1c )的值域为R ⇔Δ=42-4×2·1c ≥0,所以1c≤2,又c >0,所以c ≥12.根据题设可知,命题P 和Q 有且仅有一个正确.(1)如果P 正确,Q 不正确,则0<c <12;(2)如果Q 正确,P 不正确,则c ≥1.所以,正数c 的取值范围为(0,12)∪[1,+∞).19.(12分)已知函数f (x )=⎝ ⎛⎭⎪⎫12x -1+a x ,a ∈R . (1)求函数的定义域;(2)是否存在实数a ,使得f (x )为偶函数.解:(1)由2x-1≠0,得x ≠0,即函数定义域为(-∞,0)∪(0,+∞).(2)在定义域内任取x ,由f (x )-f (-x )=0得⎝ ⎛⎭⎪⎫12x -1+a x -⎝ ⎛⎭⎪⎫12-x -1+a (-x )=0. 所以2a =-12-x -1-12x -1=1,解得a =12.存在实数a =12,使得f (x )-f (-x )=0成立,即使得f (x )为偶函数.20.(12分)已知函数f (x )=log 2(1-x ),g (x )=log 2(x +1),设F (x )=f (x )-g (x ). (1)判断函数F (x )的奇偶性; (2)证明函数F (x )是减函数.解:(1)F (x )=f (x )-g (x )=log 2(1-x )-log 2(x +1)=log 21-x1+x.由⎩⎪⎨⎪⎧1-x >0,x +1>0,得-1<x <1.∴函数F (x )的定义域为(-1,1).∴函数F (x )的定义域关于原点对称,又∵F (-x )=log 21+x 1-x =-log 21-x1+x=-F (x ).∴函数F (x )为奇函数.(2)由(1)知函数F (x )的定义域为(-1,1),任取-1<x 1<x 2<1,则log 2⎝ ⎛⎭⎪⎫1-x 11+x 1-log 2⎝ ⎛⎭⎪⎫1-x 21+x 2=log 21-x 11+x 21+x 11-x 2=log 2⎝ ⎛⎭⎪⎫1-x 1+x 2-x 1x 21+x 1-x 2-x 1x 2. 又(1-x 1+x 2-x 1x 2)-(1+x 1-x 2-x 1x 2)=2(x 2-x 1)>0,所以1-x 1+x 2-x 1x 21+x 1-x 2-x 1x 2>1,所以log 2⎝ ⎛⎭⎪⎫1-x 11+x 1-log 2⎝ ⎛⎭⎪⎫1-x 21+x 2>0,即log 2⎝ ⎛⎭⎪⎫1-x 11+x 1>log 2⎝ ⎛⎭⎪⎫1-x 21+x 2,所以函数F (x )是减函数.21.(12分)求函数y =(12)212x x +-的值域和单调区间.解:令t =1+2x -x 2,则y =⎝ ⎛⎭⎪⎫12t,而t =-(x -1)2+2≤2,所以y =⎝ ⎛⎭⎪⎫12t ≥⎝ ⎛⎭⎪⎫122=14.即所求的函数的值域是[14,+∞).函数y =⎝ ⎛⎭⎪⎫12212x x +-在(-∞,1]上是减函数,在(1,+∞)上是增函数.22.(12分)已知函数f (x )=log a 1-m x -2x -3(a >0,a ≠1),对定义域内的任意x 都有f (2-x )+f (2+x )=0成立.(1)求实数m 的值;(2)若当x ∈(b ,a )时,f (x )的取值范围恰为(1,+∞),求实数a ,b 的值.解:(1)由f (x )=log a 1-m x -2x -3及f (2-x )+f (2+x )=0对定义域内任意x 都成立,可得:log a 1-m [2-x -2]2-x -3+log a 1-m [2+x -2]2+x -3=0.解得m =±1.当m =1时,函数f (x )无意义,所以,只有m =-1.(2)m =-1时,f (x )=log a 1-m x -2x -3=log a x -1x -3(a >0,a ≠1),其定义域为(-∞,1)∪(3,+∞).所以,(b ,a )⊆(-∞,1)或(b ,a )⊆(3,+∞). ①若(b ,a )⊆(3,+∞),则3≤b <a . 为研究x ∈(b ,a )时f (x )的值域,可考虑f (x )=log a x -1x -3在(3,+∞)上的单调性.下证f (x )在(3,+∞)上单调递减. 任取x 1,x 2∈(3,+∞),且x 1<x 2,则 x 1-1x 1-3-x 2-1x 2-3=2x 2-x 1x 1-3x 2-3>0. 又a >1,所以log a x 1-1x 1-3>log a x 2-1x 2-3,即f (x 1)>f (x 2).所以当(b ,a )⊆(3,+∞)时,f (x )在(3,+∞)上单调递减.由题:当x ∈(b ,a )时,f (x )的取值范围恰为(1,+∞),所以,必有b =3且f (a )=1,解得a =2+3(因为a >3,所以舍去a =2-3).②若(b ,a )⊆(-∞,1),则b <a ≤1.又由于a >0,a ≠1,所以0<a <1. 此时,同上可证f (x )在(-∞,1)上单调递增(证明过程略).所以,f (x )在(b ,a )上的取值范围为(f (b ),f (a )),而f (a )为常数,故f (x )的取值范围不可能恰为(1,+∞).所以,在这种情况下,a ,b 无解.综上,符合题意的实数a ,b 的值为a =2+3,b =3.此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
第二章一元二次方程一、选择题 ( 本大题共7 小题,共21 分)1.要使方程( a - 3) x 2+ ( b + 1) x + c =0 是对于x 的一元二次方程,则 ()A . a ≠0B . a ≠3C . a ≠3 且b ≠- 1D . a ≠3 且 b ≠- 1 且 c ≠0 2.用配方法解对于x 的一元二次方程 x 2- 2x -3= 0 时,配方后的方程能够是 ()A . ( x - 1) 2= 4B . ( x + 1) 2= 4C . ( x - 1) 2= 16D . ( x +1) 2= 16 3.对于 x 的一元二次方程 x 2+ ax - 1= 0 的根的状况是 ()A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根4.若 x =- 2 是对于x 的一元二次方程2- 5 + 2= 0 的一个根,则a 的值为()x2ax aA .1或 4B .-1或-4C .-1或 4D .1或-45.某旅行景点的旅客人数逐年增添,据相关部门统计, 2015 年约为 12 万人次,若 2017年约为 17 万人次,设旅客人数的年均匀增添率为x ,则以下方程中正确的选项是 ( )A . 12(1 + x ) = 17B . 17(1 - x ) = 12C . 12(1 + x ) 2= 17D . 12+ 12(1 + x ) + 12(1 + x ) 2= 176.已知 2 是对于 x 的方程 x 2 -2mx + 3m = 0 的一个根,而且这个方程的两个根恰巧是等腰三角形 ABC 的两条边长,则△ ABC 的周长为 ()A .10B .14C .10或14D .8或 10图 17.如图 1,一田户要建一个矩形花园,花园的一边利用长为 12 m 的住宅墙,此外三边用 25 m 长的篱笆围成,为方便出入,在垂直于住宅墙的一边留一个1 m 宽的门,花园面积为 80 m 2,设与墙垂直的一边长为x m ,则能够列出对于 x 的方程是 ()A . x (26 - 2x ) =80B . x (24 - 2x ) =80C . ( x - 1)(26 -2x ) = 80D . x (25 - 2x ) =80二、填空题 ( 本大题共 6 小题,共 24 分)8.已知对于 x 的方程 3 2 -8= 0 有一个根是 2的值分别为 ________.+ ,则另一个根及x mx 3m29.对于 x 的方程 mx + x - m + 1= 0,有以下三个结论:①当 m = 0 时,方程只有一个实数解;②当 m ≠ 0 时,方程有两个不相等的实数解; ③不论 m 取何值,方程都有一个负数解. 其中正确的选项是 ________( 填序号 ) .10.已知 是对于x 的方程 2 - 2 -3= 0 的一个根,则 2 2- 4 = ________.mx xmm11.已知一元二次方程2-3 x -4=0 的两根是 , ,则2+2= ________.xm n m n12.经过两次连续降价, 某药品的销售单价由本来的50 元降到 32 元,设该药品均匀每次降价的百分率为 x ,依据题意可列方程是 ____________.13.将一条长为 20 cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是2________cm .三、解答题 ( 共 55 分)14. (12 分 ) 我们已经学习了一元二次方程的四种解法:因式分解法、直接开平方法、配方法和公式法.请选择你以为适合的方法解以下方程:(1) x2- 3x+ 1= 0;(2)( x- 1) 2=3;(3) x2- 3x= 0;(4) x2- 2x= 4.15. (9 分 ) 已知对于x 的一元二次方程x2-( k+3) x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于 1,求k的取值范围.16. (10 分) 如图2,在宽为20 m,长为32 m 的矩形地面上修建相同宽的道路( 图中阴影部分) ,余下的部分种上草坪.要使草坪的面积为540 m2,求道路的宽.( 部分参照数据:322= 1024, 522= 2704, 482= 2304)图 217. (12 分 ) 菜农李伟栽种的某蔬菜计划以每千克 5 元的单价对外批发销售,因为部分菜农盲目扩大栽种,造成该蔬菜滞销.李伟为了加速销售,减少损失,对价钱经过两次下调后,以每千克 3.2 元的单价对外批发销售.(1)求均匀每次下调的百分率.(2)小华准备到李伟处购置 5 吨该蔬菜,因数目多,李伟决定再赐予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200 元.小华选择哪一种方案更优惠?请说明原因.18. (12 分 ) 在图 3 中,每个正方形由边长为 1 的小正方形构成:图 3(1)察看图形,请填写以下表格:1 3 5 7 n(奇数)正方形边长黑色小正方形的个数2 4 6 8 n(偶数)正方形边长黑色小正方形的个数(2) 在边长为n( n≥1)的正方形中,设黑色小正方形的个数为p1,白色小正方形的个数为 p2,问能否存在偶数n,使p2=5p1?若存在,请写出n 的值;若不存在,请说明原因.答案1. B [ 分析 ] 由 a - 3≠0,得 a ≠3.2. A [ 分析 ] 由 x 2- 2x -3= 0,得 x 2- 2x + ( - 1) 2= 3+ ( - 1) 2,即 ( x - 1) 2= 4. 3. D2524.B [分析] 因为 x =- 2 是对于 x 的一元二次方程 x -2ax + a =0 的一个根, 所以 4+5 +2= 0,解得 1=- 1, 2=- 4. 当 a =-1 或 =- 4 时均切合题意.应选a a a a aB.5. C [ 分析 ] 设旅客人数的年均匀增添率为 x ,则 2016 年的旅客人数为: 12× (1 + x ) ,2017 年的旅客人数为: 12× (1 + x ) 2. 那么可得方程: 12(1 + x ) 2= 17.应选 C.6. B [ 分析 ] 将 x = 2 代入方程可得 4- 4m + 3m = 0,解得 m = 4,则此时方程为x 2- 8x+12= 0,解方程得 x 1= 2,x 2= 6,则三角形的三边长为2, 2,6 或许 2,6,6. 因为 2+ 2<6,所以 2,2, 6 没法构成三角形.所以△ABC 的三边长分别为 2,6, 6,所以△ ABC 的周长为 2+ 6+ 6= 14.7.A [分析]∵与墙垂直的一边长为x m ,∴与墙平行的一边长为(26 - 2x )m ,依据题意,得 x (26 - 2x ) = 80.应选 A.2 2 28.- 4, 10 [分析 ]依题意,得 3×( 3) + 3m - 8= 0,解得 m = 10.28设方程的另一根为 t ,则 3t =- 3,所以 t =- 4.综上所述,另一个根是-4, m 的值为 10.9.①③11.17 [ 分析 ] ∵ , 是一元二次方程x 2- 3 x -4= 0 的两个根, ∴ + =3, =- 4,m n m n mn222- 2mn = 9+ 8= 17.则 m + n = ( m +n ) 12. 50(1 - x ) 2= 3213. 12.5 [ 分析 ] 设此中一段铁丝的长为x cm ,则另一段铁丝的长为(20 - x )cm ,则x 220- x 2 1212两个正方形的面积之和为4 + 4=8( x - 20x +100) + = 8( x - 10) + ,∴当两小段铁丝的长都等于 10 cm 时,两个正方形的面积之和最小,最小值为 12.5 cm 2.14.解: (1) b 2- 4ac = 9-4= 5,- b ± b 2- 4ac 3± 5 x = 2a = ,2 x 1=3+ 5 3- 5, x 2=.22(2) 两边直接开平方,得 x - 1=± 3,x 1= 1+ 3, x 2= 1- 3.(3) 原方程可化为 x ( x - 3) = 0,x = 0 或 x - 3= 0, x 1= 0, x 2=3.(4) 配方,得 x 2- 2x + 1= 4+1,整理,得 ( x - 1) 2=5,开平方,得 x -1=± 5,x 1= 1+ 5, x 2= 1- 5.15.解:(1) 证明: ∵在方程 x 2- ( k + 3) x + 2k + 2= 0 中, = [ - ( k +3)] 2- 4×1× (2 k+ 2) = k 2- 2k + 1= ( k -1) 2≥ 0,∴方程总有两个实数根.(2) ∵ x 2-( k + 3) x + 2k + 2= ( x - 2)( x - k - 1) = 0,∴ x 1= 2,x 2= k + 1.∵方程有一个根小于1,∴ k + 1< 1,解得 k < 0,∴k 的取值范围为 k<0.16.解:解法 1:利用平移,原图可转变为图①,设道路宽为x m,依据题意,得 (20 -x)(32 -x) = 540,整理,得 x2-52x+100=0,解得 x1=50(舍去), x2=2.答:道路的宽为 2 m.解法 2:利用平移,原图可转变为图②,设道路宽为x m,依据题意,得20× 32- (20 + 32) x+x2= 540,整理,得 x2-52x+100=0,解得 x1=2, x2=50(舍去).答:道路的宽是 2 m.17. [ 分析 ]此题考察了一元二次方程的应用,掌握增添率的计算方法是解题的重点.解: (1) 设均匀每次下调的百分率为x.由题意,得5(1 -x) 2= 3.2.解这个方程,得x1=,x2=1.8.因为降价的百分率不行能大于1,所以x2= 1.8 不切合题意,切合题目要求的是x1==20%.答:均匀每次下调的百分率是20%.(2)小华选择方案一更优惠.原因:方案一所需花费为 3.2 × 0.9 × 5000 =14400( 元) ,方案二所需花费为 3.2 ×5000- 200× 5= 15000( 元 ) .因为 14400<15000,所以小华选择方案一更优惠.18. [ 全品导学号:52652094] 解: (1)1 5 9 13 2n- 1 4 8 12 16 2n(2)由 (1) 可知,当n为偶数时,p1=2n,所以 p2=n2-2n.依据题意,得n2-2n=5×2n,整理,得 n2-12n=0,解得 n1=12, n2=0(不合题意,舍去) .所以存在偶数n=12,使得 p2=5p1.。
九年级上册数学期末试题及答案勤奋学习,就是在成果面前永不满足,不断追求更进一步的指示,扩展更广泛的课外积累,不断对自己提出更高的学习目标。
勤奋学习就是面对学习作业,能一丝不苟的完成面对学习中的困难,能主动找出困难的缘由,勇于克服,不解决困难时不罢休。
下面就是我为大家梳理归纳的学问,希望能够关怀到大家。
人教版九年级上册数学期末测试题及答案一、选择题(每题3分,共30分)1.以下关于x的方程中,是一元二次方程的有( ) A.x2?1x2B.ax2?bx?c?0C.?x?1??x?2??1D.3x2?2xy?5y2?0 2.化简12?1?23?1的结果为( )A、3?2B、3?2C、2?23D、3?2223.已知关于x的方程x?kx?6?0的一个根为x?3,则实数k的值为( )A.2B.?1C.1D.?24.要使二次根式x?1有意义,那么x的取值范围是( ) (A)x-1 (B) x1 (C) x≥1 (D)x≤15.有6张写有数字的卡片,它们的反面都相同,现将它们反面朝上(如图2),从中任意一张是数字3的概率是( ) A、16B、C、3112D、232图26.已知x、y是实数,3x+4 +y-6y+9=0,则xy的值是( ) 99A.4 B.-4 C..-447、以下列图形中,既是轴对称图形,又是中心对称图形的是( )图7A B C D8.已知两圆的半径分别是5cm和4cm,圆心距为7cm,那么这两圆的位置关系是( )A.相交B.内切C.外切D.外离9.如图3,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM 长的最小值为( )A.2B.3C.4D.510.已知:如图4, ⊙O的两条弦AE、BC相交于点D,连接AC、BE.OMB图3图4若⊙ACB=60°,则以下结论中正确的选项是( )A.⊙AOB=60°B. ⊙ADB=60°C.⊙AEB=60°D.⊙AEB=30° 二、填空题(每题3分,共24分)11.方程x = x 的解是______________________12.如下列图,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过____________次旋转而得到,每一次旋转_______度.12题图213.若实数a、b满足b?a2?1?a?11?a2,则a+b的值为________.14.圆和圆有不同的位置关系.与以下图不同的圆和圆的位置关系是_____.(只填一种)图515.若关于x方程kx2–6x+1=0有两个实数根,则k的取值范围是.16.如图6,在Rt⊙ABC中,⊙C=90°,CA=CB=2。
第二章一元二次方程复习题一.选择题1.已知x1,x2是一元二次方程x2﹣3x+1=0的两实数根,则的值是()A.﹣7B.﹣1C.1D.72.已知关于x的一元二次方程x2﹣x+m=0的一个实数根为b,若y=4b2﹣4b+m2,则y的取值范围是()A.y>B.C.y>﹣1D.y≥﹣13.若x=2是关于x的方程ax2﹣bx=2的解,则2019﹣2a+b的值为()A.2016B.2017C.2018D.20194.若关于x的一元二次方程ax2=b(ab>0)的两个根分别是m﹣1和2m+4,则的值为()A.4B.3C.2D.15.一元二次方程y2﹣y=配方后可化为()A.=1B.=1C.=D.=6.将y=x2﹣6x+1化成y=(x﹣h)2+k的形式,则h+k的值是()A.﹣5B.﹣8C.﹣11D.57.代数式x2﹣4x﹣2019的最小值是()A.﹣2017B.﹣2019C.﹣2021D.﹣20238.已知等腰三角形两边a,b,满足4a2﹣4ab+2b2﹣8b+16=0,则此等腰三角形的周长为()A.8B.10C.12D.8或109.设x1为一元二次方程x2﹣2x=较小的根,则()A.0<x1<1B.﹣1<x1<0C.﹣2<x1<﹣1D.﹣5<x1<﹣4 10.若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的最大整数是()A.1B.0C.﹣1D.﹣211.若方程x2﹣7x+12=0的两个实数根恰好是直角△ABC的两边的长,则△ABC的周长为()A.12B.7+C.12或D.1112.方程3x(2x+1)=2(2x+1)的两个根为()A.B.C.D.13.方程2x2+5=7x根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根14.在一次酒会上,每两人都只碰一次杯,如果一共碰杯21次,则参加酒会的人数为()A.5人B.6人C.7人D.8人15.一件产品原来每件的成本是1000元,在市场售价不变的情况下,由于连续两次降低成本,现在利润每件增加了190元,则平均每次降低成本的()A.10%B.9.5%C.9%D.8.5%二.填空题16.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率.设每次降价的百分率为x,则可列方程为.17.某市从2017年开始大力发展旅游产业.据统计该市2017年旅游收入约为2亿元,预计2019旅游收入达到2.88亿元,据此估计该市2018年、2019年旅游收入的年平均增长率约为.18.自中国加入WTO以来,中美经贸往来日益密切,贸易总量不断攀升.据海关统计,2018年中国对美国进出口总值比2017年增长5.5%,其中进口值下降5%,出口值大幅增长,且增长率是进口值下降率的正整数倍,以致对美贸易顺差(贸易顺差=出口值﹣进口值)进一步加大.经核算,2018年贸易顺差增长率是出口值增长率的倍,则2017年的出口值占进出口总值的百分比为.19.已知x1,x2是方程x2﹣x﹣3=0的两根,则+=.20.若关于x的一元二次方程kx2+2x+1=0有实数根,则k的取值范围是.三.解答题21.某村2016年的人均收入为20000元,2018年的人均收入为24200元(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?22.已知关于x的方程kx2﹣3x+1=0有实数根.(1)求k的取值范围;(2)若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.23.已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.24.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?25.某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?26.关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.第二章一元二次方程复习题参考答案与试题解析一.选择题1.【分析】先根据一元二次方程解的定义得到x12﹣3x1+1=0,x22﹣3x2+1=0,则1﹣3x1=﹣x12,1﹣3x2=﹣x22,则可变形为﹣,再根据根与系数的关系得到x1+x2=3,x1x2=1,然后利用整体代入的方法计算.【解答】解:∵x1,x2是一元二次方程x2﹣3x+1=0的两实数根,∴x12﹣3x1+1=0,x22﹣3x2+1=0,∴1﹣3x1=﹣x12,1﹣3x2=﹣x22,∴=﹣﹣=﹣,∵x1,x2是一元二次方程x2﹣3x+1=0的两实数根,∴x1+x2=3,x1x2=1,∴原式=﹣=﹣7.故选:A.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了根与系数的关系.2.【分析】先表示出判别式△,根据方程有两个实数根得出m的取值范围,根据b是方程的一个实数根,可得4b2﹣4b+2m=0,整体代入,根据二次函数的性质可得y的取值范围.【解答】解:∵关于x的一元二次方程x2﹣x+m=0有实数根,∴△=1﹣2m≥0,∴m≤,∵b是方程的一个实数根,∴b2﹣b+m=0,∴4b2﹣4b+2m=0,∴4b2﹣4b=﹣2m,∴y=4b2﹣4b+m2=﹣2m+m2=(m﹣1)2﹣,而m≤,∴y≥﹣1.故选:D.【点评】本题考查了根的判别式,一元二次方程的解,二次函数的性质,解答本题的关键是掌握一元二次方程判别式与方程根的关系.3.【分析】把x=2代入方程求出2a﹣b的值,代入原式计算即可求出值.【解答】解:把x=2代入方程得:4a﹣2b=2,即2a﹣b=1,则原式=2019﹣(2a﹣b)=2019﹣1=2018,故选:C.【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.【分析】根据直接开方法即可求出答案.【解答】解:由题意可知:ax2=b有两个根,由直接开方法可知:m﹣1与2m+4互为相反数,∴m﹣1+2m+4=0,∴m=﹣1,∴m﹣1=﹣2,2m+4=2,∴x2==4,故选:A.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.5.【分析】先配方,再变形,即可得出选项.【解答】解:y2﹣y=,y2﹣y+()2=+()2,(y﹣)2=1,故选:B.【点评】本题考查了解一元二次方程,能够正确配方是解此题的关键.6.【分析】利用完全平方公式计算即可求出所求.【解答】解:∵y=x2﹣6x+1化成y=(x﹣h)2+k,∴h=3,k=﹣8,则h+k=﹣5,故选:A.【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.7.【分析】利用配方法把原式变形,根据非负数的性质解答.【解答】解:x2﹣4x﹣2019=x2﹣4x+4﹣4﹣2019=(x﹣2)2﹣2023,∵(x﹣2)2≥0,∴(x﹣2)2﹣2023≥﹣2023,即代数式x2﹣4x﹣2019的最小值﹣2023,故选:D.【点评】本题考查的是配方法的应用,掌握完全平方公式、非负数的性质是解题的关键.8.【分析】利用配方法和非负数的性质求出a、b的值,根据三角形的周长公式计算即可.【解答】解:∵4a2﹣4ab+2b2﹣8b+16=0,∴(4a2﹣4ab+b2)+(b2﹣8b+16)=0,∴(2a﹣b)2+(b﹣4)2=0,∴a=2,b=4,∴当腰为4时,等腰三角形的周长为4+4+2=10,当腰为2时,2+2=4,构不成三角形.故选:B.【点评】此题考查了配方法的应用,三角形三边关系及等腰三角形的性质,解题的关键熟练掌握完全平方公式.9.【分析】求出方程的解,求出方程的最小值,即可求出答案.【解答】解:x2﹣2x=,8x2﹣16x﹣5=0,x==,∵x1为一元二次方程x2﹣2x=较小的根,∴x1==1﹣,∵5<<6,∴﹣1<x1<0.故选:B.【点评】本题考查了求一元二次方程的解和估算无理数的大小的应用,关键是求出方程的解和能估算无理数的大小.10.【分析】根据根的判别式即可求出答案.【解答】解:△=4﹣4k>0,∴k<1,∴k的最大整数为0,故选:B.【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.11.【分析】先利用因式分解法解方程得到直角三角形的两边为3,4,然后进行讨论:当4为直角边时,利用勾股定理计算斜边长,从而得到此时三角形的周长;当4为斜边时,利用勾股定理计算出另一条直角边长,从而得到此时三角形的周长.【解答】解:(x﹣3)(x﹣4)=0,x﹣3=0或x﹣4=0,所以x1=3,x2=4,所以直角三角形的两边为3,4,当4为直角边时,斜边长==5,三角形的周长为3+4+5=12;当4为斜边时,另一条直角边长==,三角形的周长为3+4+=7+.故选:C.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.12.【分析】先变形得到3x(2x+1)﹣2(2x+1)=0,然后利用因式分解法解方程.【解答】解:3x(2x+1)﹣2(2x+1)=0,(2x+1)(3x﹣2)=0,2x+1=0或3x﹣2=0,所以x1=﹣,x2=.故选:D.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.13.【分析】先把方程化为一般式,然后计算判别式的值后判断方程根的情况.【解答】解:方程化为2x2﹣7x+5=0,因为△=(﹣7)2﹣4×2×5=9>0,所以方程有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯且一共碰杯21次,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设参加酒会的人数为x人,依题意,得:x(x﹣1)=21,解得:x1=7,x2=﹣6(舍去).故选:C.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15.【分析】设平均每次降低成本的x,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设平均每次降低成本的x,根据题意得:1000﹣1000(1﹣x)2=190,解得:x1=0.1=10%,x2=1.9(舍去),则平均每次降低成本的10%,故选:A.【点评】此题考查了一元二次方程的应用,弄清题意是解本题的关键.二.填空题16.【分析】设每次降价的百分率为x,(1﹣x)2为两次降价的百分率,40降至32.4就是方程的平衡条件,列出方程即可.【解答】解:设每次降价的百分率为x,依题意得:40(1﹣x)2=32.4.故答案是:40(1﹣x)2=32.4.【点评】此题主要考查了由实际问题抽象出一元二次方程,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.17.【分析】设该市2018年、2019年旅游收入的年平均增长率为x,根据该市2017年及2019年的旅游收入,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设该市2018年、2019年旅游收入的年平均增长率为x,依题意,得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).故答案为:20%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.18.【分析】设2017年的进口值为x,出口值为y,总值为x+y,则2018年的出口值为(1﹣5%)x,出口值为(1+5n%)y,总值为(1+5.5%)x+y,其中n为正整数,即可得到结论.【解答】解:设2017年的进口值为x,出口值为y,总值为x+y,则2018年的出口值为(1﹣5%)x,出口值为(1+5n%)y,总值为(1+5.5%)x+y,其中n为正整数,由题意得,(1﹣5%)x+(1+5n%)y=(1+5.5%)(x+y)解得:x=y,∵2018年贸易顺差增长率是出口值增长率的倍,∴=×,将x=y代入,化简整理得,85n2﹣148n﹣44=0,解得:n=2,(负值舍去),∴=,∴=70%,答:2017年的出口值占进出口总值的百分比为70%.故答案为:70%.【点评】本题考查了一元二次方程的应用,正确的理解题意是解题的关键.19.【分析】利用根与系数的关系可得出x1+x2=1,x1•x2=﹣3,将其代入+=中即可得出结论.【解答】解:∵x1,x2是方程x2﹣x﹣3=0的两根,∴x1+x2=1,x1•x2=﹣3,∴+===﹣.故答案为:﹣.【点评】本题考查了根与系数的关系,牢记“两根之和等于﹣,两根之积等于”是解题的关键.20.【分析】根据一元二次方程的根的判别式即可求出答案.【解答】解:由题意可知:△=4﹣4k≥0,∴k≤1,∵k≠0,∴k≠0且k≤1,故答案为:k≠0且k≤1;【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.三.解答题21.【分析】(1)设2016年到2018年该村人均收入的年平均增长率为x,根据某村2016年的人均收入为20000元,2018年的人均收入为24200元,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由2019年村该村的人均收入=2018年该村的人均收入×(1+年平均增长率),即可得出结论.【解答】解:(1)设2016年到2018年该村人均收入的年平均增长率为x,根据题意得:20000(1+x)2=24200,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:2016年到2018年该村人均收入的年平均增长率为10%.(2)24200×(1+10%)=26620(元).答:预测2019年村该村的人均收入是26620元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.22.【分析】(1)分k=0及k≠0两种情况考虑:当k=0时,原方程为一元一次方程,通过解方程可求出方程的解,进而可得出k=0符合题意;当k≠0时,由根的判别式△≥0可得出关于k的一元一次不等式,解之即可得出k的取值范围.综上,此问得解;(2)利用根与系数的关系可得出x1+x2=,x1x2=,结合x1+x2+x1x2=4可得出关于k 的分式方程,解之经检验后即可得出结论.【解答】解:(1)当k=0时,原方程为﹣3x+1=0,解得:x=,∴k=0符合题意;当k≠0时,原方程为一元二次方程,∵该一元二次方程有实数根,∴△=(﹣3)2﹣4×k×1≥0,解得:k≤.综上所述,k的取值范围为k≤.(2)∵x1和x2是方程kx2﹣3x+1=0的两个根,∴x1+x2=,x1x2=.∵x1+x2+x1x2=4,∴+=4,解得:k=1,经检验,k=1是分式方程的解,且符合题意.∴k的值为1.【点评】本题考查了根的判别式、根与系数的关系、一元二次方程的定义、解一元一次方程以及解分式方程,解题的关键是:(1)分k=0及k≠0两种情况,找出k的取值范围;(2)利用根与系数的关系结合x1+x2+x1x2=4,找出关于k的分式方程.23.【分析】(1)根据关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,得到△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,于是得到结论;(2)根据x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,代入x12+x22﹣x1x2=16,解方程即可得到结论.【解答】解:(1)∵关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,∴△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,解得:a<3,∵a为正整数,∴a=1,2;(2)∵x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,∵x12+x22﹣x1x2=16,∴(x1+x2)2﹣3x1x2=16,∴[2(a﹣1)]2﹣3(a2﹣a﹣2)=16,解得:a1=﹣1,a2=6,∵a<3,∴a=﹣1.【点评】本题考查的是一元二次方程根与系数的关系及根的判别式,先判断出a的取值范围,再由根与系数的关系得出方程组是解答此题的关键.24.【分析】设降价后的销售单价为x元,则降价后每天可售出[300+5(200﹣x)]个,根据总利润=每个产品的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200﹣x)]个,依题意,得:(x﹣100)[300+5(200﹣x)]=32000,整理,得:x2﹣360x+32400=0,解得:x1=x2=180.180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.【分析】设扩充后广场的长为3xm,宽为2xm,根据矩形的面积公式和总价=单价×数量列出方程并解答.【解答】解:设扩充后广场的长为3xm,宽为2xm,依题意得:3x•2x•100+30(3x•2x﹣50×40)=642000解得x1=30,x2=﹣30(舍去).所以3x=90,2x=60,答:扩充后广场的长为90m,宽为60m.【点评】题考查了列二元一次方程解实际问题的运用,总价=单价×数量的运用,解答时找准题目中的数量关系是关键.26.【分析】直接利用根的判别式得出m的取值范围进而解方程得出答案.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.【点评】此题主要考查了根的判别式,正确得出m的值是解题关键.。
第2章一元二次方程一.选择题(共7小题)1.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.C.x2=﹣4 D.x2=(x+2)(x﹣2)+42.方程5x2﹣2=﹣3x的二次项系数、一次项系数、常数项分别是()A.5、3、﹣2 B.5、﹣3、﹣2 C.5、3、2 D.5、﹣3、23.关于x的一元二次方程(a2﹣1)x2﹣3x+a2+3a﹣4=0的一个根为0,则a的值是()A.﹣4 B.1 C.4或﹣1 D.﹣4或14.m是方程x2+x﹣1=0的根,则式子3m2+3m﹣2020的值为()A.﹣2018 B.2018 C.﹣2017 D.20175.已知关于x的方程(x﹣1)(x﹣2)=m2,则该方程的解的情况是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.方程没有实数根D.无法判断6.已知关于x的一元二次方程(k﹣1)x2﹣2x+2=0有两个不相等的实数根,则k的取值范围值是()A.B.C.k<且k≠1 D.k≤且k≠1 7.设α,β是方程x2+x+2012=0的两个实数根,则α2+2α+β的值为()A.﹣2014 B.2014 C.2013 D.﹣2013二.填空题(共5小题)8.已知关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,则方程a(x﹣h ﹣1)2+k=0的解为.9.若x,y为实数,且(x2+y2)(x2﹣1+y2)=12,则x2+y2=.10.已知(a2+b2﹣1)(a2+b2+6)=8,则a2+b2=.11.如果关于x的一元二次方程3x2﹣5x+m=0的两实数根互为倒数,则m的值为.12.关于x的一元二次方程x2+kx+k﹣2=0,方程的一个根为x=﹣2,则方程的另一个根为.三.解答题(共8小题)13.解下列方程:(1)x2﹣4x+2=0(用配方法);(2)3x2﹣7x+3=﹣1(用公式法).14.试用配方法说明2x2﹣4x+5的值不小于3.15.(教材变式题)如图所示,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,求满足x的方程.16.受某种因素影响,在一个月内猪肉价格两次大幅下降,由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x,则根据题意可列方程为.17.汽车产业的发展,有效促进了我国现代化建设.某汽车销售公司2016年盈利1000万元,2018年盈利1440万元,且从2016年到2018年,每年盈利的年增长率相同.(1)求每年盈利的年增长率;(2)若该公司盈利的年增长率继续保持不变,预计2019年盈利多少万元?18.电脑病毒是可以传播的;调查发现有一台电脑中了病毒,经过两轮传播后共有25台电脑中了病毒.(1)试求每轮传播中平均一台电脑传播多少台电脑中了病毒?(2)如果按照这样的传播速度,经过三轮传播后共有多少台电脑中了病毒?19.某商店销售某种电扇,每台进货价为150元.经市场调研,当每台售价为230元时,平均每天能售出8台:当每台售价每降10元时,平均每天就能多售出4台.若商店要想使这种电扇的销售利润平均每天达到1000元,则每台电扇的定价应为多少元?20.如图,利用一面墙(墙长10米)用20米的篱笆围成一个矩形场地.设垂直于墙的一边为x米,矩形场地的面积为s平方米.(1)求s与x的函数关系式,并求出x的取值范围;(2)若矩形场地的面积为48平方米,求矩形场地的长与宽.参考答案与试题解析一.选择题(共7小题)1.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.C.x2=﹣4 D.x2=(x+2)(x﹣2)+4【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【解答】解:A、当a=0时,该方程不是一元二次方程,故本选项不符合题意.B、该方程不是整式方程,故本选项不符合题意.C、该方程符合一元二次方程的定义,故本选项符合题意.D、由已知方程得到:0=﹣4+4,不是方程,故本选项不符合题意.故选:C.2.方程5x2﹣2=﹣3x的二次项系数、一次项系数、常数项分别是()A.5、3、﹣2 B.5、﹣3、﹣2 C.5、3、2 D.5、﹣3、2【分析】直接利用一元二次方程中各部分的名称分析得出答案.【解答】解:5x2﹣2=﹣3x整理得:5x2+3x﹣2=0,则二次项系数、一次项系数、常数项分别是:5、3、﹣2.故选:A.3.关于x的一元二次方程(a2﹣1)x2﹣3x+a2+3a﹣4=0的一个根为0,则a的值是()A.﹣4 B.1 C.4或﹣1 D.﹣4或1【分析】根据一元二次方程的解的定义,将x=0代入关于x的一元二次方程(a2﹣1)x2﹣3x+a2+3a﹣4=0,列出关于a的一元一次方程,通过解方程即可求得a的值.【解答】解:根据题意知,x=0是关于x的一元二次方程(a2﹣1)x2﹣3x+a2+3a﹣4=0的根,∴a2+3a﹣4=0,解得,a=﹣4或a=1,∵a2﹣1≠0,∴a≠±1.∴a=﹣4.故选:A.4.m是方程x2+x﹣1=0的根,则式子3m2+3m﹣2020的值为()A.﹣2018 B.2018 C.﹣2017 D.2017【分析】首先由已知可得m2+m﹣1=0,即m2+m=1.然后化简代数式,注意整体代入,从而求得代数式的值.【解答】解:∵m是方程x2+x﹣1=0的根,∴m2+m﹣1=0,∴m2+m=1,原式=3m2+3m﹣2020=3(m2+m)﹣2020=3×1﹣2020=﹣2017.故选:C.5.已知关于x的方程(x﹣1)(x﹣2)=m2,则该方程的解的情况是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.方程没有实数根D.无法判断【分析】方程整理后,表示出根的判别式,判断即可.【解答】解:方程整理得:x2﹣3x+2﹣m2=0,∵△=9﹣4(2﹣m2)=4m2+1>0,∴方程有两个不相等的实数根,故选:B.6.已知关于x的一元二次方程(k﹣1)x2﹣2x+2=0有两个不相等的实数根,则k的取值范围值是()A.B.C.k<且k≠1 D.k≤且k≠1 【分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的不等式,求出不等式的解集即可得到k的范围.【解答】解:根据题意得:△=b2﹣4ac=4﹣8(k﹣1)=12﹣8k>0,且k﹣1≠0,解得:k<且k≠1.故选:C.7.设α,β是方程x2+x+2012=0的两个实数根,则α2+2α+β的值为()A.﹣2014 B.2014 C.2013 D.﹣2013【分析】由α,β是方程x2+x+2012=0的两个实数根知α+β=﹣1,α2+α=﹣2012,将其代入到α2+2α+β=α2+α+α+β计算可得.【解答】解:∵α,β是方程x2+x+2012=0的两个实数根,∴α+β=﹣1,α2+α=﹣2012,∴α2+2α+β=α2+α+α+β=﹣1﹣2012=﹣2013,故选:D.二.填空题(共5小题)8.已知关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,则方程a(x﹣h ﹣1)2+k=0的解为x1=0,x2=4 .【分析】利用关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,从而得到x﹣1=﹣1或x﹣1=3,然后解两个一次方程即可.【解答】解:∵关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,∴方程a(x﹣h﹣1)2+k=0的解为x﹣1=﹣1或x﹣1=3,∴x1=0,x2=4.故答案为x1=0,x2=4.9.若x,y为实数,且(x2+y2)(x2﹣1+y2)=12,则x2+y2= 4 .【分析】令t=x2+y2,然后根据一元二次方程的解法即可求出答案.【解答】解:令t=x2+y2,∴t≥0,∴t(t﹣1)=12,∴t2﹣t﹣12=0,∴(t﹣4)(t+3)=0,∴t=4或t=﹣3(舍去),∴x2+y2=4,故答案为:410.已知(a2+b2﹣1)(a2+b2+6)=8,则a2+b2= 2 .【分析】设t=a2+b2(t≥0),则原方程转化为关于t的新方程,通过解新方程求得t即a2+b2的值.【解答】解:设t=a2+b2(t≥0),则由原方程得到:(t﹣1)(t+6)=8,整理,得(t+7)(t﹣2)=0,解得t=﹣7(舍去)或t=2,所以a2+b2=2.故答案是:2.11.如果关于x的一元二次方程3x2﹣5x+m=0的两实数根互为倒数,则m的值为 3 .【分析】根据根与系数的关系,由两根的积为1可以求出m的值.【解答】解:设方程的两根分别是x1和x2,则:∵关于x的一元二次方程3x2﹣5x+m=0的两实数根互为倒数,∴x1•x2==1,∴m=3.故答案为:3.12.关于x的一元二次方程x2+kx+k﹣2=0,方程的一个根为x=﹣2,则方程的另一个根为0 .【分析】把x=﹣2代入一元二次方程x2+kx+k﹣2=0得到关于k得一元一次方程,解之,得到关于x得一元二次方程,解之即可.【解答】解:把x=﹣2代入一元二次方程x2+kx+k﹣2=0得:4﹣2k+k﹣2=0,解得:k=2,即原方程为:x2+2x=0,解得:x1=﹣2,x2=0,即方程的另一个根为0,故答案为:0.三.解答题(共8小题)13.解下列方程:(1)x2﹣4x+2=0(用配方法);(2)3x2﹣7x+3=﹣1(用公式法).【分析】(1)方程移项后,利用完全平方公式配方,开方即可求出解;(2)找出a,b,c的值,代入求根公式即可求出解.【解答】解析:(1)移项,得x2﹣4x=﹣2.配方,得x2﹣4x+4=﹣2+4,即(x﹣2)2=2.∴x﹣2=±,∴,.(2)方程化为3x2﹣7x+4=0.∵a=3,b=﹣7,c=4,∴△=(﹣7)2﹣4×3×4=49﹣48=1>0,方程有两个不等的实数根.则,即x1=1,.14.试用配方法说明2x2﹣4x+5的值不小于3.【分析】先对代数式x2﹣4x+5进行配方,然后根据配方后的形式,再根据a2≥0这一性质即可证得.【解答】证明:2x2﹣4x+5=2(x2﹣2x+)=2(x﹣1)2+3,∵无论x取何值,(x﹣1)2≥0,∴2(x﹣2)2+3≥3,即2x2﹣4x+5的值不小于3.15.(教材变式题)如图所示,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,求满足x的方程.【分析】挂图长为(80+2x)cm,宽为(50+2x)cm,根据其积为5400,即长×宽=5400,列方程进行化简即可.【解答】解:挂图长为(80+2x)cm,宽为(50+2x)cm;所以(80+2x)(50+2x)=5400,即4x2+160x+4000+100x=5400,所以4x2+260x﹣1400=0.即x2+65x﹣350=0.16.受某种因素影响,在一个月内猪肉价格两次大幅下降,由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x,则根据题意可列方程为16(1﹣x)2=9 .【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=9,把相应数值代入即可求解.【解答】解:第一次降价后的价格为16(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为16(1﹣x)(1﹣x),则列出的方程是16(1﹣x)2=9,故答案为:16(1﹣x)2=9.17.汽车产业的发展,有效促进了我国现代化建设.某汽车销售公司2016年盈利1000万元,2018年盈利1440万元,且从2016年到2018年,每年盈利的年增长率相同.(1)求每年盈利的年增长率;(2)若该公司盈利的年增长率继续保持不变,预计2019年盈利多少万元?【分析】(1)设每年盈利的年增长率为x,根据题意列出方程求解即可;(2)利用2019年盈利=1440×(1+x),由此计算即可;【解答】解:(1)设每年盈利的年增长率为x,根据题意得1000(1+x)2=1440解得x1=0.2,x2=﹣2.2(不合题意,舍去)答:每年盈利的年增长率为20%.(2)1440(1+0.2)=1728答:预计2009年该公司盈利1728万元.18.电脑病毒是可以传播的;调查发现有一台电脑中了病毒,经过两轮传播后共有25台电脑中了病毒.(1)试求每轮传播中平均一台电脑传播多少台电脑中了病毒?(2)如果按照这样的传播速度,经过三轮传播后共有多少台电脑中了病毒?【分析】(1)设每轮传播中平均一台电脑传播x台电脑中了病毒,根据一台电脑中毒后经过两轮传播后共25台电脑中了病毒,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据经过三轮传播后中毒的电脑数=经过两轮传播后中毒的电脑数+经过两轮传播后中毒的电脑数×4,即可求出结论.【解答】解:(1)设每轮传播中平均一台电脑传播x台电脑中了病毒,依题意,得:1+x+x(x+1)=25,整理,得:x2+2x﹣24=0,解得:x1=4,x2=﹣6(不合题意,舍去).答:每轮传播中平均一台电脑传播4台电脑中了病毒.(2)25+25×4=125(台).答:经过三轮传播后共有125台电脑中了病毒.19.某商店销售某种电扇,每台进货价为150元.经市场调研,当每台售价为230元时,平均每天能售出8台:当每台售价每降10元时,平均每天就能多售出4台.若商店要想使这种电扇的销售利润平均每天达到1000元,则每台电扇的定价应为多少元?【分析】设每台电扇下调x个10元,根据销售量×每件的利润=总利润,构建方程即可解决问题.【解答】解:设每台电扇下调x个10元.根据题意,得:(80﹣10x)(8+4x)=1000解得x1=x2=3.所以下调30元,因此定价为200元.答:每台电扇的定价应为200元.20.如图,利用一面墙(墙长10米)用20米的篱笆围成一个矩形场地.设垂直于墙的一边为x米,矩形场地的面积为s平方米.(1)求s与x的函数关系式,并求出x的取值范围;(2)若矩形场地的面积为48平方米,求矩形场地的长与宽.【分析】(1)由AD=x,可得出AB=20﹣2x,由墙长10米,可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再利用矩形的面积公式即可得出s关于x的函数关系式;(2)根据矩形场地的面积,可得出关于x的一元二次方程,解之取其较大值即可得出结论.【解答】解:(1)∵AD=BC=x,∴AB=20﹣2x.又∵墙长10米,∴,∴5≤x<10.∴s=x(20﹣2x)=﹣2x2+20x(5≤x<10).(2)当矩形场地的面积为48平方米时,﹣2x2+20x=48,解得:x1=4(不合题意,舍去),x2=6,∴20﹣2x=8.答:矩形的长为8米,宽为6米.11。
第一学期九年级数学第一、二章考试题一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.方程2x2-7x-5=0的二次项系数、一次项系数、常数项分别为( )A.7,2,5 B.2,-7,5C.2,-7,-5 D.2,7,52.方程x2-3x=0的根为( )A.x1=0,x2=-3 B.x1=0,x2=3C.x1=x2=3 D.x1=1,x2=33.菱形的两条对角线长分别是6和8,则此菱形的周长是( )A.40 B.32 C.24 D.204.用配方法解一元二次方程x2-4x=5时,此方程可变形为( )A.(x+2)2=1B.(x-2)2=1C.(x+2)2=9D.(x-2)2=95.方程x²-x+2=0根的情况是( )A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根6.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是( )A. 50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C. 50(1+2x)=182 D.50+50(1+x)+50(1+2x)=1827.等腰三角形的底和腰是方程x2-4x+12=0的两个根,则这个三角形的周长是( ) A.11 B.10 C.11或10 D.不能确定8.如图,在长为30cm、宽为20cm的矩形画面四周镶上宽度为x cm的彩纸,并使彩纸的面积恰好与原画面面积相等地,则x满足的方程为( )A.(30+x)(20+x)=600B.(30+x)(20+x)=1200C.(30-2x)(20-2x)=600D.(30+2x)(20+2x)=12009.下列命题中,假命题是( )第8题A.对角线相等的平行四边形是矩形B.四条边都相等的平行四边形是正方形C.既是菱形又是矩形的四边形是正方形D.对角线互相垂直的平行四边形是菱形10.如图,在矩形纸片ABCD中,AD=4cm,AB=8cm,按如图方式折叠,使点B与点D重合,折痕为EF,则DE的长为( )A.3cm B.4cmC.5cm D.6cm11.如图,在坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是( ) A.M(5,0),N(8,4) B.M(4,0),N(8,4)C.M(5,0),N(7,4) D.M(4,0),N(7,4)12.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG:②BG=GC;③AG∥CF;④∠GAE=45°;⑤S△FGC=3.其中正确结论的个数是( )A.2 B.3 C.4 D.5第二部分非选择题二、填空题(每小题3分,共12分)13.方程x2-3=0的根是;14.已知方程x2-bx+3=0的一个根是1,则b=;15.如图,四边形ABCD是一个正方形,E是BC延长线上的一点,且AC=EC,则∠DAE=;16.如图,已知正方形ABCD的边长为8cm,E为CB上的一点且CE=2cm,P为对角线BD 上的一个动点,则PE+PC最短为cm;第15题APCBDE第16题第10题答案填在答题卷内答案填在答题卷内答案填在答题卷内答案填在答题卷内第12题第11题三、解答题(本题共6小题,共52分)17.(每小题5分,共20分)用适当的方法解下列方程:(1) x2=5x(2) x2-x-3=0(3)(x-3)2+4x(x-3)2=0(4) (x+8)(x+1)=-1218.(本题6分)如图,在正方形ABCD中,点E为对角线AC上一点,连接BE、DE.求证:BE=DE.第18题19.(本题6分)某小区规划在一块长32米,宽20米的矩形场地修建三条同样宽的小路,使其中两条平行,另一条与之垂直,其余部分种草,草坪的面积为570米2,小路的宽度应是多少?第19题20.(本题6分)汽车产业的发展,有效促进我国现代化建设,某汽车销售公司2014年盈利1500万元,到2016年盈利2160万元,且从2014年到2016年,每年盈利的年增长率相同.(1)求该公司盈利的年增长率;(2)若该公司盈利的年增长率继续保持不变,预计2018年盈利多少万元?21.(本题6分)龙华天虹商场以120元/件的价格购进一批上衣,以200元/件的价格出售,每周可售出100件.为了促销,该商场决定降价销售,尽快减少库存.经调查发现,这种上衣每降价5元/件,每周可多售出20件.另外,每周的房租等固定成本共3000元.该商场要想每周盈利8000元,应将每件上衣的售价降低多少元?22. (本题8分)如下图,Rt△ABC中,∠B=90°,AB=6cm,BC=8cm.点P、Q同时由A、C 两点出发沿AB、CB匀速移动,它们的速度分别为1cm/s和2cm/s.当其中一点到达自己的终点时,另一点随之停止运动.(1)经过多少秒后,△PBQ的面积等于是△ABC的三分之一?(2分)(2)几秒后,P、Q相距6厘米?(3分)(3)是否存在一个时刻,PQ同时平分△ABC的周长与面积,若存在求出这个时刻的t值,若不存在说明理由.(3分)第22题。
【知识点考查题】一、容易题1.(2017届黑龙江哈尔滨松北区九年级上期末)甲、乙两车沿同一平直公路由A 地匀速行驶(中途不停留),前往终点B 地,甲、乙两车之间的距离S (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.下列说法:①甲、乙两地相距210千米;②甲速度为60千米/小时;③乙速度为120千米/小时; ④乙车共行驶321小时,其中正确的个数为( )A .1个B .2个C .3个D .4个2.(2016-2017学年广西玉林市九年级上期末)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )A .300m 2B .150m 2C .330m 2D .450m 23.(2016—2017学年江苏宿迁现代实验学校八年级上第二次月考)在同一坐标系中,正比例函数y=kx 与一次函数y=x -k 的图象为( )4.(2017届北京十三中九年级上期中)如图1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发沿图中某一个扇形顺时针匀速运动,设∠APB=y(单位:度),如果y与点P 运动的时间x(单位:秒)的函数关系的图象大致如图2所示,那么点P的运动路线可能为( )A.O→B→A→O B.O→A→C→O C.O→C→D→O D.O→B→D→O二、中等题5.(2016届重庆育才成功学校中考一诊)在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是()A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大C.在起跑后180秒时,两人相遇D.在起跑后50秒时,小梅在小莹的前面6.(2016届天津河西区中考模拟数学)如图是自行车骑行训练场地的一部分,半圆O的直径AB=100,在半圆弧上有一运动员C从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A点停止.设运动时间为t,点B到直线OC的距离为d,则下列图象能大致刻画d与t之间的关系是()A.B.C.D.水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A. B. C. D.8.(2016届黑龙江哈尔滨香坊区中考模拟)随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:(1)“快车”行驶里程不超过5公里计费8元;(2)“顺风车”行驶里程超过2公里的部分,每公里计费1。
2016-2017学年北师大版七年级数学下册期末试题及答案2016-2017学年度第二学期期末测试题七年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分。
本试题共8页,满分为120分。
考试时间为120分钟。
答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置。
考试结束后,将本试卷和答题卡一并交回。
本考试不允许使用计算器。
第Ⅰ卷(选择题共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案写在试卷上无效。
一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列各式计算正确的是()A.x+x=2xB.xy^4/48=x^3yC.x^2=x^5D.(-x)^5=(-x)^82.下列各式中,不能用平方差公式计算的是( )A.(4x-3y)(-3y-4x)B.(2x-y)(2x+y)C.(a+b-c)(-c-b+a)D.(-x+y)(x-y)3.PM2.5是大气压中直径小于或等于0.xxxxxxxm的颗粒物,将0.xxxxxxx用科学记数法表示为()A.0.25×10^-5B.0.25×10^-6C.2.5×10^-5D.2.5×10^-64.如图,∠1与∠2互补,∠3=135°,则∠4的度数是()A、45°B、55°C、65°D、75°5.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间t(时)变化的图象(全程)如图所示。
有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时甲跑了10千米,乙跑了8千米;③乙的行程y与时间t的关系式为y=10t;④第1.5小时,甲跑了12千米。
期末检测题
(本检测题满分:120分,时间:120分钟)
一、选择题(每小题3分,共30分)
1.(兰州中考)下列命题中正确的是( ) A .有一组邻边相等的四边形是菱形 B .有一个角是直角的平行四边形是矩形 C .对角线垂直的平行四边形是正方形 D .一组对边平行的四边形是平行四边形
2.如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( ) A .45︒ B .55︒ C .60︒ D .75︒
第2题图 第3题图 3.(2015·浙江温州中考)如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限.若反比例函数x
k
y =
的图象经过点B ,则k 的值是( ) A. 1 B. 2
C.
3 D. 32
4.若2-=x 是关于x 的一元二次方程02
5
22
=+-a ax x
的一个根,则a 的值为( ) A.1或4
B.-1或-4
C.-1或4
D.1或-4
5. (2016· 兰州中考)如图,矩形ABCD 的对角线AC 与BD 相交于
点O ,CE ∥BD ,DE ∥AC ,AD =2,DE =2,则四边形OCED 的面积
为( ) A.2
B.4
C.4
D.8
6. (2016·兰州中考)已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为,则△ABC 与△DEF 对应中线的比为( ) A.
B.
C.
D.
7.(2015·山东青岛中考)如图,正比例函数x k y 11=的图象与反比例函数x
k y 2
2=
的图象相交于A 、B 两点,其中点A 的横坐标为2,当21y y >时,x 的取值范围是( )
A .x <-2或x >2
B .x <-2或0<x <2
C .-2<x <0或0<x <2
D .-2<x <0或x >2
第7题图 第8题图
8. (2015·贵州安顺中考)如图,平行四边形ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF ∶FC 等于( ) A.3∶2 B.3∶1 C.1∶1 D.1∶2
9.在一个不透明的布袋中,有大小、形状完全相同,颜色不同的15个球,从中摸出红球的概率为,则袋中红球的个数为( )
A .10
B .15
C .5
D .2 10. (2016·山西中考)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则该几何体的左视图是( )
A. B. C. D.
二、填空题(每小题3分,共24分)
11.(兰州中考)如图,在一块长为22 m ,宽为17 m 的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300 m 2. 设道路宽为x m ,根据题意可列出的方程为 .
12.已知方程3x 2-19x +m =0的一个根是1,那么它的另一个根是_________,m =_________. 13. (2015·天津中考)如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =3,DB =2,BC =6,则DE 的长为 .
第13题图
第11题图
14.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有 个. 15.反比例函数k
y x
(k >0)的图象与经过原点的直线相交于A 、B 两点,已知A
点的坐标m
m
为(2,1),那么B 点的坐标为 .
16. (2016·山西中考)已知点
是反比例函数y =(m <0)图象上的两
点,则 (填“>”或“=”或“<”).
17. 已知AD 是△ABC 的角平分线,E 、F 分别是边AB 、AC 的中点,连接DE 、DF ,在不再连接其他线段的前提下,要使四边形AEDF 成为菱形,还需添加一个条件,这个条件可以 是______.
18.一池塘里有鲤鱼、鲫鱼、鲢鱼共10 000尾,一渔民通过多次捕捞试验后发现,鲤鱼、鲫鱼出现的频率是31%和42%,则这个池塘里大约有鲢鱼___ __ 尾.
三、解答题(共66分)
19.(8分)(2015·福州中考)已知关于x 的方程
+(2m 1)x +4=0有两个相等的实数根,求m
的值. 20.(8分)(呼和浩特中考)如图,四边形ABCD 是矩形,把 矩形沿AC 折叠,点B 落在点E 处,AE 与DC 的交点为O ,连接 DE . (1)求证:△ADE ≌△CED ; (2)求证:DE ∥AC .
21.(8分)为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行.某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造.已知甲种树苗每棵200元,乙种树苗每棵300元.
(1)若购买两种树苗的总金额为90 000元,求需购买甲、乙两种树苗各多少棵?
(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵? 22.(6分)画出如图所示实物的三视图.
23.(8分)(安徽中考) 如图,管中放置着三根同样的绳子111AA BB CC 、、. (1)小明从这三根绳子中随机选一根,恰好选中绳子1
AA 的概率是多少? (2)小明先从左端A B C 、、三个绳头中随机选两个打一个结,再从右端111A B C 、、三个绳头中随机选两个打一个结,求这三根绳子能连接成一根长绳的概率.
24.(8分)某池塘里养了鱼苗1万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5 kg ,第二网捞出25条,称得平均每条鱼重2.2 kg ,第三网捞出35条,称得平均每条鱼重2.8 kg ,试估计这池塘
中鱼的质量.
25.(10分)如图,在矩形ABCD 中,AD =5,AB =7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D '落在∠ABC 的角平分线上时,求D E 的长.
第25题图
第26题图
26.(10分)如图,一次函数y =kx +b 与反比例函数x
m
y =的图象交于A (2,3), B (-3,n )两点.
(1)求一次函数与反比例函数的表达式; (2)根据所给条件,请直接写出不等式kx +b >
x
m
的解集______________; (3)过点B 作BC ⊥x 轴,垂足为C ,求S △ABC .。