第4节 n阶常系数线性差分方程
- 格式:ppt
- 大小:398.50 KB
- 文档页数:11
线性差分方程内容提要:1 齐次线性差分方程1-1 一阶齐次线性差分方程1-2 二阶齐次线性差分方程(容许复数解)1-3 二阶齐次线性差分方程(容许实数解)1-4 齐次线性差分方程2 线性差分方程3 例子本文主要参考文献.由于最近需要用到一些线性差分方程,所以这里做一个复习小结.注:由于阶数为 2 或者 2 以上,处理方法毫无区别,所以我们集中火力搞定 2 阶情形,一般情形则不加证明给出结果. 但不难由 2 阶情形照搬证明过去.1 齐次线性差分方程1-1 一阶齐次线性差分方程称如下形式的方程为序列 \{z_t, \ t\in \mathbb{Z} \} 的一阶齐次线性差分方程:z_t =a_1 z_{t-1} ,式中 a_1 为实数.\bullet 显然这个方程的解为z_t =C a_1^t . C 为任意实数.1-2 二阶齐次线性差分方程(容许复数解)称如下形式的方程为序列 \{z_t, \ t\in \mathbb{Z} \} 的二阶齐次线性差分方程:z_t =a_1 z_{t-1} + a_2 z_{t-2} ,式中 a_1, a_2 为实数.[特征方程与特征根] 我们把矩阵A={ \left[ \begin{array}{cc} a_1 & a_2 \\ 1 & 0\end{array} \right ]} 的特征多项式\lambda^{2}=a_{1}x+a_{2}称为齐次线性差分方程 z_t =a_1 z_{t-1} + a_2 z_{t-2} 的特征方程,而它的两个根\lambda_{1},\lambda_{2} (可能有重根)叫做特征根.[特解]z_{t}=\lambda_{i}^{t} ( i=1,2 ) 为方程的特解.[证明] 由\lambda_{i}^{2}=a_{1}\lambda_{i}+a_{2} ,两边同时乘以 \lambda_{i}^{t-2} ,得\lambda_{i}^{t}=a_{1}\lambda_{i}^{t-1}+a_{2}\lambda_{i}^{t-2}因此z_{t}=\lambda_{i}^{t} ( i=1,2 )满足原方程.1-2-1 不等特征根情形\bullet 如果 \lambda_{1}\ne\lambda_{2} , 那么,方程z_t =a_1 z_{t-1} + a_2 z_{t-2} 的通解为z_{t}=C_{1}\lambda_{1}^{t}+C_{2}\lambda_{2}^{t}.[证明] 由于\begin{array}{llll} a_{1}z_{t-1}+a_{2}z_{t-2}\\=a_{1}\left( C_{1}\lambda_{1}^{t-1}+C_{2}\lambda_{2}^{t-1}\right)+a_{2}\left( C_{1}\lambda_{1}^{t-2}+C_{2}\lambda_{2}^{t-2}\right)\\=C_{1}\left( a_{1}\lambda_{1}^{t-1}+a_{2}\lambda_{1}^{t-2} \right)+C_{2}\left( a_{1}\lambda_{2}^{t-1}+a_{2}\lambda_{2}^{t-2}\right)\\=C_{1}\lambda_{1}^{t}+C_{2}\lambda_{2}^{t}\\=z_{t} \end{array}所以对任意的常数 C_{1},C_{2}, 我们都有z_{t}=C_{1}\lambda_{1}^{t}+C_{2}\lambda_{2}^{t} 是方程 z_t =a_1 z_{t-1} + a_2 z_{t-2}的解.还需要验证所有的解具有这个形式. 对于给定的一组初值 z_{0},z_{1},有\begin{array}{llll}C_{1}+C_{2}=z_{0}\\C_{1}\lambda_{1}+C_{2}\lambda_{2}=z_{1}\\\end{array}这个关于 C_{1},C_{2} 的二元一次方程组的系数矩阵的行列式为\left|\begin{array}{cccc} 1 & 1 \\\lambda_{1} & \lambda_{2}\end{array}\right| \not=0所以给定初值z_{0},z_{1},就能唯一确定系数 C_{1},C_{2}. 1-2-2 相等特征根情形\bullet 如果 \lambda_{1} = \lambda_{2}= \lambda , 那么,方程 z_t =a_1 z_{t-1} + a_2 z_{t-2} 的通解为z_t =(C_1 +C_2t) \lambda^t .[证明] 由于 \lambda 是特征多项式\lambda^{2}=a_{1}x+a_{2}的二重根 ,所以它也是 \lambda^{t}=a_{1}\lambda^{t-1}+a_{2}\lambda^{t-2} 的二重根. 把\lambda^{t}=a_{1}\lambda^{t-1}+a_{2}\lambda^{t-2} 的两边对 \lambda 求导,得t\lambda^{n-1}=a_{1}\left( t-1\right)\lambda^{t-2}+a_{2}\left( t-2\right)\lambda^{t-3},因为重根求导之后仍为根,所以 \lambda 是 t\lambda^{n-1}=a_{1}\left( t-1 \right)\lambda^{t-2}+a_{2}\left( t-2 \right)\lambda^{t-3} 的根,两边乘以 \lambda 得到\lambda 也是t\lambda^{t}=a_{1}\left( t-1\right)\lambda^{t-1}+a_{2}\left( t-2\right)\lambda^{t-2} 的根,即z_{t}=t\lambda^{t} 也是特解. 容易验证z_t=(C_1 +C_2t) \lambda^t 都是方程 z_t =a_1z_{t-1} + a_2 z_{t-2} 的解.还需要验证所有的解具有这个形式. 对于给定的一组初值z_{0},z_{1},有\begin{array}{llll}C_{1}=z_{0}\\C_{1}\lambda+C_{2}\lambda=z_{1}\\\end{array}这个关于 C_{1},C_{2} 的二元一次方程组的系数矩阵的行列式为 \left|\begin{array}{cccc} 1& 0 \\ \lambda & \lambda\end{array}\right|\ne0所以给定初值z_{0},z_{1},就能唯一确定系数 C_{1},C_{2}.1-3 二阶齐次线性差分方程(容许实数解)延续上一节的记号.\bullet (i) 若特征方程有两不等实根 \lambda_1,\lambda_2 ,那么这个方程的解为z_t =C_1 \lambda_1^t+C_2 \lambda_2^t . C_1, C_2 为任意实数.\bullet (ii) 若特征方程有两相等实根 \lambda_1=\lambda_2 = \lambda ,那么这个方程的解为z_t =(C_1+C_2t) \lambda^t . C_1, C_2 为任意实数.\bullet (iii) 若特征方程有两共轭复根 \lambda_1=re^{iw}, \lambda_2=re^{-iw}, 那么两个特解为z_t=r^{t}e^{iwt} ,z'_t=r^{t}e^{-iwt},由欧拉公式有z_t=r^{t}[cos(wt)+isin(wt)],z'_t=r^{t}[cos(wt)-isin(wt)].特解含有复数部分,我们希望解是实的,可以凑出新的两个特解r^{t}cos(wt)与 r^{t}sin(wt) , 因此通解为z_t =C_1r^{t}cos(wt) +C_2 r^{t}sin(wt) .1-4 齐次线性差分方程[齐次线性差分方程] 称如下形式的方程为序列 \{z_t, \t\in \mathbb{Z} \} 的齐次线性差分方程:z_t =a_1 z_{t-1} + a_2 z_{t-2} + \cdots +a_p z_{t-p} ( )式中, p\geq 1 , a_1, a_2, \cdots a_p 为实数.[特征方程与特征根] 我们把矩阵A={ \left[ \begin{array}{cccccc} a_1 & a_2 &a_3&\cdots &a_{p-1} & a_p\\ 1 & 0 & 0&\cdots &0 & 0\\ 0 & 1 & 0&\cdots &0 & 0\\ \cdots &\cdots &\cdots&\cdots &\cdots &\cdots \\ 0 & 0 & 0&\cdots &1 & 0\end{array} \right ]} 的特征多项式\lambda^{p}=a_{1}\lambda^{p-1}+a_{2}\lambda^{p-2} +\cdots +a_p称为齐次线性差分方程 ( ) 的特征方程,而它的 p 个非零根\lambda_{1},\lambda_{2},\cdots,\lambda_{p} (可能有重根)叫做特征根.\bullet 如果 \lambda_{i} 为两两不等的实根, 那么,方程( ) 的通解为z_{t}=C_{1}\lambda_{1}^{t}+C_{2}\lambda_{2}^{t}+\cdots +C_{p}\lambda_{p}^{t}.2 线性差分方程[线性差分方程] 称如下形式的方程为序列 \{z_t, \ t\in\mathbb{Z} \} 的线性差分方程:z_t =a_1 z_{t-1} + a_2 z_{t-2} + \cdots +a_p z_{t-p}+h( t). ( )式中, p\geq 1 , a_1, a_2, \cdots a_p 为实数而 h(t) 为t 的已知函数. 并且称方程:z_t =a_1 z_{t-1} + a_2 z_{t-2} + \cdots +a_p z_{t-p} ( )为( )的导出齐次线性差分方程.\bullet 线性差分方程( )的解为导出齐次线性差分方程( )的通解和特解之和.3 例子[例1] (等差数列) 等差数列z_{t+1}=z_{t}+d 为一阶线性差分方程.它的导出齐次方程为 z_{t+1}=z_{t} , 特征根为 \lambda=1 . 于是导出齐次方程的解为 z_t=C.猜测原方程的一个特解为 z_{t} = dt , 那么全部解为 z_{t} = dt+C.[例2] z_{t}= 2 z_{t-1}+1 .它的导出齐次方程为 z_{t}=2z_{t-1} , 特征根为\lambda=2 . 于是导出齐次方程的解为 z_t=C2^t.猜测原方程的一个特解为 z_{t} = 2^t-1 , 那么全部解为z_t=C2^t-1.。
常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n kn =+++-++(1)其中k a a a ,...,,10为常数,称方程(1)为常系数线性方程。
又称方程0...110=+++-++n k k n kn x a x a x a(2)为方程(1)对应的齐次方程。
如果(2)有形如nnx λ=的解,带入方程中可得:0 (11)10=++++--k k k k a a a a λλλ(3)称方程(3)为方程(1)、(2)的特征方程。
显然,如果能求出(3)的根,则可以得到(2)的解。
基本结果如下:(1) 若(3)有k 个不同的实根,则(2)有通解:nkk nnn c c c x λλλ+++=...2211,(2) 若(3)有m 重根λ,则通解中有构成项:nm m nc n c c λ)...(121----+++(3)若(3)有一对单复根βαλi ±=,令:ϕρλi e±=,αβϕβαρarctan,22=+=,则(9)的通解中有构成项:nc n c nnϕρϕρsin cos 21--+(4) 若有m 重复根:βαλi ±=,φρλi e±=,则(2)的通项中有构成项:n nc n c c n nc n c c nm m m m nm m ϕρϕρs i n )...(c o s )...(1221121---++---+++++++综上所述,由于方程(10)恰有k 个根,从而构成方程(2)的通解中必有k 个独立的任意常数。
通解可记为:-n x 如果能得到方程(1)的一个特解:*n x ,则(1)必有通解:=n x -nx +*n x (4)特解可通过待定系数法来确定。