第4节 n阶常系数线性差分方程
- 格式:ppt
- 大小:398.50 KB
- 文档页数:11
线性差分方程内容提要:1 齐次线性差分方程1-1 一阶齐次线性差分方程1-2 二阶齐次线性差分方程(容许复数解)1-3 二阶齐次线性差分方程(容许实数解)1-4 齐次线性差分方程2 线性差分方程3 例子本文主要参考文献.由于最近需要用到一些线性差分方程,所以这里做一个复习小结.注:由于阶数为 2 或者 2 以上,处理方法毫无区别,所以我们集中火力搞定 2 阶情形,一般情形则不加证明给出结果. 但不难由 2 阶情形照搬证明过去.1 齐次线性差分方程1-1 一阶齐次线性差分方程称如下形式的方程为序列 \{z_t, \ t\in \mathbb{Z} \} 的一阶齐次线性差分方程:z_t =a_1 z_{t-1} ,式中 a_1 为实数.\bullet 显然这个方程的解为z_t =C a_1^t . C 为任意实数.1-2 二阶齐次线性差分方程(容许复数解)称如下形式的方程为序列 \{z_t, \ t\in \mathbb{Z} \} 的二阶齐次线性差分方程:z_t =a_1 z_{t-1} + a_2 z_{t-2} ,式中 a_1, a_2 为实数.[特征方程与特征根] 我们把矩阵A={ \left[ \begin{array}{cc} a_1 & a_2 \\ 1 & 0\end{array} \right ]} 的特征多项式\lambda^{2}=a_{1}x+a_{2}称为齐次线性差分方程 z_t =a_1 z_{t-1} + a_2 z_{t-2} 的特征方程,而它的两个根\lambda_{1},\lambda_{2} (可能有重根)叫做特征根.[特解]z_{t}=\lambda_{i}^{t} ( i=1,2 ) 为方程的特解.[证明] 由\lambda_{i}^{2}=a_{1}\lambda_{i}+a_{2} ,两边同时乘以 \lambda_{i}^{t-2} ,得\lambda_{i}^{t}=a_{1}\lambda_{i}^{t-1}+a_{2}\lambda_{i}^{t-2}因此z_{t}=\lambda_{i}^{t} ( i=1,2 )满足原方程.1-2-1 不等特征根情形\bullet 如果 \lambda_{1}\ne\lambda_{2} , 那么,方程z_t =a_1 z_{t-1} + a_2 z_{t-2} 的通解为z_{t}=C_{1}\lambda_{1}^{t}+C_{2}\lambda_{2}^{t}.[证明] 由于\begin{array}{llll} a_{1}z_{t-1}+a_{2}z_{t-2}\\=a_{1}\left( C_{1}\lambda_{1}^{t-1}+C_{2}\lambda_{2}^{t-1}\right)+a_{2}\left( C_{1}\lambda_{1}^{t-2}+C_{2}\lambda_{2}^{t-2}\right)\\=C_{1}\left( a_{1}\lambda_{1}^{t-1}+a_{2}\lambda_{1}^{t-2} \right)+C_{2}\left( a_{1}\lambda_{2}^{t-1}+a_{2}\lambda_{2}^{t-2}\right)\\=C_{1}\lambda_{1}^{t}+C_{2}\lambda_{2}^{t}\\=z_{t} \end{array}所以对任意的常数 C_{1},C_{2}, 我们都有z_{t}=C_{1}\lambda_{1}^{t}+C_{2}\lambda_{2}^{t} 是方程 z_t =a_1 z_{t-1} + a_2 z_{t-2}的解.还需要验证所有的解具有这个形式. 对于给定的一组初值 z_{0},z_{1},有\begin{array}{llll}C_{1}+C_{2}=z_{0}\\C_{1}\lambda_{1}+C_{2}\lambda_{2}=z_{1}\\\end{array}这个关于 C_{1},C_{2} 的二元一次方程组的系数矩阵的行列式为\left|\begin{array}{cccc} 1 & 1 \\\lambda_{1} & \lambda_{2}\end{array}\right| \not=0所以给定初值z_{0},z_{1},就能唯一确定系数 C_{1},C_{2}. 1-2-2 相等特征根情形\bullet 如果 \lambda_{1} = \lambda_{2}= \lambda , 那么,方程 z_t =a_1 z_{t-1} + a_2 z_{t-2} 的通解为z_t =(C_1 +C_2t) \lambda^t .[证明] 由于 \lambda 是特征多项式\lambda^{2}=a_{1}x+a_{2}的二重根 ,所以它也是 \lambda^{t}=a_{1}\lambda^{t-1}+a_{2}\lambda^{t-2} 的二重根. 把\lambda^{t}=a_{1}\lambda^{t-1}+a_{2}\lambda^{t-2} 的两边对 \lambda 求导,得t\lambda^{n-1}=a_{1}\left( t-1\right)\lambda^{t-2}+a_{2}\left( t-2\right)\lambda^{t-3},因为重根求导之后仍为根,所以 \lambda 是 t\lambda^{n-1}=a_{1}\left( t-1 \right)\lambda^{t-2}+a_{2}\left( t-2 \right)\lambda^{t-3} 的根,两边乘以 \lambda 得到\lambda 也是t\lambda^{t}=a_{1}\left( t-1\right)\lambda^{t-1}+a_{2}\left( t-2\right)\lambda^{t-2} 的根,即z_{t}=t\lambda^{t} 也是特解. 容易验证z_t=(C_1 +C_2t) \lambda^t 都是方程 z_t =a_1z_{t-1} + a_2 z_{t-2} 的解.还需要验证所有的解具有这个形式. 对于给定的一组初值z_{0},z_{1},有\begin{array}{llll}C_{1}=z_{0}\\C_{1}\lambda+C_{2}\lambda=z_{1}\\\end{array}这个关于 C_{1},C_{2} 的二元一次方程组的系数矩阵的行列式为 \left|\begin{array}{cccc} 1& 0 \\ \lambda & \lambda\end{array}\right|\ne0所以给定初值z_{0},z_{1},就能唯一确定系数 C_{1},C_{2}.1-3 二阶齐次线性差分方程(容许实数解)延续上一节的记号.\bullet (i) 若特征方程有两不等实根 \lambda_1,\lambda_2 ,那么这个方程的解为z_t =C_1 \lambda_1^t+C_2 \lambda_2^t . C_1, C_2 为任意实数.\bullet (ii) 若特征方程有两相等实根 \lambda_1=\lambda_2 = \lambda ,那么这个方程的解为z_t =(C_1+C_2t) \lambda^t . C_1, C_2 为任意实数.\bullet (iii) 若特征方程有两共轭复根 \lambda_1=re^{iw}, \lambda_2=re^{-iw}, 那么两个特解为z_t=r^{t}e^{iwt} ,z'_t=r^{t}e^{-iwt},由欧拉公式有z_t=r^{t}[cos(wt)+isin(wt)],z'_t=r^{t}[cos(wt)-isin(wt)].特解含有复数部分,我们希望解是实的,可以凑出新的两个特解r^{t}cos(wt)与 r^{t}sin(wt) , 因此通解为z_t =C_1r^{t}cos(wt) +C_2 r^{t}sin(wt) .1-4 齐次线性差分方程[齐次线性差分方程] 称如下形式的方程为序列 \{z_t, \t\in \mathbb{Z} \} 的齐次线性差分方程:z_t =a_1 z_{t-1} + a_2 z_{t-2} + \cdots +a_p z_{t-p} ( )式中, p\geq 1 , a_1, a_2, \cdots a_p 为实数.[特征方程与特征根] 我们把矩阵A={ \left[ \begin{array}{cccccc} a_1 & a_2 &a_3&\cdots &a_{p-1} & a_p\\ 1 & 0 & 0&\cdots &0 & 0\\ 0 & 1 & 0&\cdots &0 & 0\\ \cdots &\cdots &\cdots&\cdots &\cdots &\cdots \\ 0 & 0 & 0&\cdots &1 & 0\end{array} \right ]} 的特征多项式\lambda^{p}=a_{1}\lambda^{p-1}+a_{2}\lambda^{p-2} +\cdots +a_p称为齐次线性差分方程 ( ) 的特征方程,而它的 p 个非零根\lambda_{1},\lambda_{2},\cdots,\lambda_{p} (可能有重根)叫做特征根.\bullet 如果 \lambda_{i} 为两两不等的实根, 那么,方程( ) 的通解为z_{t}=C_{1}\lambda_{1}^{t}+C_{2}\lambda_{2}^{t}+\cdots +C_{p}\lambda_{p}^{t}.2 线性差分方程[线性差分方程] 称如下形式的方程为序列 \{z_t, \ t\in\mathbb{Z} \} 的线性差分方程:z_t =a_1 z_{t-1} + a_2 z_{t-2} + \cdots +a_p z_{t-p}+h( t). ( )式中, p\geq 1 , a_1, a_2, \cdots a_p 为实数而 h(t) 为t 的已知函数. 并且称方程:z_t =a_1 z_{t-1} + a_2 z_{t-2} + \cdots +a_p z_{t-p} ( )为( )的导出齐次线性差分方程.\bullet 线性差分方程( )的解为导出齐次线性差分方程( )的通解和特解之和.3 例子[例1] (等差数列) 等差数列z_{t+1}=z_{t}+d 为一阶线性差分方程.它的导出齐次方程为 z_{t+1}=z_{t} , 特征根为 \lambda=1 . 于是导出齐次方程的解为 z_t=C.猜测原方程的一个特解为 z_{t} = dt , 那么全部解为 z_{t} = dt+C.[例2] z_{t}= 2 z_{t-1}+1 .它的导出齐次方程为 z_{t}=2z_{t-1} , 特征根为\lambda=2 . 于是导出齐次方程的解为 z_t=C2^t.猜测原方程的一个特解为 z_{t} = 2^t-1 , 那么全部解为z_t=C2^t-1.。
常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n kn =+++-++(1)其中k a a a ,...,,10为常数,称方程(1)为常系数线性方程。
又称方程0...110=+++-++n k k n kn x a x a x a(2)为方程(1)对应的齐次方程。
如果(2)有形如nnx λ=的解,带入方程中可得:0 (11)10=++++--k k k k a a a a λλλ(3)称方程(3)为方程(1)、(2)的特征方程。
显然,如果能求出(3)的根,则可以得到(2)的解。
基本结果如下:(1) 若(3)有k 个不同的实根,则(2)有通解:nkk nnn c c c x λλλ+++=...2211,(2) 若(3)有m 重根λ,则通解中有构成项:nm m nc n c c λ)...(121----+++(3)若(3)有一对单复根βαλi ±=,令:ϕρλi e±=,αβϕβαρarctan,22=+=,则(9)的通解中有构成项:nc n c nnϕρϕρsin cos 21--+(4) 若有m 重复根:βαλi ±=,φρλi e±=,则(2)的通项中有构成项:n nc n c c n nc n c c nm m m m nm m ϕρϕρs i n )...(c o s )...(1221121---++---+++++++综上所述,由于方程(10)恰有k 个根,从而构成方程(2)的通解中必有k 个独立的任意常数。
通解可记为:-n x 如果能得到方程(1)的一个特解:*n x ,则(1)必有通解:=n x -nx +*n x (4)特解可通过待定系数法来确定。
《高等数学三》教学大纲课程名称:高等数学三Advanced Mathematics (3)课程类别:必修课总学时:68+68 学分:4+4主编姓名:李艳会单位:数学系职称:副教授主审姓名:贾保国单位:数学系职称:副教授授课对象:本科生专业:年级:岭南学院:经济学、财政学、保险学、金融学、国际经济与贸易、物流管理、国际商学院:经济学、工商管理、传播学院:艺术设计学、管理学院:旅游管理(酒店管理)、旅游管理(2+2合作办学)、市场营销、财务管理、工商管理、会计学、工商管理(企业人力资源管理)、电子商务。
年级:一年级编写日期:2009-5-18一.课程目的与教学基本要求:本课程是为我校经济,管理类有关专业开设的一门必修基础课。
内容包括微积分、无穷级数、常微分方程与线性代数。
通过教学使学生熟悉与了解上述内容的最基本知识,有助于培养逻辑清晰、思维严谨的判断分析能力,同时为学生以后学习数理统计、运筹学和相关的专业课以及今后的工作,提供一定的数学基础。
通过教学,要求学生理解所传授的数学知识,数学思想和方法,能有意识地运用学到的知识去联系、理解或解决他们专业中所出现的相关问题。
二.课程内容:本课程讲授时间是一学年,每周为4学时,共136学时,其中微积分部分占100 学时,线性代数部分占36 学时。
下面是讲授内容与学时分配第一部分微积分第一章函数及其图形4学时第一节预备知识第二节函数第三节函数的几种基本特性第四节反函数第五节复合函数第六节初等函数第七节简单函数关系的建立本章重点讲授复合函数与初等函数,并介绍分段函数。
本章内容均要求牢固掌握。
第二章极限和连续10学时第一节数列极限第二节函数极限第三节极限的运算法则第四节无穷小和无穷大第五节极限存在准则和两个重要极限第六节函数的连续性及连续函数第七节函数的间断点本章的重点是求极限的一般方法,两个重要极限及函数的连续性,要求牢固掌握。
难点是极限的定义,要求一般掌握。
第三章导数和微分10学时第一节导数概念第二节求导法则第三节基本导数公式第四节高阶导数第五节函数微分第六节导数和微分在经济学中的简单应用本章重点是导数概念、导数的基本公式与运算法则,尤其是复合函数的求导法则,要求学生牢固掌握。