第二章椭圆型方程的有限差分法.
- 格式:ppt
- 大小:975.00 KB
- 文档页数:77
实验五 椭圆型方程差分解法一、 实验题目:矩形区域Ω上Laplace 方程的Dirichlet 问题⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===-==∂∂+∂∂====0|4sin |0|)3(|030402222y y x x u xu u y y u y u xu π 4040303030,40≤≤≤≤≤≤≤≤<<<<x x y y y x二、 实验要求:1、建立内点的五点差分格式。
(取h=1)2、建立包括边界点在内的五点差分格式方程组。
3、用逆矩阵法或雅克比迭代迭代法求解方程组。
4、计算结果(保留至小数点后4位)。
5、由计算结果,写出结论。
三、实验步骤1、建立Laplace 方程与边界条件的差分格式(内节点6个,边界点10个)2、建立6个未知量的差分方程组。
41,,1,11,-+-++++=j i j i j i j i ij u u u u u3、建立6个未知量的矩阵方程。
令],,,,,[232221131211u u u u u u u h =,则6个未知量的矩阵方程为g Hu h h =21其中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=B I I B I I B H ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=4114114B 4、利用边界条件编制程序计算内节点处的数值解lm u (3,2,1=l 2,1=m ) 四、实验源代码 #include<stdio.h> #include<math.h> #define e 0.000001 void main(){ int i,j,k,flag=1,sum=0;doublea[5][4]={{0,2,2,0},{0.707,0,0,0},{1,0,0,0},{0.707,0,0,0},{0,0,0,0}}; double b[6],c[6]; while(flag) { sum++; flag=0;k=0;for(i=1;i<=3;i++) for(j=1;j<=2;j++) {b[k]=a[i][j];a[i][j]=(a[i-1][j]+a[i+1][j]+a[i][j-1]+a[i][j+1])/4;c[k]=a[i][j];k++;}for(k=0;k<=5;k++)if(fabs(b[k]-c[k])>e)flag=1;}for(k=0;k<=5;k++)printf("%f\n",b[k]);printf("%d",sum);}五、实验结果:.1,63850525.1,u.1[.1,4123]5369.2,.0,53629685h。
有限差分法(Finite Difference Method)是一种数值方法,用于求解偏微分方程(PDEs)的近似解。
这种方法通过将连续的微分方程离散化,将其转化为一系列代数方程,从而在计算机上进行求解。
有限差分法特别适用于求解具有固定边界条件和初始条件的偏微分方程。
以下是有限差分法求解偏微分方程的基本步骤:1. 网格划分:首先,将问题的连续域划分为离散的网格点。
对于二维问题,这通常涉及到在空间和时间上进行网格划分,形成网格点的集合。
2. 离散化:使用差分公式将微分方程中的导数替换为差分。
例如,一阶导数可以用前向差分或后向差分近似,而二阶导数可以用中心差分近似。
3. 构建差分方程:在每个网格点上应用差分公式,将微分方程转化为代数方程。
对于边界条件,也需要进行相应的离散化处理。
4. 求解线性方程组:差分方程通常会导致一个线性方程组。
对于大型问题,这可能需要使用迭代方法或直接求解器来找到解。
5. 稳定性分析:在求解过程中,需要确保数值解的稳定性。
这涉及到对时间步长和空间步长的选择,以满足CFL(Courant-Friedrichs-Lewy)条件。
6. 迭代求解:对于时间依赖的问题,如热传导或波传播,可以通过时间步进方法(如显式或隐式方法)来迭代求解。
7. 结果分析:最后,分析数值解以验证其准确性,并与解析解(如果存在)进行比较。
有限差分法在处理规则区域和简单边界条件的问题时非常有效。
然而,对于具有复杂几何形状或边界条件的问题,可能需要更高级的数值方法,如有限元方法(FEM)或边界元方法(BEM)。
在实际应用中,有限差分法通常与计算机软件结合使用,如MATLAB、Python的SciPy库等,以便于高效地处理大规模问题。