支持向量机原理PPT课件
- 格式:ppt
- 大小:387.50 KB
- 文档页数:36
支持向量机(SVM )原理及应用一、SVM 的产生与发展自1995年Vapnik(瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。
同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。
SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。
),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。
例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。
此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。
支持向量机简介与基本原理支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,被广泛应用于模式识别、数据分类以及回归分析等领域。
其独特的优势在于可以有效地处理高维数据和非线性问题。
本文将介绍支持向量机的基本原理和应用。
一、支持向量机的基本原理支持向量机的基本思想是通过寻找一个最优超平面,将不同类别的数据点分隔开来。
这个超平面可以是线性的,也可以是非线性的。
在寻找最优超平面的过程中,支持向量机依赖于一些特殊的数据点,称为支持向量。
支持向量是离超平面最近的数据点,它们对于确定超平面的位置和方向起着决定性的作用。
支持向量机的目标是找到一个超平面,使得离它最近的支持向量到该超平面的距离最大化。
这个距离被称为间隔(margin),最大化间隔可以使得分类器更具鲁棒性,对新的未知数据具有更好的泛化能力。
支持向量机的求解过程可以转化为一个凸优化问题,通过求解对偶问题可以得到最优解。
二、支持向量机的核函数在实际应用中,很多问题并不是线性可分的,此时需要使用非线性的超平面进行分类。
为了解决这个问题,支持向量机引入了核函数的概念。
核函数可以将低维的非线性问题映射到高维空间中,使得原本线性不可分的问题变得线性可分。
常用的核函数有线性核函数、多项式核函数、高斯核函数等。
线性核函数适用于线性可分问题,多项式核函数可以处理一些简单的非线性问题,而高斯核函数则适用于复杂的非线性问题。
选择合适的核函数可以提高支持向量机的分类性能。
三、支持向量机的应用支持向量机在实际应用中有着广泛的应用。
在图像识别领域,支持向量机可以用于人脸识别、物体检测等任务。
在生物信息学领域,支持向量机可以用于蛋白质分类、基因识别等任务。
在金融领域,支持向量机可以用于股票市场预测、信用评估等任务。
此外,支持向量机还可以用于文本分类、情感分析、异常检测等领域。
由于其强大的分类性能和泛化能力,支持向量机成为了机器学习领域中的重要算法之一。
SVM⽀持向量机原理(⼀)SVM的简介⽀持向量机(Support Vector Machine)是Cortes和Vapnik于1995年⾸先提出的,它在解决⼩样本、⾮线性及⾼维模式识别中表现出许多特有的优势,并能够推⼴应⽤到函数拟合等其他机器学习问题中[10]。
⽀持向量机⽅法是建⽴在统计学习理论的VC 维理论和结构风险最⼩原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能⼒(即⽆错误地识别任意样本的能⼒)之间寻求最佳折衷,以期获得最好的推⼴能⼒[14](或称泛化能⼒)。
以上是经常被有关SVM 的学术⽂献引⽤的介绍,我来逐⼀分解并解释⼀下。
Vapnik是统计机器学习的⼤⽜,这想必都不⽤说,他出版的《Statistical Learning Theory》是⼀本完整阐述统计机器学习思想的名著。
在该书中详细的论证了统计机器学习之所以区别于传统机器学习的本质,就在于统计机器学习能够精确的给出学习效果,能够解答需要的样本数等等⼀系列问题。
与统计机器学习的精密思维相⽐,传统的机器学习基本上属于摸着⽯头过河,⽤传统的机器学习⽅法构造分类系统完全成了⼀种技巧,⼀个⼈做的结果可能很好,另⼀个⼈差不多的⽅法做出来却很差,缺乏指导和原则。
所谓VC维是对函数类的⼀种度量,可以简单的理解为问题的复杂程度,VC维越⾼,⼀个问题就越复杂。
正是因为SVM关注的是VC维,后⾯我们可以看到,SVM解决问题的时候,和样本的维数是⽆关的(甚⾄样本是上万维的都可以,这使得SVM很适合⽤来解决⽂本分类的问题,当然,有这样的能⼒也因为引⼊了核函数)。
结构风险最⼩听上去⽂绉绉,其实说的也⽆⾮是下⾯这回事。
机器学习本质上就是⼀种对问题真实模型的逼近(我们选择⼀个我们认为⽐较好的近似模型,这个近似模型就叫做⼀个假设),但毫⽆疑问,真实模型⼀定是不知道的(如果知道了,我们⼲吗还要机器学习?直接⽤真实模型解决问题不就可以了?对吧,哈哈)既然真实模型不知道,那么我们选择的假设与问题真实解之间究竟有多⼤差距,我们就没法得知。
支持向量机(SVM)原理及应用概述支持向量机(SVM )原理及应用一、SVM 的产生与发展自1995年Vapnik(瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。
同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。
SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。
),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。
例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。
此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。
支持向量机简介及原理解析支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,广泛应用于分类和回归问题。
它的原理基于统计学习理论和结构风险最小化原则,具有较强的泛化能力和鲁棒性。
本文将介绍SVM的基本概念、原理以及其在实际应用中的优势。
一、SVM的基本概念SVM是一种监督学习算法,其目标是通过构建一个最优的超平面来实现数据的分类。
在二分类问题中,SVM将数据点分为两个类别,并尽量使得两个类别之间的间隔最大化。
这个超平面被称为“决策边界”,而距离决策边界最近的样本点被称为“支持向量”。
二、SVM的原理SVM的原理可以分为线性可分和线性不可分两种情况。
对于线性可分的情况,SVM通过构建一个最优的超平面来实现分类。
最优的超平面是使得两个类别之间的间隔最大化的超平面,可以通过最大化间隔的优化问题来求解。
对于线性不可分的情况,SVM引入了“松弛变量”和“软间隔”概念。
松弛变量允许一些样本点出现在错误的一侧,软间隔则允许一定程度的分类错误。
这样可以在保持间隔最大化的同时,允许一些噪声和异常点的存在。
三、SVM的优势SVM具有以下几个优势:1. 高效性:SVM在处理高维数据和大规模数据时表现出色。
由于SVM只依赖于支持向量,而不是整个数据集,因此可以减少计算量和内存消耗。
2. 泛化能力:SVM通过最大化间隔来寻找最优的决策边界,具有较强的泛化能力。
这意味着SVM可以很好地处理未见过的数据,并具有较低的过拟合风险。
3. 鲁棒性:SVM对于噪声和异常点具有较好的鲁棒性。
通过引入松弛变量和软间隔,SVM可以容忍一定程度的分类错误,从而提高了模型的鲁棒性。
4. 可解释性:SVM的决策边界是由支持向量决定的,这些支持向量可以提供关于数据分布的重要信息。
因此,SVM具有较好的可解释性,可以帮助我们理解数据背后的规律。
四、SVM的应用SVM广泛应用于分类和回归问题,包括图像识别、文本分类、生物信息学等领域。
支持向量机分类原理
支持向量机是一种新型的智能运算技术,它是在模式识别、机器学习、数据挖掘等领域发展起来的一种技术。
支持向量机的核心思想是泛函分析的方法,它利用内积的方法将数据转换到高维空间,使得在这个高维空间中,可以使用支持向量机来分类数据。
支持向量机分类原理是通过把数据空间(feature space)中的
点映射到高维空间(feature space),通过内积的向量距离,来计算两个数据点之间的距离。
在把数据映射到高维空间之后,可以根据数据的距离来计算支持向量机(Support Vector Machine , SVM )的
分类模型参数。
支持向量机分类模型的核心思想是:在数据空间中构建一个函数,并且根据给定的训练数据来确定这个函数的参数,从而使得这个函数可以有效地分类数据点。
这个函数就是所谓的支持向量机分类模型。
支持向量机分类模型的核心思想就是根据数据的距离,来决定支持向量机(SVM)的参数,从而使得数据可以被有效地分类。
支持向
量机分类模型的目标是构建一个函数,其中包含两类参数:超平面参数(w)和偏置参数(b),这个函数可以将数据映射到高维空间中,
从而使得分类变得简单。
- 1 -。
SVM⽀持向量机算法-原理篇本篇来介绍SVM 算法,它的英⽂全称是Support Vector Machine,中⽂翻译为⽀持向量机。
之所以叫作⽀持向量机,是因为该算法最终训练出来的模型,由⼀些⽀持向量决定。
所谓的⽀持向量,也就是能够决定最终模型的向量。
SVM 算法最初是⽤来解决⼆分类问题的,⽽在这个基础上进⾏扩展,也能够处理多分类问题以及回归问题。
1,SVM 算法的历史早在1963 年,著名的前苏联统计学家弗拉基⽶尔·⽡普尼克在读博⼠期间,就和他的同事阿列克谢·切尔沃宁基斯共同提出了⽀持向量机的概念。
但由于当时的国际环境影响,他们⽤俄⽂发表的论⽂,并没有受到国际学术界的关注。
直到 20 世纪 90 年代,⽡普尼克随着移民潮来到美国,⽽后⼜发表了 SVM 理论。
此后,SVM 算法才受到应有的重视。
如今,SVM 算法被称为最好的监督学习算法之⼀。
2,线性可分的 SVMSVM 算法最初⽤于解决⼆分类问题,下⾯我们以最简单的⼆维平⾯上的,线性可分的数据点来介绍⽀持向量机。
假设平⾯上有⼀些不同颜⾊的圆圈,这些圆圈是线性可分的,也就是可⽤⼀条直线分开。
如下:现在想在平⾯上画出⼀条直线,将这些圆圈分开。
通过观察,你很容易就能画出⼀条直线,如下:但是这样的直线会有很多,它们都能正确的划分两类圆圈,就像下⾯这幅图中的⼀样:那么哪条直线才是最好的呢?通过⾁眼我们⽆法找到那条最好的直线。
但是就上图中的三条直线⽽⾔,明显你会觉得中间那条红线,会⽐两侧的两条线要更好。
因为,如果有⼀些圆圈往中间靠拢,那么两侧的那两条直线就不能将两种圆圈划分开了。
⽽中间那条直线依然可以划分两种圆圈。
如下:因此,中间那条红线会⽐两侧的两条直线更好,更安全。
虽然通过⾁眼我们能知道哪条直线更好,但是怎样才能找到最好的那条直线呢?⽽ SVM 算法就可以帮我们找到那条最好的直线。
3,找到最好的直线下⾯我们来看下如何找到最好的那条直线。