自适应过滤法
- 格式:doc
- 大小:38.50 KB
- 文档页数:1
1.统计预测的概念: 预测就是根据过去和现在估计未来,预测未来。
2.三要素:实际资料是预测的依据,经济理论是预测的基础,数学建模是预测的手段3.统计预测、经济预测的联系和区别:主要联系它们都以经济现象的数值作为其研究的对象:它们都直接或间接地为宏观和微观的市场预测、管理决策、制定政策和检查政策等提供信息;统计预测为经济定量预测提供所需的统计方法论;主要区别:从研究的角度看,统计预测和经济预测都以经济现象的数值作为其研究对象,但着眼点不同。
前者属于方法论研究,其研究的结果表现为预测方法的完善程度;后者则是对实际经济现象进行预测,是一种实质性预测,其结果表现为对某种经济现象的未来发展做出判断。
从研究的领域来看,经济预测是研究经济领域中的问题,而统计预测则被广泛地应用于人类活动的各个领域。
4统计预测的分类:定性预测和定量预测两类,其中定量预测法又可大致分为回归预测和时间序列预测;按预测时间长短,分为近期预测-1个月、短期预测-1-3个月、中期预测-3个月-2年 和长期预测 – 2年以上 ;按预测是否重复,分为一次性预测和反复预测 5.预测方法考虑三个问题:合适性,费用,精确性 6.统计预测的原则:连贯原则,类推原则7.统计预测的步骤:确定预测目的,搜索和审核资料选择预测类型和方法,分析误差改进模型,提出预测报告 8.德尔菲法:是根据有专门知识的人的直接经验,对研究的问题进行判断、预测的一种方法,也称专家调查法。
它是美国兰德公司于1964年首先用于预测领域的。
特点:反馈性,匿名性,统计性;优点:加快预测速度节约预测费用,获得不同的价值观点和意见,适用长期预测和对新产品的预测,历史资料不足或不可预测因素多时尤为适用;缺点:分地区的顾客群或产品的预测可能不可靠,责任分散,专家的意见未必完整9.主观概率法步骤:1准备相关资料2编制主观概率调查表3汇总整理4判断预测 10.情景预测法特点:1使用范围广不受假设条件限制2考虑问题全面应用灵活3定性和定量分析结合4能及时发现可能出现的难题减轻影响。
§3.5 自适应过滤法一、自适应过滤法的基本过程自适应过滤法的基本预测公式为:∑=+-+--+=+++=N i i t iN t N t t t y y y y y 1111211ˆωωωω 式中:y t ˆ1+为第t+1期的预测值;ωi 为第t-i+1期的观测值权数; y i t 1+-为第t-i+1期的观测值;N 为权数的个数。
其调整权数的公式为:y e k i t i i i 112+-+⋅'+=ωω式中:N i ,,2,1 =,n N N t ,,1, +=n 为序列数据的个数ωi 为调整前的第i 个权数ω'i为调整后的第i 个权数 k 为学习常数e i 1+为第t +1期的预测误差调整后的一组权数应等于旧的一组权数加上误差调整项,这个调整项包括预测误差、原观测值和学习常数等三个因素。
学习常数k 的大小决定权数调整的速度。
调整到预测误差没有明显改进时,就认为获得了一组“最佳”权数,用于实际预测。
二、N 、k 值和初始值权数的确定一般来说,当时间序列的观测值呈季节变动时,N 应取季节性长度值。
如果时间序列无明显的周期变动,则可用自相关系数法来确定,即取N 为最高自相关系数的滞后时期。
K 的取值一般可定为1/N 。
也可以用不同的K 值来进行确定,以确定一个能使S 最小的K 值。
初始权数一般用1/N 作为初始权系数。
或根据现实情况决定。
()N i N i ,,3,2,1,/1 ==ω自适应过滤法的优点:1)技术比较简单,可根据预测意图来选择权数的个数和学习常数,以控制预测。
也可以由计算机自动选定。
2)它使用了全部历史数据来寻求最佳权系数。
并随数据轨迹的变化而不断更新权数,从而不断改进预测。
第六章 自适应过滤法教学目标:通过本章学习,使学生能掌握自适应过滤法的基本原理及其应用过程。
教学内容:第一节 自适应过滤法的基本原理自适应过滤法与移动平均法、指数平滑法一样,也是一种时间序列预测技术,即它是建立在时间序列的原始数据基础之上,通过对历史观察值进行某种加权平均来预测的。
这种方法在原始数据的基本模式比较复杂时使用(具有长期趋势性变动或季节性变动的确定型时间序列),常常可以取得优于指数平滑法和移动平均法的预测结果。
一、自适应过滤法的基本原理设t x x ,,1 为某一时间序列,则有如下有关时间序列的一般预测模型:11211+--+∧+++=p t p t t t x x x x φφφ 6-1式中,1+∧t x 是1+t 期的预测值,1+-i t x 是第1+-i t 期的观察值,i φ(p i ,,1 =)是权数,p 是权数的个数。
第五章中所讨论的移动平均法和指数平滑法以及本章所讨论的自适应过滤法,实际上都可以用上述模式来概括,如:对于一次移动平均法:pi 1=φ (p i ,,1 =) 对于一次指数平滑法:1)1(--=i i ααφ不同的是,上述两种方法的权数都是固定的,而自适应过滤法中的权数i φ则是根据预测误差i e 的大小不断调整修改而获得的最佳权数。
自适应过滤法的基本原理就在于通过其反复迭代以调整加权系数的过程,“过滤”掉预测误差,选择出“最佳”加权系数用于预测。
整个计算过程从选取一组初始加权系数开始,然后计算得到预测值及预测误差(预测值与实际值之差),再根据一定公式调整加权系数以减少误差,经过多次反复迭代,直至选择出“最佳”加权系数。
由于整个过程与通信工程中过滤传输噪声的过程极为接近,故被称为“自适应过滤法”。
运用自适应过滤法调整权数的计算公式为:112+-++='i t t i i x ke φφ 6-2式中i φ'(p i ,,1 =)是调整后的权数;i φ(p i ,,1 =)是调整前的权数,k 为调整系数,也称学习常数;111+∧++-=t t t x x e 是第1+t 期的预测误差;1+-i t x 是第1+-i t 期的观测值。
第一章¥第二章统计预测概述一、单项选择题8、统计预测的研究对象是()A、经济现象的数值B、宏观市场C、微观市场D、经济未来变化趋势答:A二、多项选择题4、定量预测方法大致可以分为()|A、回归预测法B、相互影响分析法C、时间序列预测法D、情景预测法E、领先指标法答:AC三、名词解释2、统计预测答:即如何利用科学的统计方法对事物的未来发展进行定量推测,并计算概率置信区间。
四、简答题1、试述统计预测与经济预测的联系和区别。
}答:两者的主要联系是:①它们都以经济现象的数值作为其研究的对象;②它们都直接或间接地为宏观和微观的市场预测、管理决策、制定政策和检查政策等提供信息;③统计预测为经济定量预测提供所需的统计方法论。
两者的主要区别是:①从研究的角度看,统计预测和经济预测都以经济现象的数值作为其研究对象,但着眼点不同。
前者属于方法论研究,其研究的结果表现为预测方法的完善程度;后者则是对实际经济现象进行预测,是一种实质性预测,其结果表现为对某种经济现象的未来发展做出判断;②从研究的领域来看,经济预测是研究经济领域中的问题,而统计预测则被广泛的应用于人类活动的各个领域。
第二章定性预测法一、单项选择题3、()需要人们根据经验或预感对所预测的事件事先估算一个主观概率。
A 德尔菲法B 主观概率法C 情景分析法D 销售人员预测法|答:B二、多项选择题2、主观概率法的预测步骤有:A 准备相关资料B 编制主观概率表C 确定专家人选D 汇总整理E 判断预测答:A B D E三、名词解释2、主观概率答:是人们对根据某几次经验结果所作的主观判断的量度。
\四、简答题1、定型预测有什么特点它和定量预测有什么区别和联系答:定型预测的特点在于:(1)着重对事物发展的性质进行预测,主要凭借人的经验以及分析能力;(2)着重对事物发展的趋势、方向和重大转折点进行预测。
定型预测和定量预测的区别和联系在于:定性预测的优点在于:注重于事物发展在性质方面的预测,具有较大的灵活性,易于充分发挥人的主观能动作用,且简单的迅速,省时省费用。
自适应小波过滤自适应小波过滤是一种信号处理方法,它利用小波变换的多尺度分析特性,能够有效地去除信号中的噪声和干扰,从而提取出信号的有效信息。
本文将从原理、应用和优势等方面介绍自适应小波过滤。
一、原理自适应小波过滤是基于小波变换的信号处理方法,它将信号分解为不同尺度的小波系数,通过对小波系数的阈值处理和重构,实现信号的去噪和降噪。
具体步骤如下:1. 对信号进行小波变换,得到小波系数。
2. 对小波系数进行阈值处理,将小于阈值的系数置零。
3. 对处理后的小波系数进行逆小波变换,得到去噪后的信号。
二、应用自适应小波过滤在信号处理领域有着广泛的应用。
以下是一些常见的应用场景:1. 语音信号去噪:在语音通信和语音识别等应用中,常常会受到噪声的干扰,使用自适应小波过滤可以有效去除噪声,提高语音信号的质量和识别准确度。
2. 图像去噪:在数字图像处理中,自适应小波过滤可以用于去除图像中的噪声,提升图像的清晰度和细节信息。
3. 生物信号处理:在生物医学工程领域,如心电信号、脑电信号等的处理中,自适应小波过滤可以去除噪声和干扰,提取出有效的生物信号。
4. 振动信号分析:在机械故障检测和诊断中,自适应小波过滤可以用于提取故障信号,帮助判断设备的工作状态和故障类型。
三、优势相比于传统的滤波方法,自适应小波过滤具有以下优势:1. 多尺度分析:小波变换可以将信号分解成不同频率的小波系数,能够更好地捕捉信号的细节信息。
2. 自适应阈值:自适应小波过滤可以根据信号的特点自动调整阈值,避免了手动选择阈值的主观性。
3. 高效性:自适应小波过滤使用快速小波变换算法,计算速度较快,适用于实时处理和大规模数据处理。
4. 鲁棒性:自适应小波过滤对信号的幅度变化和噪声的影响较小,能够有效处理各种复杂信号。
自适应小波过滤是一种有效的信号处理方法,具有广泛的应用前景。
它可以在语音、图像、生物医学和机械故障等领域中去除噪声和干扰,提取出信号的有效信息。
自适应过滤法和灰色预测法在高校生源分析与预测中的应用摘要本文通过查找中国年鉴中的相关数据,通过ecxel及matlab等数学软件对其进行处理分析,并运用自适应过滤法与灰色预测法对我国高校生源紧张程度进行预测,得出我国将在2015年前后出现生源危机状况。
关键词高校生源;自适应过滤法;灰色预测法中图分类号c961.9 文献标识码a 文章编号 1674-6708(2011)35-0165-02高校生源紧张程度是指,高校录取比例小于1时,即高考人数大于高校招生人数,则为生源充足;反之,录取比例大于1时,即高考人数小于高校招生人数,则为生源不足,因此高校录取比例的值的大小即可表示高校生源的紧张程度。
高考人数的变化情况将对中国教育的未来产生深远影响,因此有必要对我国未来高校生源情况作出预测,从而根据预测情况进行相应政策的制定。
1 高校生源紧张情况分析预对我国未来高考生源做出预测,首先必须要以准确的中国人口自然增长率和历年中国高考报考人数及高校招生人数作为基础。
根据查找《中国统计年鉴2010》中的相关数据,整理出《我国高考录取比例及人口自然增长率统计表》。
根据《我国高考录取比例及人口自然增长率统计表》中数据,我国高考人数从1999年开始逐年递增,到2007年达到峰值,从2007年开始,高考人数呈现下降趋势,总体呈抛物线型,可以推测,在政策不变的情况下,我国未来高考人数将继续走低。
而对于我国高考招生人数,从1999年开始呈现明显直线上升趋势,且上升幅度较小。
总体上说,高考人数的变化幅度大于高校招生人数。
影响高校生源状况的因素,除了如高校录取比例等可量化的因素外,还包括国家、政府教育政策等等。
因此,为了尽量减少不可量化因素的影响,本文将采用近几年的数据(即2007-2010年的数据)对我国高校未来生源状况进行预测分析。
2 自适应过滤法模型2.1理论依据自适应过滤法就是从自回归系数的一组初始估计值开始利用公式:逐次迭代,通过残差e值,不断调整迭代直到取得合适的系数,以实现自回归系数的最优化。
自适应滤波算法及其应用研究随着科技的不断发展,我们对信号处理的要求也越来越高。
因此,滤波器的设计和优化就显得至关重要。
自适应滤波算法以其广泛应用于信号处理和控制领域,受到研究者的普遍关注。
本文将介绍自适应滤波算法及其应用研究。
一、自适应滤波算法概述自适应滤波是指滤波器能够自动调节其参数以适应输入信号的变化。
在实际应用中,输入信号通常是非稳态的,而传统的滤波器无法有效处理这些非稳态信号。
相反,自适应滤波器能够根据输入信号的实际情况来自动调整其滤波参数,以达到更好的滤波效果。
自适应滤波器通常具有以下几个基本特征:1. 自动调节参数自适应滤波器可以根据输入信号的特征自动调节其参数。
这些参数通常是滤波器的带宽、增益、延迟等。
2. 可适应采样率自适应滤波器能够根据输入信号的频率来自动调整采样率。
这使得自适应滤波器能够更好地适应不同频率的信号。
3. 更好的滤波效果与传统的固定滤波器相比,自适应滤波器的滤波效果更好,可以有效地过滤掉噪声和干扰信号。
二、常见的自适应滤波算法1. 最小均方差滤波算法最小均方差滤波算法是自适应滤波器中最常见的一种算法。
该算法通过最小化误差平方和来调整滤波器参数。
这个算法不仅可以用于信号处理,还可以用于控制系统中的自适应控制。
2. 递归最小二乘滤波算法递归最小二乘滤波算法是一种基于递归最小二乘算法的自适应滤波算法。
该算法通过计算输入信号的残差来优化滤波器参数。
在实际应用中,递归最小二乘滤波算法通常比最小均方差滤波算法更有效。
3. 梯度自适应滤波算法梯度自适应滤波算法是一种基于梯度算法的自适应滤波算法。
该算法通过计算残差的梯度来调整滤波器参数。
相比其他自适应滤波算法,梯度自适应滤波算法具有更好的收敛性。
三、自适应滤波算法的应用自适应滤波算法在信号处理和控制领域中有着广泛的应用。
下面我们将介绍其中几个应用案例。
1. 降噪在语音处理、音频处理和图像处理领域,自适应滤波算法常常用于降噪。
通过对输入信号进行滤波,可以去除不必要的噪声信号,从而获得更清晰、更可靠的信号。
1. 应用回归预测法进行预测时,应注意哪些问题? ①应用回归预测法时,应首先确定变量之间是否存在相关关系。
如果变量之间不存在相关关系,对这些变量应用回归预测法就会得出错误的结果 ②用定性分析判断现象之间的依存关系; ③避免回归预测的任意外推; ④应用合适的数据资料
2.
解:
̂=2.546567+0.008895 i̇
当x=1400时, ̂=
14.997625
t . 5(6)=2.447
t . 5=1.943
预测区间:
̂±t a
SE
(1) 广告费支出与销售额之间是否存在显著的相关关系? (2) 计算回归模型参数
(3) 回归模型能解释销售额变动的比例有多大? (4) 计算D-W 统计量
(5)如下周的广告费支出为6700元,试预测下周的销售额(取置信度α=0.05) 解:令每周广告支出为x ,每周的销售额为y 。
每周的广告支出费与销售量的相关系数r=。
两者存在显著的相关关系。
(2)设回归模型为:
̂i=+i
=∑(x−x )(y−y)
=0.001072885,==8.303927492
∑(x−x )2
(3)每周的广告支出费占销售量的75%。
自适应过滤器设计方法及其性能分析自适应过滤器是一种常见的数字信号处理技术,其基本功能是通过对输入信号进行滤波、降噪、频率补偿等处理,以提高整个信号处理系统的性能和可靠性。
自适应过滤器的设计和实现涉及到多种数学和工程学科,其中有一些常用的设计方法和性能评估指标,下面将逐一介绍。
设计方法自适应过滤器的设计方法基本上可以分为两类:线性方法和非线性方法。
线性方法主要采用线性迭代最小二乘法(LMS)和最小均方差(MSE)算法,在一定条件下实现对信号的降噪和增强。
非线性方法则采用基于神经网络的学习算法,如反向传播算法(BP)、自组织特征映射算法(SOM)等,可以满足更复杂的信号处理需求。
以LMS为例,其基本思路是根据误差信号的方差和相关性对滤波器系数进行迭代式更新,直至系统输出误差稳定或收敛到一定的范围内。
在这个过程中,需要考虑多个参数的选择和优化,如步长因子、控制策略、收敛速度等,以保证系统的稳定性和响应速度。
非线性方法同样需要考虑多个因素的影响,如网络结构、节点大小、激活函数等,以达到最佳的拟合效果和泛化能力。
同时,非线性方法在训练过程中容易陷入局部极小值,需要采用一些加速和优化算法来提高搜索精度和效率。
性能分析自适应过滤器的性能评价通常包括多个方面,如信道衰落补偿、频率响应特性、误差抑制能力、抗噪声性能等。
接下来将对其中的一些指标进行详细分析。
信道衰落补偿在无线通信系统中,信号往往会受到多径衰落、多普勒效应等因素的影响,导致信道传输质量下降。
为了解决这一问题,可以采用自适应滤波器对接收信号进行处理,补偿信道的频率相位及幅度变化,从而实现信号质量的提升。
频率响应特性频率响应特性是评估自适应滤波器性能的重要指标之一。
在频域上,滤波器的幅度和相位响应会对信号的频率分布和相位差造成不同程度的影响,进而影响整个信号处理系统的性能。
因此,需要对自适应滤波器的频率响应进行优化,以实现对信号的有效滤波和处理。
误差抑制能力误差抑制能力是对自适应滤波器鲁棒性的评价,其主要表现在滤波器对系统误差和干扰的响应能力。
预测:根据过去和现在估计未来,预测未来统计预测:用科学的统计方法对事物的未来发展进行定量推测,并计算概率置信区间统计预测三要素:实际资料是依据,经济理论是基础,数学模型是手段影响预测的因素:费用的高低,预测方法的难易程度,预测结果的精确程度按预测方法分类:(1)定性预测法:通过预测者所掌握的信息结合各种因素对事物的发展前景做出判断,并将判断定量化(2)回归预测法:研究变量与变量之间相互关系的数理统计方法,从一个值或几个自变量的值去预测因变量的值(3)时间序列预测法:考虑变量随时间变化发展规律并用该变量以往的统计资料简历数学模型做外推按预测时间分类:近期预测,短期预测,中期预测,长期预测预测方法的选择:考虑合适性、费用和精确性各种预测方法特点:(1)定性预测法:短期、中期、长期,适用于对缺乏历史统计资料或趋势面临转折的事件进行预测,需做大量的调查研究工作(2)一元线性回归预测法:短期、中期,适用于自变量与因变量两个变量之间存在着线性关系,需为两个变量收集历史数据(3)多元线性回归预测法:短期、中期,适用于因变量与两个或两个以上自变量之间存在着线性关系,需为所有变量收集历史数据(4)非线性回归预测法:短期、中期,适用于因变量与一个或多个自变量之间存在某种非线性关系,必须收集历史数据,并用几个非线性模型实验(5)趋势外推法:中期、长期,适用于当被预测项目的有关变量用时间表示时,用非线性回归,只需要因变量的历史数据,但用趋势图试探是费时统计预测研究步骤:(1)确定预测目的(2)搜集和审核资料(3)选择预测模型和方法(4)分析预测误差、改进预测模型(5)提出预测报告定性预测的优缺点:优点在于注重事物发展在性质方面的预测,具有较大的灵活性,易于充分发挥人的主观能动作用,且简单迅速,省时、省费用;缺点在于易受主观因素影响,比较注重人的经验和主观判断能力,从而易受人的知识、经验和能力的多少大小的束缚和限制,尤其缺乏对事物发展做数量上的精确描述定量预测的优缺点:优点在于注重事物发展在数量方面的分析,重视对事物发展变化的程度做数量上的描述,更多的依据历史统计资料,较少受主观因素的影响,可以利用电子计算机对统计发放和数学方法做大量计算处理;缺点在于比较机械,不以灵活掌握,对信息资料的质量和数量要求较高,且不易处理有较大波动的信息资料,更难以预测事物质的变化德尔菲法的特点:(1)反馈性:表现在多次作业、反复、综合、整理、归纳和修正,但不是漫无边际,而是有组织有步骤的进行(2)匿名性:免除心理干扰影响(3)统计性:对各位专家的估计或预测数进行统计,然后采用平均数或中位数统计出量化结果德尔菲法的优缺点:优点在于(1)加快预测速度,节约预测费用(2)获得各种不同但有价值的观点和意见(3)适用于长期预测和对新产品的预测,在历史资料不足或不可测因素较多时尤为适用缺点在于(1)对于分地区的顾客群或产品的预测可能不可靠(2)责任比较分散(3)专家的意见有时可能不完整或不切合实际厂长(经理)评判意见法优缺点:优点在于:(1)迅速、及时和经济(2)发挥集体智慧,是预测结果比较准确可靠(3)不需要大量统计资料,更适用于不可控因素较多的产品进行销售预测(4)市场发生变化时可以立即修正缺点在于:(1)结果用一首主观因素影响(2)对市场变化、顾客愿望等问题了解不细,预测结果一般化估计量要求:好的估计量满足一致性、无偏性和有效性.定性分析注意事项:在运用时注意它的作用与范围,超过这个范围去推断或预测,可能会得到错误结论.直线回归适用范围:只适宜做中、短期预测,不宜于做长期预测关于对数据资料的要求问题:(1)关于数据资料的准确性问题(2)关于数据资料的可比性和独立性问题(3)关于社会经济现象基本稳定的问题正确应用回归分析方法注意事项:(1)用定性分析判断现象之间的依存关系(2)避免回归预测的任意外推(3)应用合适的数据资料长期趋势因素(T):反映了经济现象在一个较长时间内的发展方向,在一个相当长的时间内表现为一种近似直线的持续向上或持续向下或平稳的趋势,也可以表现为类似指数趋势或其它曲线趋势的形式。
统计预测与决策问题: 敏感性分析及其步骤敏感性分析:在决策过程中,分析概率值变化对最优方案选择所产生的影响大小和方向,以及概率变化引起方案变化的临界点.敏感性分析的步骤:1 求出在保持最优方案稳定的前提下,自然状态概率所容许的变动范围;2 衡量用于预测和估算这些自然状态概率的方法,其精度是否能保证所得概率值在此允许的误差范围内变动;3 判断所做决策的可靠性;问题: 厂长经理评判意见法的优缺点优点:1 预测迅速、及时和经济;2 可发挥机体的智慧,使预测结果比较准确可靠;3 无需大量的统计资料更适用于对不可控因素较多的产品进行预测;4 如果市场情况发生变化,可立即进行修正;缺点:1 预测结果易受到主观因素影响;2 预测结果一般化;问题: 经济时间序列的变化影响有长期趋势因素、季节变动因素、周期变动因素、不规则变动因素等.问题: 一元线性回归模型进行检验的指标主要有标准误差、相关系数、可决系数.问题: 损益矩阵组一般由三部分组成:可行方案;自然状态及其发生的概率;各种行动方案的可能结果.把以上三部分内容在一个表上表现出来,该表就称为损益矩阵表.问题: 统计决策的原则应当遵循以下基本原则: 1可靠性原则决策必须建立在大量的准确、及时和完整的信息资料基础上. 2可行性原则拟定行动方案时,必须从实际出发认真进行可行性分析. 3效益最佳原则即通过各方案的分析比较,所选定的行动方案应具有较明显的经济性. 4合理性原则决策的直接目的是选出合理的方案. 上面介绍的只是统计决策的基本原则,除此之外,还有民主性原则、开拓性原则等.问题: 统计决策具备的条件必须具备四个基本条件:1决策目标必须明确;2存在两个以上的行动方案;3每个行动方案的效果必须是可以计算的;4能够预测出影响决策目标的但决策者无法控制的各种情况以及它们发生的概率.问题: 回归预测与时间序列预测精度比较预测实证研究表明,各类预测方法之间并不存在明显优劣,只是不同方法具有各自不同的特点;回归预测和时间序列预测是两类不同的定量预测方法,它们根据不同的角度对经济现象进行预测,回归预测注重分析影响预测对象的各因素所造成的影响,而时间序列预测则根据预测对象本身的历史数据来预测其未来问题: 影响预测误差大小经济现象变化模式或关系的存在是进行预测的前提条件.因此,影响预测误差的主要因素有:1模式或关系的识别错误;2模式或关系的不确定性;3模式或现象之间关系的变化性问题: 关于预测精度1、对某一特定经济现象的预测,系统的预测分析能提高多少预测精度2、对于某一特定经济现象的预测,如何才能提高预测精度3、在已知某一经济现象的预测精度存在提高可能的情况下,如何选择合适的预测方法问题: 预警系统的作用1正确评价当前宏观经济的状态,恰当地反映经济形势的冷热程度,并能承担短期经济形势分析的任务.2能描述宏观经济运行的轨迹,预测其发展趋势,在重大经济形势变化或发生转折前,能及时发出预警信号,提醒决策者要制定合适的政策,防止经济发生严重的衰退或发生经济过热.3能及时地反映宏观经济的调控效果,判断宏观经济调控措施是否运用恰当,是否起到了平抑经济波动幅度的效果.4有利于企业的经营决策.5有利于改革措施出台时机的正确决策.问题: 扩散指数的应用扩散指数1当0< DI t<50%时,表明上升指标数小于下降指标数,经济系统运行于不景气空间的后期.2当50%<DI t<100%时,表明上升指标数多于下降指标数,经济系统运行于景气空间,随着向峰值100%逼近,经济越来越热.3当100%> DI t>50%时,表明上升指标数仍然多于下降指标数,经济系统运行于景气空间后期,经济正在走下坡路,整个经济系统正处于降温阶段.4当50%>DI t >0时,表明经济运行发生重大转折,上升指标数小于下降指标数,经济系统处于全面收缩阶段,经济系统进入一个新的不景气空间前期.问题: 景气阶段分类景气含义:景气是对经济发展状况的一种综合性描述,用于说明经济的活跃程度.经济景气是指总体经济呈上升趋势,经济不景气是指总体经济呈下滑的发展趋势.类别:1古典周期2现代周期按长度:1短:基钦周期2中:尤格拉周期3中长:库兹涅茨周期4长:康德拉提耶夫周期问题: 干预模型建模的思路和步骤1、利用干预影响产生前的数据,建立单变量的时间序列模型.然后利用此模型进行外推预测,得到的预测值,作为不受干预影响的数值.2、将实际值减去预测值,得到受干预影响的具体结果,利用这些结果求估干预影响的参数.3、利用排除干预影响后的全部数据,识别与估计出一个单变量的时间序列模型.4、求出总的干预分析模型.问题: 干预分析模型的基本形式干预变量的形式:干预分析模型的基本变量是干预变量,有两种常见的干预变量.一种是持续性的干预变量,表示T 时刻发生以后, 一直有影响,这时可以用阶跃函数表示,形式是:第二种是短暂性的干预变量,表示在某时刻发生, 仅对该时刻有影响, 用单位脉冲函数表示,形式是:问题: ARMA模型的基本形式ARMA模型是描述平稳随机序列的最常用的一种模型,基本模型主要有三种:自回归模型AR:Auto-regressive;移动平均模型MA:Moving-Average;混合模型ARMA:Auto-regressive Moving-Average.关于该知识点,是第四节的主要内容,望大家注意查看教材和导学.问题: 平稳时间序列的含义时间序列{Yt}取自某一个随机过程,如果此随机过程的随机特征不随时间变化,则称过程是平稳的;如果该随机过程的随机特征随时间变化,则称过程是非平稳的.问题: 一次移动平均法的原理一次移动平均方法是收集一组观察值,计算这组观察值的均值,利用这一均值作为下一期的预测值.在移动平均值的计算中包括的过去观察值的实际个数,必须一开始就明确规定.每出现一个新观察值,就要从移动平均中减去一个最早观察值,再加上一个最新观察值,计算移动平均值,这一新的移动平均值就作为下一期的预测值.问题: 自适应过滤法的基本原理自适应过滤法的基本原理就在于通过其反复迭代以调整加权系数的过程,“过滤”掉预测误差,选择出“最佳”加权系数用于预测.整个计算过程从选取一组初始加权系数开始,然后计算得到预测值及预测误差预测值与实际值之差,再根据一定公式调整加权系数以减少误差,经过多次反复迭代,直至选择出“最佳”加权系数.由于整个过程与通信工程中过滤传输噪声的过程极为接近,故被称为“自适应过滤法”.问题: 龚珀兹曲线模型模型的适用:多用于新产品的研制、发展、成熟和衰退分析,特别适用于对处在成熟期的商品进行预测,以掌握市场需求和销售的饱和量.是预测各种商品市场容量的一种最佳拟合线.问题: 多项式曲线趋势外推法问题: 趋势外推法的假设条件1、假设条件: 1假设事物发展过没有跳跃式变化,一般属于渐进变化. 2假设事物的发展因素也决定事物未来的发展,其条件是不变或变化不大.2、趋势模型的种类1多项式曲线预测模型:一次线性预测模型二次二次抛物线模型三次三次抛物线模型 n次n次抛物线模型 2指数曲线预测模型:指数曲线预测模型修正指数曲线预测模型 3对数曲线预测模型: 4生长曲线预测模型:皮尔曲线预测模型龚珀兹曲线预测模型问题: 时间序列可以分解为哪几个因素1、长期趋势因素T2、季节变动因素S3、周期变动因素C一般无法直接给出,需判断,也可忽略不计.4、不规则变动因素I不可计量问题: 时间序列预测的关键是什么思想:假定时间序列存在某一种数据变化模式或某一种组合模式,并会重复发生的.因此可以首先识别出这种模式,然后采用外推的方式就可以进行预测了.关键:1假定数据的变化模式样式可以根据历史数据识别出来抽样;2决策者所采取的行动对这个时间序列的影响是很小的.时间序列预测法主要用来对一些环境因素,或不受决策者控制的因素进行预测,如宏观经济情况,就业水平,某些产品的需求量等.问题: 相关系数与可决系数的关系是什么相关系数与可决系数的关系如下几点:1、可决系数是相关系数的平方,r2=R2.2、可决系数与相关系数可以用来判断Y与X之间的关系;3、如果可决系数或相关系数的值较小,并不能说明 Y 与 X 没有关系,只能说明他们之间没有线性关系.4、如果可决系数或相关系数的值较大,只能说明这两个量之间确实存在线性关系,但是并不一定就是因果关系,对于因果关系的认定,只能通过定性分析来解决.注意,相关系数假设检验只能检验 r = 0的情况 ,而不能检验 r 等于不为0的某个数.问题: 一元线性回归模型当具有相关关系的两个随机变量数据分布大体上呈线性趋势时,采用适当的计算方法,找到两者之间特定的经验公式,即一元线性回归模型,然后根据自变量的变化,来预测因变量的发展变化.关于其模型,同学们可以参看本课件的第三章相关内容.问题: 回归分析法的理解在统计学意义上,变量之间的非确定性的相关关系可以通过统计的方法给出某种函数表达式,这种处理变量间相关关系的方法就是回归分析法.回归分析就是采用统计的方法估计随机变量Y与X之间的关系式.回归预测法是通过大量收集统计数据,在分析变量间非确定性关系的基础上,找出变量之间的统计规律性,运用统计学中回归分析的方法,把变量之间的统计规律性较好的表现出来,运用自变量的数据来对因变量进行预测.问题: 德尔菲法的思考德尔菲法,又称头脑风暴法,它是根据有专门知识的人的直接经验,采用背对背的通信方式征询专家小组成员的预测意见,经过几轮征询,使专家小组的预测意见趋于集中,最后做出符合市场未来发挥在那趋势的预测结论,也称专家调查法.问题: 定性预测和定量预测的关系定性预测的优点在于:注重于事物发展在性质方面的预测,具有较大的灵活性,易于充分发挥人的主观能动作用,且简单的迅速,省时省费用.其缺点是:易受主观因素的影响,比较注重于人的经验和主观判断能力,从而易受人的知识、经验和能力的多少大小的束缚和限制,尤其是缺乏对事物发展作数量上的精确描述.定量预测的优点在于:注重于事物发展在数量方面的分析,重视对事物发展变化的程度作数量上的描述,更多地依据历史统计资料,较少受主观因素的影响.其缺点在于:比较机械,不易处理有较大波动的资料,更难于事物预测的变化.定性预测和定量预测并不是相互排斥的,而是可以相互补充的,在实际预测过程中应该把两者正确的结合起来使用.问题: 定性预测概念定性预测是指预测者依靠熟悉业务知识、具有丰富经验和综合分析能力的人员与专家,根据已掌握的历史资料和直观材料,运用个人的经验和分析判断能力,对事物的未来发展做出性质和程度上的判断,然后,再通过一定形式综合各方面的的意见,作为预测未来的主要依据.问题: 两种预测的联系与区别两者的主要联系是:它们都以经济现象的数值作为其研究的对象;它们都直接或间接地为宏观和微观的市场预测、管理决策、制定政策和检查政策等提供信息;统计预测为经济定量预测提供所需的统计方法论.两者的主要区别是:从研究的角度看,统计预测和经济预测都以经济现象的数值作为其研究对象,但着眼点不同.前者属于方法论研究,其研究的结果表现为预测方法的完善程度;后者则是对实际经济现象进行预测,是一种实质性预测,其结果表现为对某种经济现象的未来发展做出判断.从研究的领域来看,经济预测是研究经济领域中的问题,而统计预测则被广泛地应用于人类活动的各个领域.问题: 预测的概念预测是根据事物以往的历史资料,通过一定的科学方法与逻辑推理,经过定性分析或定量计算探求事物的演变规律,据此推测未来事件的发展趋势及其结果.简言之,预测就是根据过去和现在估计未来,预测未来.统计预测与决策第一章统计预测概述一、预测的概念预测是根据事物以往的历史资料,通过一定的科学方法与逻辑推理,经过定性分析或定量计算探求事物的演变规律,据此推测未来事件的发展趋势及其结果.简言之,预测就是根据过去和现在估计未来,预测未来.二、要素:依据: 真实、恰当的实际资料;基础:经济理论;手段:数学模型 ,如回归分析、时间序列分析等;三、预测的作用:预测在决策之前,为决策提供依据,是决策科学化的前提;行动计划在决策之后,是预测、决策实现的桥梁;预测产生情报和信息,行动计划和决策消费情报、信息.四、衡量预测作用大小的因素预测的作用大小取决于预测结果所产生的经济效益的多少.相关因素: 1 预测费用的高低2 预测方法的难易程度3 预测结果的精确程度——精度五、预测方法的分类定性预测法:逻辑判断为主,适用于缺乏历史统计资料的时间/趋势转折分析.定量预测法:回归预测法——变量与变量之间相互关联,可以是因果关系,也可以仅具有相关关系.时间序列预测法——变量随时间变化,用历史资料建立模型外推.近期预测 1个月以内短期预测 1~3个月中期预测 3个月~2年长期预测 2年以上预测按内容划分:经济预测、科学预测、政治预测、社会预测人口、就业、生活方式、军事预测….六、统计预测与经济预测的主要区别1研究的对象不同;2研究的领域不同:七、预测方法选择应考虑的因素:合适性、费用性、精确性.八、预测的原则:1连贯原则:事物的发展是按照一定的规律进行的,在其发展过程中,这种规律贯彻始终,不应受到破坏,它的未来发展与其过去和现在的发展没有根本的不同.2类推原则:事物必须有某种结构,其升降起伏变动不是杂乱无章的,而是有章可循的.九、预测的作用:预测在决策之前,为决策提供依据,是决策科学化的前提;行动计划在决策之后,是预测、决策实现的桥梁;预测产生情报和信息,行动计划和决策消费情报、信息.十、统计预测统计预测不仅适用于对经济现象的预测,而且被广泛应用于人类活动的各个领域. P2第二章定性预测法一、定性预测的概念及特点定性预测的概念:利用直观材料,依靠管理者个人的经验和综合分析能力,对未来的发展方向和趋势做出推断.直观简单,适应性强 .特点①着重对事物发展的性质进行预测,主要凭借人的经验以及分析判断能力.②着重对事物发展的趋势、方向和重大转折点进行预测.③适用于:宏观经济形式的发展、市场总体形势的演变、企业的未来发展方向、经营环境分析和战略决策等.二、德尔菲预测方法的特点:反馈性、匿名性、统计性三、德尔菲法的优缺点优点•不受地区人员的限制,应用广泛、费用较低,可以加快预测速度和节约预测费用;•可以获得各种不同但有价值的观点和意见;•适用: 适用于长期预测和对新产品的预测.在历史资料不足或不可测因素较多时尤为适用.缺点:•预测结果受主观认识制约,取决于专家的学识、经验、心理状态和对预测问题感兴趣的程度;•如果所预测的产品或顾客群分散于不同地区,预测可能不可靠;•责任比较分散;四、主观概率 P12主观概率是人们根据某几次经验结果所作的主观判断的量度.即人们根据某几次经验结果,对事物变化做出主观判断,估算事物变化的概率,并据此对事物未来进行预测的方法.在不确定的外界状态下,不确定性事件一般不能在相同的条件下重复试验,而是决策者在掌握的信息条件下,根据他的认识水平,对有关事件发生的主观信任程度,所以称为主观概率或个人概率.五、情景预测法20世纪70年代兴起的一种预测技术,又称剧本描述法.对将来的情景作出预测的一种方法.它把研究对象分为主题和环境,通过对环境的研究,识别影响主题发展的外部因素,模拟外部因素可能发生的多种交叉情景以预测主题发展的各种可能前景. 特点:1适用范围广,不受任何条件的限制;2考虑周全、灵活;3定性分析与定量分析相结合 ;4便于发现未来可能出现的难题;• 情景预测法就是为了弥补定性、定量预测方法存在的不足,可运用定性定量相结合对未来进行预测. P22• 情景预测法的主要特点体现在定性、定量分析的结合.P23六、厂长经理评判意见法企业的总负责人把企业的中层管理人员以及熟悉市场情况的各种人员召集到一起,让他们对未来的市场发展形式或企业的某一重大决策问题发表意见,作出判断.然后将各种意见汇总,进行分析研究和综合处理,最后得出预测结果.优点:1迅速、及时、经济;2发挥集体的智慧,预测结果比较准确可靠;3不需要大量的统计资料,适合于不可控因素较多的产品;4方便修正.缺点:1容易受主观因素影响;2对市场状况了解不细市场变化、顾客期望,预测结构较一般化,不精确;七. 定性预测及其特点 P8定性预测:预测者依靠熟悉业务知识,具有丰富经验和综合分析能力的人员和专家,根据已掌握的历史和直观的材料,运用个人的经验和分析判断能力,对事物的未来发展做出性质和程度上的判断.然后,再通过一定的形式综合各方面的意见,作为预测未来的主要依据.定性预测的特点:着重对事物发展的性质进行预测,主要凭借人的经验和分析判断能力.着重对事物发展的趋势、方向和重大转折点进行预测. 第三章 回归预测法一、一元线性回归预测法当具有相关关系的两个随机变量数据分布大体上呈线性趋势时,采用适当的计算方法,找到两者之间特定的经验公式,即一元线性回归模型,然后根据自变量的变化,来预测因变量的发展变化. • 一元线性回归预测法是在成对的两变量数据分布大体上呈直线趋势时,通过适当的计算方法,建立两变量之间特定的经验公式.P35• 在运用一元线性回归模型预测时,对剩余残差项 要求具备有 为常数的特性.P35二、检验标准误差回归直线即估计值与因变量观察值之间的平均平方误差.可决系数 衡量因变量与自变量关系密切程度的指标,取值0~1之间.2ˆ()2y y SE n -=-∑()222ˆ()1y y R y y -=--∑∑01i i y b b x =+01i i y b b x =+0.10ˆy t ±可决系数表明,在Y 与X 的关系中,可以利用回归方程解释的部分所占的百分比,显然其数值越大,Y 与X 的关系越确定.三、相关分析• 相关分析着重考虑的是随机变量Y 与X 之间的相关程度相关系数与相关方式方向、系数,其分析结果就是两个变量之间的相关系数.• 相关分析与回归分析是紧密结合的,常常一起使用.一般说来,采用相关分析确定变量之间是否确实有相关关系存在,如果存在,则用回归分析求出变量之间的定量关系表达式.• 在回归分析中,通常称我们感兴趣的变量,或需要估计的量为因变量,记为y . • 回归预测法是通过大量收集统计数据,在分析变量间非确定性关系的基础上,找出变量之间的统计规律性,运用统计学中回归分析的方法,把变量之间的统计规律性较好的表现出来,运用自变量的数据来对因变量进行预测.四、回归模型参数b 0和b 1的估计模型中的b 0、b 1需要通过样本观察值 xi ,yi 来进行估计.假设样本容量为n → n 对观察值xi ,yi ,则 b 0、b 1的估计值为:五、参数估计的要求:利用数学模型对未来进行预测时,必须对模型中的一些参数进行估计.对参数的估计是通过对实际观测值的运用,构建估计量来完成的.而一个有效的估计量应满足一致性、无偏性以及有效性要求 .P36六、预测误差检验在利用回归方法进行预测时,必须对预测误差进行检验.其中检验指标标准误差的计算公式为七、预测置信区间利用回归模型预测时,需给出一个在一定概率保证程度下的预测置信区间,则在小样本条件下,更为精确的置信区间计算公式为置信区间为: P41()12210i i i i i i i in x y x y b n x x y b x b n-=--=∑∑∑∑∑∑∑八、拟合优度指标利用回归模型进行预测时,必须作估计量与因变量之间的拟合优度检验.而属于拟合优度指标的是标准误差、可决系数和相关系数.P44九、厂长经理评判意见预测法的优缺点 P17优点: 1 迅速、及时和经济;2 可发挥集体的智慧,使预测结果比较准确可靠;3 不需要大量的统计资料,更适用于对不可控因素较多的产品进行预测;4 如果市场情况发生变化,可及时进行修正;缺点: 1 预测结果易受主观因素影响;2 预测结果比较一般;十、D — W值是检验回归模型剩余项是否存在自相关的一种有效方法.在实际检验中,对于不同显着性水平α下的D —W值上限和下限,实际D —W值小于等于2时,若出现 d-----w ,则认为存在自相关. P40十一、在利用回归模型进行预测时,需要确定一定置信水平下的预测置信区间,在小样本情形下,近似的置信区间计算公式为: P41十二、在社会经济中,变量之间并不都是呈线性关系.因而,需要配选适当类型的曲线以实现对实际情况的拟合.常见的曲线有幂函数曲线、指数函数曲线、抛物线函数曲线等. P52十一、在利用回归模型进行预测时,需要确定一定置信水平下的预测置信区间,在小样本情形下,近似的置信区间计算公式为: P41十二、在社会经济中,变量之间并不都是呈线性关系.因而,需要配选适当类型的曲线以实现对实际情况的拟合.常见的曲线有幂函数曲线、指数函数曲线、抛物线函数曲线等. P52第四章时间序列分解法与趋势分析法一、趋势外推法模型选择在对趋势模型进行选择时,主要使用的方法是图形识别法、差分计算法.P68二、经济时间序列的影响因素经济时间序列的变化受多种因素影响,但总体上可将影响因素分为长期变动因素、季节变动因素、周期变动因素以及不规则变动因素.P61三、指数曲线模型在趋势外推预测法中,如果时间各期数值的一阶差比率大致相等时,就可以配选指数曲线模型进行预测. P77四、时间序列分解 P61反映经济现象,如需求或销量,在一个较长时间内的发展方向,可以在一个相当长的时间内表现为一种近似直线的持续向上或持续向下或平稳的趋势.时间序列的分解长期趋势因素T:反映经济现象,如需求或销量,在一个较长时间内的发展方向,可以在一个相当长的时间内表现为一种近似直线的持续向上或持续向下或平稳的趋势.季节变动因素S经济现象受季节变动影响所形成的一种长度和幅度固定的周期波动.自然季节影响所形成的波动.工作时间规律——商场周末销售周期变动因素C:也称循环变动因素,是各种经济因素影响形成的上下起伏不定的波动.不规则变动因素I:随机变动因素,各种偶然因素影响所形成的不规则波动,如人为因素、政府行为……五、修正指数曲线模型 P79~P83如果新产品进入市场后,呈现出初期迅速增长,随后逐渐降低增长速度,而增长量的。
第六章 自适应过滤法
一、单项选择题
2、在模型的()向一最小值收敛时就取得了最优权重。
A 、残差e
B 、2
R C 、一个循环的均方误差MSE D 、显著性F 值 答:B
二、多项选择题
2、 选择阶数的原则有:
A 、不存在季节时P=2,或者P=3
B 、存在季节性时,P 取季节因素的周期长度
C 、P 可以按照主观意愿随意确定
D 、P 在任何情况下都取P=2
E 、P=3是最优阶数 答:AB
三、名词解释 1、自适应过滤法
答:从自回归系数的一组初始估计值开始利用公式112i i t t i ke Y +-+'Φ=Φ+逐次迭代,不断调整,以实现自回归系数的最优化。
四、简答题
1、自适应法的重要特点是什么?优点有哪些?
答:自适应过滤法的重要特点是它能把自回归方程中的系数调整成为新的为我们所需要的值。
他的优点是:
(1)简单易行,可采用标准程序上机运算。
(2)适用于数据点较少的情况。
(3)约束条件较少
(4)具有自适应性,他能自动调整回归系数,是一个可变系数的数据模型。
五、计算题
P=2 0.63 0.47 解:
(1)P=2
(2)10.63Φ=,20.47Φ=。