5知识讲解_正弦函数的图象与性质_基础
- 格式:pdf
- 大小:429.30 KB
- 文档页数:7
i ng si nt he i rb ei n ga re g三角函数的图像与性质一、 正弦函数、余弦函数的图像与性质二、正切函数的图象与性质函数y =sin x y =cos x图象定义域RR 值域[-1,1][-1,1]单调性递增区间:2,2()22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦递减区间:32,2()22k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦递增区间:[2k π-π,2k π] (k ∈Z )递减区间:[2k π,2k π+π] (k ∈Z )最 值x =2k π+(k ∈Z )时,y max =1;π2x =2k π-(k ∈Z )时,y min =-1π2x =2k π(k ∈Z )时,y max =1;x =2k π+π(k ∈Z ) 时,y min =-1奇偶性奇函数偶函数对称性对称中心:(k π,0)(k ∈Z )(含原点)对称轴:x =k π+,k ∈Zπ2对称中心:(k π+,0)(k ∈Z )π2对称轴:x =k π,k ∈Z (含y 轴)最小正周期2π2π定义域{|,}2x x k k Z ππ≠+∈值域R单调性递增区间(,)()22k k k Z ππππ-+∈奇偶性奇函数对称性对称中心:(含原点)(,0)()2k k Z π∈最小正周期π三、三角函数图像的平移变换和伸缩变换1. 由的图象得到()的图象x y sin =)sin(ϕω+=x A y 0,0A ω>>xy sin =方法一:先平移后伸缩方法二:先伸缩后平移操作向左平移φ个单位横坐标变为原来的倍1ω结果)sin(ϕ+=x y xy ωsin =操作横坐标变为原来的倍1ω向左平移个单位ϕω结果)sin(ϕω+=x y 操作纵坐标变为原来的A 倍结果)sin(ϕω+=x A y 注意:平移变换或伸缩变换都是针对自变量x 而言的,因此在用这样的变换法作图象时一定要注意平移与伸缩的先后顺序,否则会出现错误。
§5.1-3正弦函数的性质与图像(2课时)一、教学目标:1、知识与技能(1)回忆锐角的正弦函数定义;(2)熟练运用锐角正弦函数的性质;(3)理解通过单位圆引入任意角的正弦函数的意义;(4)掌握任意角的正弦函数的定义;(5)了解正弦函数图像的画法;(7)掌握五点作图法,并会用此方法画出[0,2π]上的正弦曲线。
2、过程与方法初中所学的正弦函数,是通过直角三角形中给出定义的;由于我们已将角推广到任意角的情况,而且一般都是把角放在平面直角坐标系中,这样一来,我们就在直角坐标系中来找直角三角形,从而引出单位圆;利用单位圆的独特性,是高中数学中的一种重要方法,在第二节课的正弦函数图像,以及在后面的正弦函数的性质中都有直接的应用;讲解例题,总结方法,巩固练习。
3、情感态度与价值观通过本节的学习,使同学们对正弦函数的概念有了一个新的认识;在由锐角的正弦函数推广到任意角的正弦函数的过程中,体会特殊与一般的关系,形成一种辩证统一的思想;通过单位圆的学习,建立数形结合的思想,激发学习的学习积极性;培养学生分析问题、解决问题的能力。
二、教学重、难点重点: 1.任意角的正弦函数定义,以及正弦函数值的几何表示。
2.正弦函数图像的画法。
3.正弦函数的性质 难点: 1.正弦函数值的几何表示。
2.利用正弦线画出y =sinx ,x∈[0, 2π]的图像。
第一课时§5.1从单位圆看正弦函数的性质§5.2 正弦函数的图像一、教学思路【创设情境,揭示课题】我们学习角的概念的推广和弧度制,就是为了学习三角函数。
请同学们回忆(1)角的概念的推广及弧度制、象限角等概念;(2)在单位圆中正弦函数是如何定义的?并想一想它有哪些性质?学生思考回答以后,教师小结。
【探究新知】一、在直角坐标系中,对于任意角R ∈α,在其终边上任取一点P(x,y),则P 点到原点的距离22yx r +=, 定义角α的正弦ry=αs i n 如图1 在单位圆中,角的终边和单位圆的交点P 的坐标为(a,b ),则sin α=b 如图2.可以看出正弦函数的下列性质:1、定义域是全体实数;2、值域是[]1,1-,其最大值是1,最小值是-1;3、是周期函数,其周期是2π;4、在[]π0,2上的单调性为:在⎥⎦⎤⎢⎣⎡2,0π,是增加的,在⎥⎦⎤⎢⎣⎡ππ,2上减少的;在⎥⎦⎤⎢⎣⎡23ππ,上是减少的;在⎥⎦⎤⎢⎣⎡ππ223,上是增加的. 二、用描点法画函数图像我们知道y =sinx 是周期函数,我们先画出在[]π0,2上的函数图像,在利用周期性将其延拓到整个定义域上,为此在[]π0,2上取一系列的x 值,列表,描点,再用光滑的曲线连接这些点,得到函数在区间[]π0,2的图像。
正弦函数的图象和性质以及三角函数的周期性编稿:孙永钊 审稿:王静伟【学习目标】1.能借助正弦线画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象.2.借助图象理解正弦函数的性质. 【要点梳理】要点一:正弦函数图象的画法 1.描点法:按照列表、描点、连线三步法作出正弦函数图象的方法。
2.几何法利用三角函数线作出正弦函数在]2,0[π内的图象,再通过平移得到x y sin =的图象。
3.五点法先描出正弦曲线的波峰、波谷和三个平衡位置这五个点,再利用光滑曲线把这五点连接起来,就得到正弦曲线在一个周期内的图象。
在确定正弦函数x y sin =在]2,0[π上的图象形状时,起关键作用的五个点是)0,2(),1,23(),0,(),1,2(),0,0(ππππ-要点诠释:(1)熟记正弦函数图象起关键作用的五点。
(2)若x R ∈,可先作出正弦函数在]2,0[π上的图象,然后通过左、右平移可得到x y sin =的图象。
要点二:正弦曲线(1)定义:正弦函数sin ()y x x R =∈的图象叫做正弦曲线。
(2)图象要点诠释:(1)由正弦曲线可以研究正弦函数的性质。
(2)运用数形结合的思想研究与正弦函数有关的问题,如[]0,2x π∈,方程lg sin x x =根的个数。
要点三:函数图象的变换图象变换就是以正弦函数的图象为基础通过对称、平移而得到。
sin sin()sin()y x y x y A x ϕωϕ=→=+→=+要点四:周期函数函数)(x f y =,定义域为I ,当I x ∈时,都有)()(x f T x f =+,其中T 是一个非零的常数,则)(x f y =是周期函数,T 是它的一个周期.要点诠释:1.定义是对I 中的每一个x 值来说的,只有个别的x 值满足)()(x f T x f =+或只差个别的x 值不满足)()(x f T x f =+都不能说T 是)(x f y =的一个周期.2.对于周期函数来说,如果所有的周期中存在一个最小的正数,就称它为最小正周期,三角函数中的周期一般都指最小正周期.要点五:正弦函数性质要点诠释:(1)正弦函数的值域为[]1,1-,是指整个正弦函数或一个周期内的正弦曲线,如果定义域不是全体实数,那么正弦函数的值域就可能不是[]1,1-,因而求正弦函数的值域时,要特别注意其定义域.(2)求正弦函数的单调区间时,易错点有二:一是单调区间容易求反,要注意增减区间的求法,如求sin()y x =-的单调递增区间时,应先将sin()y x =-变换为sin y x =-再求解,相当于求sin y x =的单调递减区间;二是根据单调性的定义,所求的单调区间必须在函数的定义域内,因此求单调区间时,必须先求定义域.要点六:正弦型函数sin()y A x ωϕ=+的性质.函数sin()y A x ωϕ=+与函数cos()y A x ωϕ=+可看作是由正弦函数sin y x =,余弦函数cos y x =复合而成的复合函数,因此它们的性质可由正弦函数sin y x =,余弦函数cos y x =类似地得到:(1)定义域:R (2)值域:[],A A -(3)单调区间:求形如sin()y A x ωϕ=+的函数的单调区间可以通过解不等式的方法去解答,即把x ωϕ+视为一个“整体”,分别与正弦函数sin y x =的单调递增(减)区间对应解出x ,即为所求的单调递增(减)区间.比如:由)(2222Z k k x k ∈+≤+≤-ππϕωππ解出x 的范围所得区间即为增区间,由)(23222Z k k x k ∈+≤+≤+ππϕωππ解出x 的范围,所得区间即为减区间. (4)奇偶性:正弦型函数sin()y A x ωϕ=+不一定具备奇偶性.对于函数sin()y A x ωϕ=+,当()k k z ϕπ=∈时为奇函数,当()2k k z πϕπ=±∈时为偶函数.要点诠释:判断函数sin()y A x ωϕ=+的奇偶性除利用定义和有关结论外,也可以通过图象直观判断,但不能忽视“定义域关于原点对称”这一前提条件.(5)周期:函数sin()y A x ωϕ=+的周期与解析式中自变量x 的系数有关,其周期为2T πω=.(6)对称轴和对称中心与正弦函数sin y x =比较可知,当()2x k k z πωϕπ+=±∈时,函数sin()y A x ωϕ=+取得最大值(或最小值),因此函数sin()y A x ωϕ=+的对称轴由()2x k k z πωϕπ+=±∈解出,其对称中心的横坐标()x k k z ωϕπ+=∈,即对称中心为,0()k k z πϕω-⎛⎫∈ ⎪⎝⎭.【典型例题】类型一:“五点法”作正弦函数的图象例1.用五点法作出函数2sin y x =-,[0,2]x π∈的图象. 【思路点拨】(1)取[0,2]π上五个关键的点(0,2)、(2π,1)、(,2)π、3(,3)2π、(2π,2)。