正弦函数图像与性质
- 格式:ppt
- 大小:365.50 KB
- 文档页数:21
正弦函数图像和性质正弦函数是一种常见的函数,在数学研究中,它被广泛用于表达定义在实数集的函数的图像。
正弦函数可以通过其一般形式 y=sin x,其中x表示自变量,y表示函数值,也可以表示为极坐标形式 r=sin,其中θ表示极坐标参数,r表示正弦函数值,它也可以表示为复平面形式 z=sin(x+iy),其中x表示实部,y表示虚部,z表示正弦函数结果,作为函数,正弦函数可以描述定义在实数集内的曲线。
二、正弦函数图像正弦函数y=sin x的图像如下所示:图1弦函数y=sin x的图像可以看出,正弦函数的图像是一条以原点(0,0)为中心的周期性图像,它以(π,0)和(-π,0)为极点,它形似一个波浪,起伏不定,一个完整的周期长度为2π,其中π约等于3.1415926。
复平面正弦函数z=sin(x+iy)的图像如下所示:图2平面正弦函数z=sin(x+iy)的图像正弦函数的复平面图像的特点是:它形似旋转的空心圆,有一定的中心对称性,其图像可以看作是一个以原点为中心的旋转空心螺旋。
三、正弦函数的性质1、正弦函数的单调性在正弦函数曲线的一个周期内,函数值先递增,再递减,由此可以认为正弦函数是单调递减函数。
2、正弦函数的对称性正弦函数是对称函数,在一个周期内,函数值和其对称轴处的函数值相等,即sin(x) = sin(- x),此外,在正弦函数曲线中,(π,0)和(-π,0)是函数的极值点,即sin(π) = sin(-π) = 0,此外,正弦函数也具有垂直对称性,可以表示为y=sin x的对称轴是x 轴,函数值的对称轴是y轴。
3、正弦函数的周期性正弦函数是一个周期函数,一个完整的周期长度为2π,由此,可以认为,当x在2π的整数倍的范围内,sin x的函数值和x在(0,2π)范围内的函数值是相同的。
4、正弦函数的极限性正弦函数的极限性可以用数学归纳法推导出来,即当x趋于正无穷大或负无穷大时,正弦函数的函数趋于1或-1,具体表示为lim x →∞sin x = 1;lim x→-∞sin x = -1。
1定义编辑数学术语正弦函数是三角函数的一种.定义与定理定义:对于任意一个实数x都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正弦值sin x,这样,对于任意一个实数x都有唯一确定的值sin x与它对应,按照这个对应法则所建立的函数,表示为f(x)=sin x,叫做正弦函数。
正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/sin A=b/sin B=c/sin C 在直角三角形ABC中,∠C=90°,y为一条直角边,r为斜边,x为另一条直角边(在坐标系中,以此为底),则sin A=y/r,r=√(x^2+y^2)2性质编辑图像图像是波形图像(由单位圆投影到坐标系得出),叫做正弦曲线(sine curve)正弦函数x∈&定义域实数集R值域[-1,1] (正弦函数有界性的体现)最值和零点①最大值:当x=2kπ+(π/2),k∈Z时,y(max)=1②最小值:当x=2kπ+(3π/2),k∈Z时,y(min)=-1零值点:(kπ,0) ,k∈Z对称性既是轴对称图形,又是中心对称图形。
1)对称轴:关于直线x=(π/2)+kπ,k∈Z对称2)中心对称:关于点(kπ,0),k∈Z对称周期性最小正周期:y=sinx T=2π奇偶性奇函数(其图象关于原点对称)单调性在[-π/2+2kπ,π/2+2kπ],k∈Z上是单调递增.在[π/2+2kπ,3π/2+2kπ],k∈Z上是单调递减.3正弦型函数及其性质编辑正弦型函数解析式:y=Asin(ωx+φ)+h各常数值对函数图像的影响:φ(初相位):决定波形与X轴位置关系或横向移动距离(左加右减)ω:决定周期(最小正周期T=2π/|ω|)A:决定峰值(即纵向拉伸压缩的倍数)h:表示波形在Y轴的位置关系或纵向移动距离(上加下减)作图方法运用“五点法”作图“五点作图法”即当ωx+φ分别取0,π/2,π,3π/2,2π时y的值.单位圆定义图像中给出了用弧度度量的某个公共角。