第4章模糊函数
- 格式:ppt
- 大小:1.24 MB
- 文档页数:32
第4章隶属函数的确定方法在模糊理论的应用中,我们面临的首要问题就是建立模糊集的隶属函数。
对于一个特定的模糊集来说,隶属函数不仅基本体现了它所反映的模糊概念的特性,而且通过量化还可以实现相应的数学运算和处理。
因此,“正确地”确定隶属函数是应用模糊理论恰如其分地定量刻划模糊概念的基础,也是利用模糊方法解决各种实际问题的关键。
然而,建立一个能够恰如其分地描述模糊概念的隶属函数,并不是一件容易的事情。
其原因就在于一个模糊概念所表现出来的模糊性通常是人对客观模糊现象的主观反映,隶属函数的形成过程基本上是人的心理过程,人的主观因素和心理因素的影响使得隶属函数的确定呈现出复杂性、多样性,也导致到目前为止如何确定隶属函数尚无定法,没有通用的定理或公式可以遵循。
但即便如此,鉴于隶属函数在模糊理论中的重要地位,确定隶属函数的方法还是受到了特别的重视,至今已经提出了十几种确定隶属函数的方法,而且其中一些方法基本上摆脱了人的主观因素的影响。
本章将选择4种经常使用的、具有代表性的方法予以介绍,它们是:直觉方法,二元对比排序法,模糊统计试验法,最小模糊度法。
4.1 直觉方法直觉的方法就是人们用自己对模糊概念的认识和理解,或者人们对模糊概念的普遍认同来建立隶属函例1、“正好”、“热”和“很热”图1 空气温度的隶属函数例2根据人们对汽车行驶速度中“慢速”、“中速”和“快速”这三个概念的普遍认同,可以给出描图2 汽车行驶速度的隶属函数虽然直觉的方法非常简单,也很直观,但它却包含着对象的背景、环境以及语义上的有关知识,也包含了对这些知识的语言学描述。
因此,对于同一个模糊概念,不同的背景、不同的人可能会建立出不完全相同的隶属函数。
例如,模糊集A = “高个子”的隶属函数。
如果论域是“成年男性”,其隶属函数的曲线如图3(a )所示;而如果论域是“初中一年级男生”,其隶属函数的曲线则为图3(b )所示的情形。
(a) (b)图3 不同论域下“高个子”的隶属函数4.2 二元对比排序法建立一个模糊集的隶属函数,实际上可以看成是对论域中每个元素隶属于某个模糊概念的程度进行比较、排序。
98第4章 Cohen 类时-频分布4.1 前言除了Wigner 分布和谱图以外,近几十年来人们还提出了很多其它具有双线性行式的时-频分布。
1966年,Cohen 给出了时-频分布的更一般表示形式[44]: ()()()()() ,:,⎰⎰⎰-Ω+-*-+=Ωθττθττπθτθd dud eg 2u x 2u x 21g t C u t j x (4.1.1)该式中共有五个变量,即t ,Ω,τ,θ和u ,它们的含义我们将在下一节解释。
式中()τθ,g 称为时-频分布的核函数,也可以理解为是加在原Wigner 分布上的窗函数。
给出不同的()τθ,g ,就可以得到不同类型的时-频分布。
通过后面的讨论可知,目前已提出的绝大部分具有双线性形式的时-频分布都可以看作是Cohen 类的成员。
通过对Cohen 类分布的讨论有助于我们更全面地理解时-频分布,深入地了解它们的性质,并提出改进诸如交叉项这些不足之处的方法。
在Cohen 类时-频分布的讨论及抑制交叉项的方法中,在雷达信号处理中广泛应用的模糊函数(Ambiguity Function, AF )起着重要的作用。
因此,本章首先给出模糊函数的定义及其与Wigner 分布的关系,然后讨论Cohen 类分布及其不同的成员。
在4.4节讨论为确保Cohen 类分布具有一系列好的性质而对()τθ,g 所提出的要求。
最后,在4.5节讨论核的设计问题。
文献[47]对非平稳信号的联合时-频分布给出了较为详细且是较为权威性的论述。
4.2 Wigner 分布与模糊函数令()t x 为一复信号,我们在第三章已定义()()()22τττ-+=*t x t x t r x , (4.2.1)为()t x 的瞬时自相关函数,并定义()τ,t r x 相对τ的傅立叶变换 ()()⎰Ω-=Ωτττd t r t W j x x ,, (4.2.2)为()t x 的WVD 。
除去特别说明,该式及以下各式中的积分均是从∞+∞-~。
excel模糊匹配函数实现条件判断-概述说明以及解释1.引言1.1 概述概述Excel是一款功能强大的电子表格软件,在处理大量数据和进行数据分析时被广泛使用。
在Excel中,模糊匹配函数是一项非常有用的功能,它可以帮助用户根据特定的条件进行数据匹配和筛选,从而实现条件判断的功能。
本文将介绍Excel模糊匹配函数的使用方法,并通过实例演示如何利用这些函数实现条件判断。
在日常工作和数据处理中,我们经常遇到需要根据某些条件判断来筛选数据的情况,而Excel模糊匹配函数正是帮助我们完成这一任务的强大工具。
通过本文的学习,读者将能够掌握如何使用Excel模糊匹配函数来实现条件判断,并能够灵活运用这些函数处理各种不同的数据情况。
同时,本文还将总结Excel模糊匹配函数的优势,并引导读者进一步学习和应用这些函数,以提高工作效率。
总之,通过本文的阅读和学习,读者将能够深入了解Excel模糊匹配函数,并能够灵活运用这些函数进行条件判断,从而更加高效地处理和分析数据。
让我们一起开始探索Excel模糊匹配函数的奥秘吧!1.2文章结构文章结构部分的内容可以这样编写:1.2 文章结构本文将包含以下几个主要部分:(1)引言:介绍文章的背景和目的,概述文章的主要内容。
(2)正文:详细介绍Excel模糊匹配函数的功能和使用方法,并重点讨论了条件判断在Excel中的重要性。
通过一些示例和案例,帮助读者理解和掌握Excel模糊匹配函数的实际应用。
(3)结论:总结了Excel模糊匹配函数的优势和应用场景,并为读者进一步学习和应用Excel模糊匹配函数提供了引导。
通过以上三个部分的内容,本文将全面介绍Excel模糊匹配函数的实现条件判断的方法,希望读者在阅读后能够深入了解和运用该函数,提高在Excel中进行条件判断的能力和效率。
1.3 总结总结部分:通过本文的介绍和讲解,我们可以得出以下几点总结:首先,Excel模糊匹配函数是一种非常实用的工具,它可以帮助我们快速进行条件判断。
《模糊数学》教学大纲课程编号:121082B课程类型:□通识教育必修课□通识教育选修课□专业必修课□√专业选修课□学科基础课总学时:32 讲课学时:32 实验(上机)学时:0学分:2适用对象:金融数学专业先修课程:数学分析、高等代数、概率论与数理统计毕业要求:1.掌握数学、统计及计算机的基本理论和方法2.具备国际视野,能够与同行及社会公众进行有效沟通和交流一、教学目标模糊数学是统计学院金融数学专业选修的基础课之一。
通过本课程的学习,使学生对模糊数学的原理和思想方法有一个基本的认识。
掌握应用模糊数学的原理分析和解题的基本技巧。
了解模糊数学方法在各个领域的应用,为应用模糊数学知识解决问题打下基础。
二、教学基本要求本课以课堂讲授为主。
适当补充一些模糊数学在实际中应用的实例,理论联系实际。
在各章中均可安排一些内容引导学生自学,通过布置作业和讨论题,提高学生自己解决问题与分析问题的能力。
同时,也可适当让学生自己来寻找一些实际问题,应用学过的知识来进行分析、综合、评判,以期达到更好的巩固、应用的目的。
(一) 模糊数学的基本理论和基本原理1、模糊集合是处理模糊事物的新的数学概念,是模糊数学的基础。
理解模糊集的定义、表示方法、模糊集的运算。
了解模糊算子的定义及各种模糊算子,了解模糊集的模糊度定义。
2、理解模糊集截集的定义及性质,掌握模糊数学的基本原理:分解定理(联系普通集与模糊集的桥梁)、扩张原理。
了解模糊数及模糊数的运算。
(二) 模糊数学方法及其在各领域中的应用1、理解模糊关系的概念及性质,深入理解在有限域的情况下,模糊关系可以用矩阵表示。
理解模糊关系合成的定义及性质。
理解掌握贴近度概念及最大隶属原则和择近原则。
了解模糊变换以及模糊控制。
2、对于模糊数学方法的应用。
重点掌握模糊模式识别、模糊聚类分析、模糊综合评判决策,以及了解它们在不同领域的应用举例。
每章节后的习题要求全部完成;本课程建议使用形成性和终结性考试相结合,并各占50%比例。
北师大版八年级数学上册:4.1《函数》教学设计3一. 教材分析《函数》是北师大版八年级数学上册第4章的内容,本节课主要介绍函数的概念、性质及表示方法。
函数是数学中的一个重要概念,也是初中数学的核心内容之一。
通过本节课的学习,使学生理解函数的基本概念,掌握函数的表示方法,能够判断两个相关联的变量之间的关系是否为函数,并为后续学习函数的图像和性质打下基础。
二. 学情分析八年级的学生已经学习了初中数学的大部分内容,对于一些基本的数学概念和运算规则有一定的掌握。
但是,对于函数这一概念,学生可能还存在一些模糊的认识,对于函数的表示方法也较为陌生。
因此,在教学过程中,需要引导学生从实际问题出发,理解函数的概念,掌握函数的表示方法。
三. 教学目标1.理解函数的概念,掌握函数的表示方法。
2.能够判断两个相关联的变量之间的关系是否为函数。
3.培养学生的数学思维能力,提高学生解决问题的能力。
四. 教学重难点1.函数的概念及判断两个相关联的变量之间的关系是否为函数。
2.函数的表示方法。
五. 教学方法1.情境教学法:通过实际问题引入函数的概念,使学生能够从实际问题中感受到函数的存在。
2.实例教学法:通过具体的实例,使学生理解函数的表示方法。
3.小组合作学习:引导学生分组讨论,培养学生的合作意识和团队精神。
六. 教学准备1.教学PPT:制作相关的教学PPT,以便于展示和讲解。
2.实例材料:准备一些具体的实例,用于解释和展示函数的表示方法。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入函数的概念,例如:“某商店举行打折活动,原价为100元的商品打8折,求打折后的价格。
”让学生思考并回答问题,引出函数的概念。
2.呈现(10分钟)讲解函数的定义,用PPT展示函数的表示方法,如列表法、图象法、解析法等。
通过具体的实例,让学生理解函数的表示方法。
3.操练(10分钟)让学生分组讨论,每组选择一个实例,用所学的表示方法表示函数。