模糊数学隶属函数的确定
- 格式:pdf
- 大小:3.87 MB
- 文档页数:19
第4章隶属函数的确定方法在模糊理论的应用中,我们面临的首要问题就是建立模糊集的隶属函数。
对于一个特定的模糊集来说,隶属函数不仅基本体现了它所反映的模糊概念的特性,而且通过量化还可以实现相应的数学运算和处理。
因此,“正确地”确定隶属函数是应用模糊理论恰如其分地定量刻划模糊概念的基础,也是利用模糊方法解决各种实际问题的关键。
然而,建立一个能够恰如其分地描述模糊概念的隶属函数,并不是一件容易的事情。
其原因就在于一个模糊概念所表现出来的模糊性通常是人对客观模糊现象的主观反映,隶属函数的形成过程基本上是人的心理过程,人的主观因素和心理因素的影响使得隶属函数的确定呈现出复杂性、多样性,也导致到目前为止如何确定隶属函数尚无定法,没有通用的定理或公式可以遵循。
但即便如此,鉴于隶属函数在模糊理论中的重要地位,确定隶属函数的方法还是受到了特别的重视,至今已经提出了十几种确定隶属函数的方法,而且其中一些方法基本上摆脱了人的主观因素的影响。
本章将选择4种经常使用的、具有代表性的方法予以介绍,它们是:直觉方法,二元对比排序法,模糊统计试验法,最小模糊度法。
4.1 直觉方法直觉的方法就是人们用自己对模糊概念的认识和理解,或者人们对模糊概念的普遍认同来建立隶属函例1、“正好”、“热”和“很热”图1 空气温度的隶属函数例2根据人们对汽车行驶速度中“慢速”、“中速”和“快速”这三个概念的普遍认同,可以给出描图2 汽车行驶速度的隶属函数虽然直觉的方法非常简单,也很直观,但它却包含着对象的背景、环境以及语义上的有关知识,也包含了对这些知识的语言学描述。
因此,对于同一个模糊概念,不同的背景、不同的人可能会建立出不完全相同的隶属函数。
例如,模糊集A = “高个子”的隶属函数。
如果论域是“成年男性”,其隶属函数的曲线如图3(a )所示;而如果论域是“初中一年级男生”,其隶属函数的曲线则为图3(b )所示的情形。
(a) (b)图3 不同论域下“高个子”的隶属函数4.2 二元对比排序法建立一个模糊集的隶属函数,实际上可以看成是对论域中每个元素隶属于某个模糊概念的程度进行比较、排序。
模糊数学1、模糊集、⾪属度函数、如何确定⾪属度函数------------------------2021.3.14更新------------------------------⼀个关于模糊和概率的趣味⼩问题------------------------2021.3.14更新------------------------------------------------------2020.8.17更新------------------------------总算学完了,这懒病改改改了,放⼀下所有的笔记链接集合的概念:⼀些具有相同特征的不同对象构成的全体,也称集或者经典集合。
经典集合的特征函数(和模糊集的⾪属度函数⼀样):f(x) = \left\{ \begin{array}{l} 1\quad x \in A \\ 0\quad x \notin A \\ \end{array} \right.⼀个经典集合A,它的特征函数为f(),那么怎么判断⼀个新的对象x是不是属于这个集合呢,计算f(x)是0还是1,是1代表属于A,是0代表不属于。
与之对应的是模糊集合,假设A是⼀个模糊集合,它的⾪属度函数是\mu _A ( \cdot ),那么⼀个新的对象x属于A的程度就是\mu _A (x)(是⼀个0到1之间的数)。
⾪属度函数的构造极为重要,⼀般根据这个模糊集的性质相关。
⼀般也把A的⾪属度函数写成A( \cdot )接下来是模糊集的表⽰⽅法,共三种:扎德表⽰法,序偶表⽰法,向量表⽰法。
假设论域U = \left\{ {x_1 ,x_2 , \cdot \cdot \cdot ,x_n }\right\},模糊集为A,A(x)是x的⾪属度,A( \cdot )是⾪属度函数。
扎德表⽰法容易与加法混淆。
序偶表⽰法与向量表⽰法的含义都⼀样,向量表⽰法更简洁,所以我们⼀般就只⽤向量表⽰法。
⽐如上⾯公式的意思就是每个对象x_i属于模糊集合A的程度(⾪属度)接下来讲⼀讲⾪属度函数的确定。
模糊数学教程第6章确定隶属函数的方法确定隶属函数是模糊数学中的一项重要任务,它决定了模糊集合如何描述和应用。
本文将介绍几种常用的确定隶属函数的方法。
基于专家经验的方法是最常见的确定隶属函数的方法之一、通常,一些领域的专家会通过自己的经验和知识来确定隶属函数的形状和参数,以达到最佳的模糊集合描述效果。
例如,在模糊控制系统中,专家可以通过对系统的分析和调试来确定隶属函数的形状,从而实现对系统的精确控制。
基于数据分析的方法是一种较为客观的确定隶属函数的方法,它通过对已有数据的统计分析来确定隶属函数的形状和参数。
通常,需要收集一定数量的数据样本,并对这些数据进行分析,确定隶属函数的形状和参数。
例如,在模糊分类问题中,可以通过对已有分类数据的统计分析来确定隶属函数,从而实现对未知样本的分类。
基于模糊聚类的方法是一种将隶属函数与模糊聚类相结合的方法,它通过对数据样本进行聚类分析来确定隶属函数的形状和参数。
通常,需要先对数据进行模糊聚类,确定聚类结果,然后使用聚类结果来确定隶属函数。
例如,在模糊图像分割中,可以通过对图像像素进行模糊聚类,确定图像的不同区域,然后使用聚类结果来确定图像的隶属函数,从而实现图像分割。
基于优化算法的方法是一种通过优化算法来确定隶属函数的形状和参数的方法。
通常,需要将需要确定的隶属函数作为优化目标函数,利用其中一种优化算法来求解最优解,从而确定隶属函数的形状和参数。
例如,在模糊最优化问题中,可以将需要确定的隶属函数作为目标函数,使用遗传算法或粒子群算法等优化算法来求解最优解,从而确定隶属函数。
以上是一些常用的确定隶属函数的方法,不同的方法适用于不同的问题和场景。
在实际应用中,可以根据具体情况选择适合的方法来确定隶属函数,以达到最佳的模糊集合描述效果。
第4章隶属函数的确定方法在模糊理论的应用中,我们面临的首要问题就是建立模糊集的隶属函数。
对于一个特定的模糊集来说,隶属函数不仅基本体现了它所反映的模糊概念的特性,而且通过量化还可以实现相应的数学运算和处理。
因此,“正确地”确定隶属函数是应用模糊理论恰如其分地定量刻划模糊概念的基础,也是利用模糊方法解决各种实际问题的关键。
然而,建立一个能够恰如其分地描述模糊概念的隶属函数,并不是一件容易的事情。
其原因就在于一个模糊概念所表现出来的模糊性通常是人对客观模糊现象的主观反映,隶属函数的形成过程基本上是人的心理过程,人的主观因素和心理因素的影响使得隶属函数的确定呈现出复杂性、多样性,也导致到目前为止如何确定隶属函数尚无定法,没有通用的定理或公式可以遵循。
但即便如此,鉴于隶属函数在模糊理论中的重要地位,确定隶属函数的方法还是受到了特别的重视,至今已经提出了十几种确定隶属函数的方法,而且其中一些方法基本上摆脱了人的主观因素的影响。
本章将选择4种经常使用的、具有代表性的方法予以介绍,它们是:直觉方法,二元对比排序法,模糊统计试验法,最小模糊度法。
4.1 直觉方法直觉的方法就是人们用自己对模糊概念的认识和理解,或者人们对模糊概念的普遍认同来建立隶属函例1、“正好”、“热”和“很热”图1 空气温度的隶属函数例2根据人们对汽车行驶速度中“慢速”、“中速”和“快速”这三个概念的普遍认同,可以给出描图2 汽车行驶速度的隶属函数虽然直觉的方法非常简单,也很直观,但它却包含着对象的背景、环境以及语义上的有关知识,也包含了对这些知识的语言学描述。
因此,对于同一个模糊概念,不同的背景、不同的人可能会建立出不完全相同的隶属函数。
例如,模糊集A = “高个子”的隶属函数。
如果论域是“成年男性”,其隶属函数的曲线如图3(a )所示;而如果论域是“初中一年级男生”,其隶属函数的曲线则为图3(b )所示的情形。
(a) (b)图3 不同论域下“高个子”的隶属函数4.2 二元对比排序法建立一个模糊集的隶属函数,实际上可以看成是对论域中每个元素隶属于某个模糊概念的程度进行比较、排序。
对模糊隶属函数确定方法的进一步探讨隶属函数的确定不应只侧重于对信息自身模糊性的识别和描述,还应该正确描述主体的心理测度,重视主体认识水平的缺陷。
探讨了用简便可行的隶属函数度量方法来测量人们进行决策时心理测度上的模糊性,给出了具体不同情况下的描述函数,在一定程度上可以更准确地描述信息的模糊性,从而使决策更具有合理性。
标签:隶属函数;模糊分布;心理测度一、引言客观事物均不同程度地存在着不确定性,这种不确定性蕴涵在客观表现及其主观识别之中。
从本质上看,不确定性是主观对于客观而言的,即对客观信息的识别与刻画无不受到主观因素的影响,受到主体心理因素的影响,进而表现为认知水平和描述方法的差异。
而一般的隶属函数确定的方法多从下面两个角度;或侧重于描述信息自身的模糊性、识别和刻画方法的模糊性,或从如何消除减少主观任意性成分来进行研究,而忽视了起决定作用的主体想心理思维模式和判断尺度,使得隶属函数的确定不够完善。
另一方面,随着生产系统、社会系统的大规模化和复杂化,使得人们进行预测与决策变得十分困难。
由于决定预测的准确性及决策成败的关键是人,所以应能正确描述人的心理测度上的模糊性。
对于此类问题,当今决策理论是从理性决策的行为决策两分支进行研究,但在现实实际操作生活中,出现了理性决策与行为决策不相一致的情况。
正是基于这两方面因素考虑,力图应用理性决策与行为决策相结合的思想,通过定性与定量相结合的方法,找到一种能反映主体心理测度的方法,从能够描述存在的现象和避免不应发生的现象出现两个角度进行研究,使信息的模糊隶属描述更具有合理性,使人们在模糊的状态下进行的预测和决策偏差更小。
二、分类描述1.当主体参考事态进行判断时,往往由于过于自信而出现偏差,当事件发生的客观概率在0.5上,而人们又认为或希望它发生,则判断出的隶属度往往高于凭他们的知识和事实本应判断出的值;另一方面,当客观概率小于0.5,而人们又不认为或不希望它会发生,则往往估计偏低。
一、F集合1、F集定义设论域U上给定了一个映射A:U→0,1u|→A(u)则称A为U上的模糊(Fuzzy)集,A(u)称为A的隶属函数(或称为u对A的隶属度)。
2、F集的截集定义设A∈F(U),λ∈[0, 1],记(1) Aλ={u| u∈U, A(u) ≥λ}称Aλ为A的一个λ截集,λ称为阈值(或置信水平);(2) Aλ={u| u∈U, A(u) >λ}称Aλ为A的一个λ强截集。
3、F集的模糊度定义若映射d:F U→[0,1]满足条件:(1) 当且仅当A∈P(U)时,d(A)=0,(2) ∀ u∈U,当且仅当A(u) ≡1/2时,d(A)=1,(3) ∀ u∈U,当B(u) ≤A(u) ≤1/2时,d(B) ≤d(A),(4) A∈F(U),d(A)=d(A c),称映射d为F(U)上的一个模糊度,d(A)称为F集A的模糊度。
该定义给出了关于模糊度的4条公里,它们所反映的现实是:条件(1)表明普通集是不模糊的;条件(2)和条件(3)表明,越靠近0.5就越模糊,尤其是当A(u) ≡0.5时,是最模糊的,这时A c(u)=1- A(u)=0.5这种模棱两可的情况是最难决策的;条件(4)表明F集A与其补集A c具有相同的模糊度。
二、F模式识别1、典型模式识别系统2、F 集的贴近度定义设A, B, C ∈F(U),若映射N:F U ×F U →[0,1]满足条件:(1) N(A, B)=N(B, A),(2) N(A, A)=1,N U,∅ =0,(3) 若A B C ⊆⊆,则 N(A, C)N(A, B)N(B, C)≤∧,则称N(A, B)为F 集A 与B 的贴近度。
N 称为F(U)上的贴近度函数。
贴近度是对两个F 集接近程度的一种度量。
3、F 模式识别原则F 模式识别大致有两种方法,一种是直接方法,按“最大隶属原则”归类,主要应用于个体的识别;另一种是间接方法,按“择近原则”归类,一般应用于群体模型的识别。
模糊数学中的模糊集合与隶属度函数模糊数学是一种基于模糊集合理论的数学方法,用于处理含有不确定性和模糊性的问题。
在模糊数学中,模糊集合和隶属度函数是两个核心概念。
一、模糊集合
模糊集合是对现实世界中不确定性和模糊性的数学描述。
与传统的集合论中的集合不同,模糊集合允许元素以不同的程度属于或不属于集合。
例子:假设我们要描述一个人的年龄,一般的集合描述方法是“20岁”或者“30岁”。
但是在模糊集合中,我们可以用隶属度函数来描述一个人的年龄,如“年轻”、“中年”、“老年”等。
二、隶属度函数
隶属度函数是衡量一个元素对于某个模糊集合的隶属程度的函数。
它定义了元素在0和1之间的值,代表了元素对于该模糊集合的属于程度。
例子:假设我们定义了一个模糊集合“年轻人”,它的隶属度函数可以表示为:
{1, 0≤x≤25
μ(x)= {
{50-2x, 25<x<37.5
其中x表示人的年龄,μ(x)表示年龄x对于“年轻人”的隶属度。
当x 为25岁时,μ(x)的值为1,表示完全属于“年轻人”;当x为37.5岁时,μ(x)的值为0,表示不属于“年轻人”。
通过隶属度函数,我们可以量化元素属于某个模糊集合的程度,从
而进行模糊推理和决策。
结语
模糊集合和隶属度函数是模糊数学中的重要概念,它们为处理现实
世界中的模糊和不确定性问题提供了有力的工具。
通过合理定义模糊
集合和隶属度函数,并运用模糊数学的方法,我们可以更好地处理模
糊问题,提高决策的准确性和可靠性。