隶属度函数的建立
- 格式:ppt
- 大小:148.00 KB
- 文档页数:11
模糊数学理论在企业风险评估中的应用研究随着企业经济运作逐渐复杂化,风险评估已经成为了企业管理中不可或缺的一个环节。
传统的风险评估方法主要是基于数学模型的,但是这些模型在实际应用过程中不仅需要大量的数据,而且还可能因为数据的不确定性而导致评估结果的不确定性。
因此,模糊数学理论作为一种新兴的风险评估方法,逐渐引起了广泛的关注。
本文将探讨模糊数学理论在企业风险评估中的应用研究。
一、模糊数学理论简介模糊数学理论是20世纪60年代中期由美国学者洛特菲提出的一种数学理论。
与传统的精确数学理论不同的是,模糊数学理论不仅可以处理精确的数据,还可以处理那些具有不确定性的数据。
在模糊数学理论中,每个值都可以表示为一个模糊数。
模糊数是一种介于0和1之间的数,可以用来描述数据的不确定性。
二、企业风险评估企业风险评估是指对企业面临的各种风险进行评估,并制定相应的风险管理措施,包括预防措施、减少措施和治理措施等。
常见的企业风险包括市场风险、信用风险、操作风险、法律风险和汇率风险等。
在传统的风险评估中,通常会使用概率论和统计学方法来预测风险的大小和可能性。
但是,由于现实中的数据常常不完整和不确定,这种风险评估方法可能存在误差和局限性。
三、模糊数学理论在企业风险评估中的应用与传统的数学模型不同,模糊数学理论可以对风险进行评估和判定,同时还能够有效地处理那些由于数据不确定性而导致的评估误差。
在应用模糊数学理论进行企业风险评估时,一般需要从以下几个方面入手。
3.1模糊隶属度函数的建立模糊隶属度函数是模糊数学理论中最基本的概念。
它将一个数据和一个集合之间的关系描述为一个隶属度。
在企业风险评估中,可以将所有的风险指标构建为一个集合,再将每个风险指标与一个模糊隶属度函数相对应。
这样一来,就可以将所有的风险指标进行量化和评估。
3.2风险等级划分风险等级是对企业风险程度的分类,通常分为低、中、高三个等级。
在模糊数学理论中,可以通过建立动态的阈值和分布函数,将各种风险按照其重要性和可能性划分成各个等级。
第6章模糊逻辑【转】2009-04-16 21:48高斯隶属函数函数gaussmf格式 y=gaussmf(x,[sig c])说明高斯隶属函数的数学表达式为:,其中为参数,x为自变量,sig为数学表达式中的参数。
例6-1>>x=0:0.1:10;>>y=gaussmf(x,[2 5]);>>plot(x,y)>>xlabel('gaussmf, P=[2 5]')结果为图6-1。
图6-16.1.2 两边型高斯隶属函数函数gauss2mf格式 y = gauss2mf(x,[sig1 c1 sig2 c2])说明 sig1、c1、sig2、c2为命令1中数学表达式中的两对参数例6-2>>x = (0:0.1:10)';>>y1 = gauss2mf(x, [2 4 1 8]);>>y2 = gauss2mf(x, [2 5 1 7]);>>y3 = gauss2mf(x, [2 6 1 6]);>>y4 = gauss2mf(x, [2 7 1 5]);>>y5 = gauss2mf(x, [2 8 1 4]);>>plot(x, [y1 y2 y3 y4 y5]);>>set(gcf, 'name', 'gauss2mf', 'numbertitle', 'off');结果为图6-2。
6.1.3 建立一般钟型隶属函数函数gbellmf格式 y = gbellmf(x,params)说明一般钟型隶属函数依靠函数表达式这里x指定变量定义域范围,参数b通常为正,参数c位于曲线中心,第二个参数变量params是一个各项分别为a,b和c的向量。
例6-3>>x=0:0.1:10;>>y=gbellmf(x,[2 4 6]);>>plot(x,y)>>xlabel('gbellmf, P=[2 4 6]')结果为图6-3。
汽车文摘肖璇解嘉铖赵新韩野潘禹澎(一汽奔腾轿车有限公司奔腾开发院,长春130013)【摘要】试制车对汽车开发环节起到重要支撑作用,随着汽车开发周期的逐渐缩短和试制车质量要求的逐渐提升,对试制车整车质量的准确评价和定向改进显得尤为重要。
由于试制车的零件状态和车辆用途不同于商品车,其对不同阶段和用途的车辆有不同的需求侧重,因此对各个评价指标需要赋予不同的权重。
本文基于层次分析法对每项评价指标赋予不同权重,通过隶属度函数对整车状态进行评价,根据评价结果对整车质量提出针对性改进。
主题词:试制车层次分析法隶属度函数整车评价中图分类号:U471.14文献标识码:ADOI:10.19822/ki.1671-6329.20210048Research on The Evaluation of Trial-Manufactured Vehicle Based onAHP-Membership FunctionXiao Xuan,Xie Jiacheng,Zhao Xin,Han Ye,Pan Yupeng(Bestune Development Institute,FAW Car Co.,Ltd.Changchun 130013)【Abstract 】Trial vehicles play an important role in supporting the development of automobiles.With the gradual shortening of the automobile development cycle and the gradual improvement of quality requirements for trial vehicles,it is particularly important to accurately evaluate and improve the quality of trial vehicles.Since the status of parts and the purpose of the prototype vehicles are different from that of the commercial vehicles,it has different needs for vehicles of different stages and purposes,so different weights need to be assigned to each evaluation index.Based on the analytic hierarchy process,this paper assigns different weights to each evaluation index,evaluates the state of the vehicle through the membership function,and proposes targeted improvements to the quality of the vehicle based on the evaluationresults.Key words:Trial-manufactured vehicle ,Analytic hierarchy process ,Membership function ,Vehicle evaluation基于AHP-隶属度函数的试制整车评价研究【欢迎引用】肖璇,解嘉铖,赵新,等.基于AHP-隶属度函数的试制整车评价研究[J].汽车文摘,2021(7):27-31.【Cite this paper 】Xiao X,Xie J,Zhao X,et al.Research on The Evaluation of Trial-Manufactured Vehicle Based on AHP-Member⁃ship Function [J].Automotive Digest (Chinese),2021(7):27-31.1引言汽车的产品质量是销量的基础保证,而试制车用于开发阶段动力总成匹配、底盘系统调校、电气系统标定和道路试验认可等,因此试制阶段产品质量直接影响整车开发。
模糊函数python 隶属度函数模糊函数是一种基于模糊逻辑理论的函数,用于描述模糊概念,它可以将模糊输入转化为模糊输出,使一系列复杂的决策问题更加简单化,是目前很多智能系统、控制系统中广泛应用的一种技术手段。
而对于模糊函数的应用,隶属度函数起着至关重要的作用,本文将从隶属度函数入手,详细介绍如何使用python编写模糊函数的隶属度函数。
第一步:理解隶属度函数的含义隶属度函数是模糊函数中的一种关键概念,它用于描述模糊集合中元素(即模糊变量)与该模糊集合的隶属程度。
例如,一个人的身高可以被认为是“高”或“矮”,但是这些概念都是模糊的,不能用确定性值来刻画。
为了描述这种不确定程度,我们需要引入隶属度函数,将身高与“高”、“矮”的隶属程度映射到[0, 1]区间内的某一个值。
第二步:掌握隶属度函数的常见类型常见的隶属度函数类型有三角形隶属度函数、梯形隶属度函数、高斯隶属度函数等等,其中三角形隶属度函数是最为常见的一种类型。
三角形隶属度函数的公式如下:def triangular(x,a,b,c):if x<=a or x>=c:return 0elif a<x and x<=b:return (x-a)/(b-a)else:return (c-x)/(c-b)该函数接收四个参数:x为输入值,a和c分别为三角形左右两端点的位置,b为三角形高度(也叫峰值)的位置。
函数返回x对应的隶属度值,如图所示:第三步:使用python实现隶属度函数在python中,可以用函数的方式实现隶属度函数。
以三角形隶属度函数为例,实现该函数的python代码如下:def triangular(x,a,b,c):if x<=a or x>=c:return 0elif a<x and x<=b:return (x-a)/(b-a)else:return (c-x)/(c-b)其中x为输入值,a、b、c分别为三角形隶属度函数的三个参数,返回一个0到1之间的隶属程度值。
隶属度函数----------------------------精品word文档值得下载值得拥有----------------------------------------------美国加利福尼亚大学控制论教授扎得(L、A、Zadeh)经过多年的琢磨,终于在1965年首先发表了题为《模糊集》的论文。
指出:若对论域(研究的范围)U中的任一元素x,都有一个数A(x)?[0,1]与之对应,则称A为U上的模糊集,A(x )称为x对A的隶属度。
当x在U中变动时,A( x)就是一个函数,称为A的隶属函数。
隶属度A(x)越接近于1,表示x属于A的程度越高,A(x)越接近于0表示x属于A的程度越低。
用取值于区间[0,1]的隶属函数A(x)表征x 属于A的程度高低,这样描述模糊性问题比起经典集合论更为合理。
隶属度属于模糊评价函数里的概念:模糊综合评价是对受多种因素影响的事物做出全面评价的一种十分有效的多因素决策方法,其特点是评价结果不是绝对地肯定或否定,而是以一个模糊集合来表示。
隶属度函数及其确定方法分类隶属度函数是模糊控制的应用基础,正确构造隶属度函数是能否用好模糊控制的关键之一。
隶属度函数的确定过程,本质上说应该是客观的,但每个人对于同一个模糊概念的认识理解又有差异,因此,隶属度函数的确定又带有主观性。
隶属度函数的确立目前还没有一套成熟有效的方法,大多数系统的确立方法还停留在经验和实验的基础上。
对于同一个模糊概念,不同的人会建立不完全相同的隶属度函数,尽管形式不完全相同,只要能反映同一模糊概念,在解决和处理实际模糊信息的问题中仍然殊途同归。
下面介绍几种常用的方法。
(1)模糊统计法:模糊统计法的基本思想是对论域U上的一个确定元素vo是否属于论域上的一个可变动的清晰集合A3作出清晰的判断。
对于不同的试验者,清晰集合 A3可以有不同的边界,但它们都对应于同一个模糊集A。
模糊统计法的计算步骤是:在每次统计中, vo是固定的,A3的值是可变的,作 n次试验,其模糊统计可按下式进行计算v0对 A 的隶属频率 = v0?A 的次数 / 试验总次数 n随着 n的增大,隶属频率也会趋向稳定,这个稳定值就是 vo对A 的隶属度值。
隶属函数正确地确定隶属函数,是运用模糊集合理论解决实际问题的基础。
隶属函数是对模糊概念的定量描述。
我们遇到的模糊概念不胜枚举,然而准确地反映模糊概念的模糊集合的隶属函数,却无法找到统一的模式。
隶属函数的确定过程,本质上说应该是客观的,但每个人对于同一个模糊概念的认识理解又有差异,因此,隶属函数的确定又带有主观性。
一般是根据经验或统计进行确定,也可由专家、权威给出。
例如体操裁判的评分,尽管带有一定的主观性,但却是反映裁判员们大量丰富实际经验的综合结果。
对于同一个模糊概念,不同的人会建立不完全相同的隶属函数,尽管形式不完全相同,只要能反映同一模糊概念,在解决和处理实际模糊信息的问题中仍然殊途同归。
事实上,也不可能存在对任何问题对任何人都适用的确定隶属函数的统一方法,因为模糊集合实质上是依赖于主观来描述客观事物的概念外延的模糊性。
可以设想,如果有对每个人都适用的确定隶属函数的方法,那么所谓的“模糊性”也就根本不存在了。
2.5.1 隶属函数的几种确定方法这里仅介绍几种常用的方法,不同的方法结果会不同,但检验隶属函数建立是否合适的标准,看其是否符合实际及在实际应用中检验其效果。
1.模糊统计法在有些情况下,隶属函数可以通过模糊统计试验的方法来确定。
这里以张南组等人进行的模糊统计工作为例,简单地介绍这种方法。
图2-5-1 27岁对“青年”隶属频率的稳定性张南纶等人在武汉建材学院,选择129人作抽样试验,让他们独立认真思考了“青年人”的含义后,报出了他们认为最适宜的“青年人”的年龄界限。
由于每个被试者对于“青年人”这一模糊概念理解上的差异,因此区间不完全相同,其结果如表2-5-1所示。
现选取0u=27岁,对“青年人”的隶属频率为)调查人数()岁的区间数(隶属次数包含n 27=μ (2-5-1) 用μ作为27岁对“青年人”的隶属度的近似值,计算结果见表2-5-2。
78.027)=(青年人μ按这种方法计算出15~36岁对“青年人”的隶属频率,从中确定隶属度。
隶属函数正确地确定隶属函数,是运用模糊集合理论解决实际问题的基础。
隶属函数是对模糊概念的定量描述。
我们遇到的模糊概念不胜枚举,然而准确地反映模糊概念的模糊集合的隶属函数,却无法找到统一的模式。
隶属函数的确定过程,本质上说应该是客观的,但每个人对于同一个模糊概念的认识理解又有差异,因此,隶属函数的确定又带有主观性。
一般是根据经验或统计进行确定,也可由专家、权威给出。
例如体操裁判的评分,尽管带有一定的主观性,但却是反映裁判员们大量丰富实际经验的综合结果。
对于同一个模糊概念,不同的人会建立不完全相同的隶属函数,尽管形式不完全相同,只要能反映同一模糊概念,在解决和处理实际模糊信息的问题中仍然殊途同归。
事实上,也不可能存在对任何问题对任何人都适用的确定隶属函数的统一方法,因为模糊集合实质上是依赖于主观来描述客观事物的概念外延的模糊性。
可以设想,如果有对每个人都适用的确定隶属函数的方法,那么所谓的“模糊性”也就根本不存在了。
2.5.1 隶属函数的几种确定方法这里仅介绍几种常用的方法,不同的方法结果会不同,但检验隶属函数建立是否合适的标准,看其是否符合实际及在实际应用中检验其效果。
1.模糊统计法在有些情况下,隶属函数可以通过模糊统计试验的方法来确定。
这里以张南组等人进行的模糊统计工作为例,简单地介绍这种方法。
图2-5-1 27岁对“青年”隶属频率的稳定性张南纶等人在武汉建材学院,选择129人作抽样试验,让他们独立认真思考了“青年人”的含义后,报出了他们认为最适宜的“青年人”的年龄界限。
由于每个被试者对于“青年人”这一模糊概念理解上的差异,因此区间不完全相同,其结果如表2-5-1所示。
现选取0u=27岁,对“青年人”的隶属频率为)调查人数()岁的区间数(隶属次数包含n 27=μ (2-5-1) 用μ作为27岁对“青年人”的隶属度的近似值,计算结果见表2-5-2。
78.027)=(青年人μ按这种方法计算出15~36岁对“青年人”的隶属频率,从中确定隶属度。
隶属函数确定问题一、隶属函数的确定原则1、表示隶属度函数的模糊集合必须就是凸模糊集合;即:在一定范围内或者一定条件下,模糊概念的隶属度具有一定的稳定性;从最大的隶属度函点出发向两边延伸时,其隶属度就是单调递减的,而不许有波浪性,呈单峰;一般用三角形与梯形作为隶属度函数曲线。
2、变量所取隶属度函数通常就是对称与平衡的模糊变量的标值选择一般取3-9个为宜,通常取奇数(平衡),在“零”“适中”等集合的两边语言值通常取对称。
3、隶属度函数要避免不恰当的重复在相同的论域上使用的具有语意顺序的若干标称的模糊集合,应该合力排序。
4、论语中的每个点应该至少属于一个隶属度函数的区域,同时它一般应该属于之多不超过两个隶属度函数的区域。
5、对于同一输入,没有两个隶属度函数会同时有最大隶属度6、对两个隶属度函数重叠时,重叠部分对于两个隶属度函数的最大隶属度不应该有交叉。
二、隶属度函数确定的方法1、模糊统计法模糊统计法的基本思想就是对论域U上的一个确定元素v就是否属于论域上的一个可变的清晰集的判断。
(清晰集、模糊集)模糊统计法计算步骤:Step1 确定论域Step2形成调查表Step3统计成频数分布表Step4建立隶属函数Step5隶属度(由频数分布表或者隶属函数可得)所谓模糊统计实验包含以下四个要素:假设做n次模糊统计试验,则可计算出:实际上,当n不断增大时,隶属频率趋于稳定,其频率的稳定值称为0x 对A的隶属度,即2、例证法例证法由已知的有限个隶属度函数的值,来估计论域U上的模糊子集A的隶属函数。
3、专家经验法就是根据专家的实际经验给出模糊信息的处理算式或者相应的权系数值隶属函数的一种方法。
4、二元对比排序法5、群体决策法6、指派方法(待定来自算法大全第22章模糊数学模型)指派方法就是一种主观的方法,它主要依据人们的实践经验来确定某些模糊集隶属函数的一种方法。
如果模糊集定义在实数域R上,则模糊集的隶属函数称为模糊分布。
python 隶属函数隶属函数是Python编程语言中非常重要的概念之一。
在本文中,我们将探讨隶属函数的定义、作用以及如何在Python中使用隶属函数。
隶属函数是模糊逻辑中的一个概念,用于描述一个变量在一个特定的范围内的隶属程度。
隶属函数通常用来建模模糊变量的模糊集。
模糊集是由一系列隶属函数组成的,每个隶属函数都表示了变量在某个特定范围内的隶属程度。
在Python中,我们可以使用模糊逻辑库来定义和使用隶属函数。
一个常用的模糊逻辑库是scikit-fuzzy。
首先,我们需要导入scikit-fuzzy库:```pythonimport skfuzzy as fuzz```然后,我们可以定义一个隶属函数。
例如,我们可以定义一个三角形隶属函数,它在[0, 10]范围内的隶属度从0逐渐增加到1,然后再逐渐减少到0:```pythonx = np.arange(0, 10, 0.1)mfx = fuzz.trimf(x, [0, 5, 10])```在这个例子中,我们使用了trimf函数来定义一个三角形隶属函数。
trimf函数接受两个参数,一个是变量的范围,另一个是隶属函数的形状。
在这个例子中,我们定义了一个在[0, 5, 10]范围内的三角形隶属函数。
一旦我们定义了隶属函数,我们就可以使用它来计算变量的隶属度。
例如,假设我们有一个输入变量x,它的值为3。
我们可以使用隶属函数来计算x的隶属度:```pythonfuzz.interp_membership(x, mfx, 3)```在这个例子中,我们使用了interp_membership函数来计算变量x 的隶属度。
interp_membership函数接受三个参数,一个是变量的范围,一个是隶属函数,另一个是变量的值。
在这个例子中,我们计算了变量x=3的隶属度。
除了计算隶属度,我们还可以使用隶属函数进行模糊推理。
模糊推理是一种基于模糊逻辑的推理方法,它可以处理不确定性和模糊性的问题。
第6章模糊逻辑【转】2009-04-16 21:48高斯隶属函数函数gaussmf格式 y=gaussmf(x,[sig c])说明高斯隶属函数的数学表达式为:,其中为参数,x为自变量,sig为数学表达式中的参数。
例6-1>>x=0:0.1:10;>>y=gaussmf(x,[2 5]);>>plot(x,y)>>xlabel('gaussmf, P=[2 5]')结果为图6-1。
图6-16.1.2 两边型高斯隶属函数函数gauss2mf格式 y = gauss2mf(x,[sig1 c1 sig2 c2])说明 sig1、c1、sig2、c2为命令1中数学表达式中的两对参数例6-2>>x = (0:0.1:10)';>>y1 = gauss2mf(x, [2 4 1 8]);>>y2 = gauss2mf(x, [2 5 1 7]);>>y3 = gauss2mf(x, [2 6 1 6]);>>y4 = gauss2mf(x, [2 7 1 5]);>>y5 = gauss2mf(x, [2 8 1 4]);>>plot(x, [y1 y2 y3 y4 y5]);>>set(gcf, 'name', 'gauss2mf', 'numbertitle', 'off'); 结果为图6-2。
6.1.3 建立一般钟型隶属函数函数gbellmf格式 y = gbellmf(x,params)说明一般钟型隶属函数依靠函数表达式这里x指定变量定义域范围,参数b通常为正,参数c位于曲线中心,第二个参数变量params是一个各项分别为a,b和c的向量。
例6-3>>x=0:0.1:10;>>y=gbellmf(x,[2 4 6]);>>plot(x,y)>>xlabel('gbellmf, P=[2 4 6]')结果为图6-3。