测井原理11-中子测井_图文
- 格式:pptx
- 大小:2.02 MB
- 文档页数:33
中子测井原理及应用中子测井是油气勘探和开发领域常用的测井工具,它通过检测埋藏层中的中子强度变化来获取有关岩石成分、流体含量和孔隙结构等信息。
本文将对中子测井的原理和应用进行详细介绍。
中子测井的原理主要基于中子与原子核相互作用的特性。
中子是核反应中不带电荷的粒子,可以穿透厚度较大的岩石层,并与原子核发生弹性散射或非弹性散射。
当中子穿过地层时,会与原子核发生散射,其中弹性散射使中子的能量损失,而非弹性散射会引起中子与原子核碰撞后释放出γ射线。
中子测井主要有三种类型:全反散射中子测井、氢反散射中子测井和共振中子测井。
全反散射中子测井是最常用的中子测井方法。
测井仪器发射中子束入井,中子在地层中与核子发生弹性散射,并回到测井仪器。
仪器检测到回散射的中子数,通过测量散射中子的能量损失来计算出地层中的处于中子束路径上的原子核的密度。
氢反散射中子测井主要是测量地层中氢的含量,因为氢含量与流体含量有关。
仪器发射中能量较高的中子入井,中子在地层中与氢发生非弹性散射,失去一部分能量,被探测器检测到。
通过测量散射中子的能量损失来计算地层中的氢原子的密度,从而估计出岩石中的流体含量。
共振中子测井是利用中子与原子核共振能级耦合的原理。
测井仪器发射中子束入井,中子在与地层中的原子核相互作用时,落入共振能级,通过共振吸收释放出γ射线。
测量这些γ射线的能量和强度,可以获取地层中特定原子核的密度和含量信息。
中子测井在油气勘探中有着重要的应用价值。
首先,中子测井可以提供岩石成分和密度信息,从而帮助确定地层的岩石类型和性质,判断潜在油气储集层的存在和质量。
其次,中子测井可以测量地层中的氢原子密度,从而帮助估计油气水饱和度和流体类型。
此外,中子测井在解释地震数据和构建地层模型时也发挥重要作用。
除了油气勘探领域,中子测井还广泛应用于地下水勘探、地质工程和环境行业。
例如,用于地下水勘探时可以通过测量含水层的水含量和孔隙度来评估地下水资源量和流动性。
《地球物理测井方法》第九章中子测井中子测井是地球物理测井中一种常用的方法,通过测量自然放射性中子在地下岩石中的吸收和散射情况,给出含氢量,从而判断岩石的岩性和含水性质。
本章主要介绍中子测井的原理、测井曲线的解释和应用。
9.1中子测井的原理中子测井通过探测和测量中子在地下岩石中的吸收和散射情况,来确定地层的物性参数。
中子测井一般使用两种中子源:放射性核素源和中子发生器。
9.1.1放射性核素源放射性核素源一般采用锶-90/钇-90和铯-137源。
当源辐射中子进入地层时,与地层中的核与原子进行散射、吸收和成为散裂中子,从而改变中子的传输规律。
通过测量地层中散射中子和散裂中子的比例,可以确定地层的平均原子质量和中子俘获截面。
9.1.2中子发生器中子发生器一般采用贝里利钠源。
中子发生器产生高速中子,通过地层的散射和核反应,快速减速并且散射成热中子。
测量地层中的散射中子可以得到地层的平均原子质量。
9.2中子测井曲线的解释中子测井曲线是通过记录和测量地下岩石中散射和吸收中子的响应,从而得到岩石的物性参数。
9.2.1中子通量曲线中子测井中,中子源发射的中子流经地层时会发生吸收和散射,散射到测井仪器的中子将与原子核发生散射反应。
记录和测量测井仪器接收到的中子数目,可以得到中子的通量曲线。
中子通量曲线反映了地层中散射和吸收中子的情况,从而可以判断地层的物性参数。
9.2.2归一化中子通量曲线为了消除不同测井工具之间的差异,通常会将中子通量曲线归一化。
将测井仪器接收到的中子数目除以源活度和测井仪器的响应系数,得到归一化的中子通量曲线。
9.2.3中子测井曲线的解释根据中子测井曲线的形态和变化,可以判断地层的物性参数。
当地层中的含水量较高时,中子通量较高,因为水对中子的吸收较强。
而当地层中的含水量较低时,中子通量较低。
通过测量中子测井曲线的斜率,还可以得到地层的氢指数,从而判断地层的岩性。
9.3中子测井的应用中子测井可以用于判断地层的物性参数,从而对地层进行岩性和含水性质的判断。
中子伽马测井热中子继续在地层中扩散并不断被吸收。
有些核素能俘获热中子并放出伽马射线。
在核物理中把这一过程称为辐射俘获核反应而由这一核反应产生的伽马射线称为俘获辐射。
在测井中习惯上把这一反应称为中子伽马核反应产生的射线为中子伽马射线。
用同位素中子源发射的快中子连续照射井剖面在仪器中离源一定的地方装一伽马射线探测器连续记录地层发射的中子伽马射线。
这就是中子伽马测井。
中子伽马测井值主要反映地层的含氢量同时又与含氯量有关。
1. 中子伽马测井原理 1 中子伽马射线热中子通量在地层中的分布主要是由地层的减速性质含氢量决定的但在以后产生中子伽马射线的γ核反应却与氢及其它几种核素都有关系。
氢核俘获一个热中子生成氘核并放出一个能量为2.23MeV的伽马光子其反应截面为.33巴。
核反应方程为111→12γEγ2.23MeV 氯产生γ反应的截面是34巴有些资料给出的数据为31.6巴且每俘获一个热中子平均发射3.1个伽马光子其中部分伽马射线的能量可达7.79和8.6MeV可获得较高的计数效率其核反应方程为131→13γ 沉积岩骨架矿物中有硅和钙的γ反应也比较重要。
2 中子伽马射线的空间分布用理论方法研究同位素快中子源在地层中造成的中子伽马射线的空间分布是非常复杂的虽然也有人做了一些推导和计算但最终也只能定性地说明一些问题。
对测井工作来说定量是通过实验进行的。
更直观的方法还是通过实验做出计数率与源距的关系曲线。
1 随源距L增大Jγ按指数迅速降低。
且当L100厘米时中子伽马计数率已很低此时的读数基本只反映背景值。
2 当L35厘米时含氢指数不同的地层有大致相同的中子伽马计数率测井值。
此时测井的读数与含氢指数无关但是能反映地层水矿化度NaCl含量的变化。
3 L35厘米时致密地层比孔隙性地层中子伽马读数低而当L35厘米后含氢量少的地层中子伽马测井计数率高。
4当源距选定后盐水的中子伽马测井计数率高于淡水。
中子伽马测井的源距一般都通过实验选定源距太小受井的影响大对地层含氢量的变化不灵敏源距太大则计数率太低涨落误差大。
中子测井原理中子测井是一种利用中子与地层中核子相互作用的物理现象来确定地层孔隙度、含水量和岩石类型的测井方法。
它是目前油田勘探开发中广泛应用的一种测井技术,具有测井深度范围广、测井响应灵敏、测井解释简便等特点。
中子测井原理的理解对于油田勘探开发工作具有重要意义。
中子测井原理的核心在于中子与地层中核子的相互作用。
当中子进入地层后,会与地层中的核子(主要是氢核)发生弹性散射和非弹性散射。
弹性散射是指中子与核子碰撞后改变方向但能量不变,非弹性散射是指中子与核子碰撞后能量发生改变。
通过对中子在地层中的散射过程进行测量和分析,可以得到地层的孔隙度、含水量等信息。
在进行中子测井时,通常会使用中子发生器和探测器。
中子发生器会产生一定能量的中子束,这些中子束会照射到地层上并与地层中的核子发生相互作用。
探测器则用于检测散射后的中子,并将其转化为电信号。
通过分析这些电信号的强度和时间分布,可以得到地层中核子的散射信息,进而推断地层的性质。
中子测井原理的应用范围非常广泛。
首先,它可以用于确定地层的孔隙度。
由于中子与地层中的核子相互作用,不同孔隙度的地层对中子的散射响应也不同,因此可以通过中子测井来估算地层的孔隙度。
其次,中子测井还可以用于确定地层的含水量。
由于地层中的水含有氢核,因此对中子的散射响应也不同于其他地层成分,通过对中子的散射信号进行分析,可以推断地层的含水量。
此外,中子测井还可以用于识别地层的岩石类型。
不同类型的岩石对中子的散射响应也不同,通过分析中子的散射信号,可以推断地层的岩石类型。
总的来说,中子测井原理是一种重要的地球物理勘探技术,它通过对中子与地层核子相互作用的测量和分析,可以得到地层的孔隙度、含水量和岩石类型等信息。
在油田勘探开发中,中子测井技术具有重要的应用价值,可以为勘探开发工作提供重要的地质信息和数据支撑。
通过深入理解中子测井原理,可以更好地指导实际工作,并取得更好的勘探开发效果。
中子测井一、超热中子测井用点状同位素中子源向地层发射快中子,在离源一定距离的观察点上选择记录超热中子的测井方法叫超热中子测井。
超热中子测井仪器有普通管式和贴井壁两类,用后一种仪器进行测井通常称为井壁中子测井。
1. 超热中子测井原理1) 地层的含氢指数 前面已经讲过,地层对快中子的减速能力主要决定于它的含氢量。
含氢量高的地层宏观减速能力大、减速长度小。
为了方便,在中子测井中把淡水的含氢量定义为一个单位,用它来衡量所有地层中其物质的含氢量。
单位体积的任何物质中氢核数与同样体积的淡水中氢核数的比值,称为该物质的含氢指数,用H表示。
H与单位体积介质里的氢核数成正比,因而它可用下式表示(9.6.1)式中ρ是介质密度,单位为克/厘米 3;M是该化合物的克分子量;x是该化合物每个分子中的氢原子数;K是比例常数。
2) 纯水的含氢指数按规定,淡水的含氢指数为1,由此确定出(9.6.1)式中的K值。
因水的分子式为H2O,所以x=2,M=18,而水的密度ρ=1,由此求出K=9。
代入上式得(9.6.2)用(9.6.2)式可求出任何密度为ρ、分子量为M且每个分子中有x个氢核的单一分子组成的物质的含氢指数。
3) 盐水的含氢指数NaCl溶于水后占据了空间,而使盐水的氢密度减小。
计算盐水含氢指数的一般公式为(9.6.3)-8)。
式中ρw为盐水的密度,p为NaCl的浓度(单位为ppm×10在测裸眼井时,地层一般都有侵入,中子测井探测范围内的水的矿化度,可以认为与泥浆滤液的矿化度基本相同。
4) 油、气的含氢指数液体烃的含氢指数与水接近,然而天然气具有很低的氢浓度,并且随温度和压力而变化。
因而当天然气很靠近井眼而处于探测范围时,中子测井测出的含氢指数就较小。
烃的含氢指数可根据其组分和密度来估算。
分子式为CH X(其分子量为12+x)和密度为ρh 的烃的含氢指数为(9.6.4)3,用此式可算出甲烷(CH4)的含氢指数为2.25ρ甲烷,而石油(nCH2)的含氢指数为1.28ρ油。