中子孔隙度测井
- 格式:ppt
- 大小:3.63 MB
- 文档页数:13
中子测井和孔隙度的关系
中子测井是一种常用的地球物理测井方法,用来确定地层的孔隙度。
孔隙度是指岩石或土壤中孔隙的比例,它是岩石或土壤的重要物理性质,对于地质、工程和环境领域具有重要意义。
中子测井通过测量地层中的中子散射来确定孔隙度。
中子是一种电中性粒子,能够穿透大部分物质而不受其影响。
当中子穿过地层时,会与地层中的原子发生散射作用。
不同种类的原子对中子的散射效应不同,从而可以通过测量散射中子的能量来确定地层中的原子组成和孔隙度。
中子测井仪器中通常包含一个放射源和一个探测器。
放射源会产生中子,并将其发射入地层中。
当中子与地层中的原子发生散射时,探测器会测量散射中子的能量。
根据散射中子的能量与原子组成的关系,可以计算出地层的孔隙度。
孔隙度是地层中的孔隙空间占总体积的比例,它对于石油勘探和开发具有重要意义。
在石油勘探中,孔隙度可以帮助确定油气储层的含油含气量,从而指导开发策略。
在水资源开发和环境工程中,孔隙度可以帮助评估地下水储量和水文特征,从而指导水资源开发和环境保护。
中子测井作为一种重要的地球物理测井方法,已经被广泛应用于石油、水资源和环境等领域。
通过测量地层中的中子散射,可以确定
地层的孔隙度,为地质和工程领域的研究和开发提供了重要的数据支持。
第三章 中子测井 概述中子测井利用中子与地层物质相互作用的各种效应,测量地层特性的测井方法的总称。
根据中子测井仪器记录的对象不同可以分为:⎪⎪⎩⎪⎪⎨⎧—伽马能谱测井—中子—伽马测井—中子—超热中子测井—中子—热中子测井—中子按仪器结构特征的不同,可以分为普通中子测井,贴井壁中子测井,补偿中子测井等。
从中子源发出的高能中子与地层物质的原子核发生各种作用,其结果是高能中子逐步减弱为超热中子和热中子,或被原子核吸收,发生核反应。
中子与物质相互作用的类型有:非弹性散射;弹性散射;核俘获引起的核反应等。
探测仪器记录的低能中子的数量或原子核俘获中子发出的伽马射线的强度与地层对中子的减速能力和吸收特性有关。
中子测井正是利用了这些特性对地层进行探测的。
1)中子测井测量地层孔隙度的原理氢核与中子的质量几乎相等,是最强的减速物质。
因此,中子测井的结果将反映地层的含氢量。
在油层或水层中,储集空间中被含氢核的油或水充填,这样储集体中含氢量的多少反映岩石孔隙度的大小。
因此,中子测井是一种孔隙度测井方法。
2)油层和气层对中子的减速能力的差异非常明显,因此中子测井也是一种指示油气层的测井方法。
3)氯是地层中重要的中子吸收物质,氯是大多数地层水的主要离子成分,可见中子测井对于划分油水层也有重要作用。
4)中子与地层中的原子核发生非弹性散射,使原子核处于激发态,在退激时发出伽马射线。
这些伽马射线的能量,反映靶原子核的能级结构。
因不同的原子核其能级结构是不同的,因此发出的伽马射线的能量也是不同的。
我们把这种不同原子核发生的伽马射线称为特征伽马射线。
测量地层发射的伽马射线的能谱,就可以分析地层中元素的成分。
例如:碳核的特征伽马射线为Mev Er 43.4=氧核的特征伽马射线为 Mev Er 13.6=对于给定的中子源,中子与地层中的碳核和氧核发生非弹性散射次数的多少,取决于地层中相应核素的多少,取决于地层中相应的核素的丰度。
即特征伽马射线的强度取决于地层中碳核、氧核的数目。