中子测井原理及应用
- 格式:pptx
- 大小:1.59 MB
- 文档页数:32
中子测井原理及应用中子测井是油气勘探和开发领域常用的测井工具,它通过检测埋藏层中的中子强度变化来获取有关岩石成分、流体含量和孔隙结构等信息。
本文将对中子测井的原理和应用进行详细介绍。
中子测井的原理主要基于中子与原子核相互作用的特性。
中子是核反应中不带电荷的粒子,可以穿透厚度较大的岩石层,并与原子核发生弹性散射或非弹性散射。
当中子穿过地层时,会与原子核发生散射,其中弹性散射使中子的能量损失,而非弹性散射会引起中子与原子核碰撞后释放出γ射线。
中子测井主要有三种类型:全反散射中子测井、氢反散射中子测井和共振中子测井。
全反散射中子测井是最常用的中子测井方法。
测井仪器发射中子束入井,中子在地层中与核子发生弹性散射,并回到测井仪器。
仪器检测到回散射的中子数,通过测量散射中子的能量损失来计算出地层中的处于中子束路径上的原子核的密度。
氢反散射中子测井主要是测量地层中氢的含量,因为氢含量与流体含量有关。
仪器发射中能量较高的中子入井,中子在地层中与氢发生非弹性散射,失去一部分能量,被探测器检测到。
通过测量散射中子的能量损失来计算地层中的氢原子的密度,从而估计出岩石中的流体含量。
共振中子测井是利用中子与原子核共振能级耦合的原理。
测井仪器发射中子束入井,中子在与地层中的原子核相互作用时,落入共振能级,通过共振吸收释放出γ射线。
测量这些γ射线的能量和强度,可以获取地层中特定原子核的密度和含量信息。
中子测井在油气勘探中有着重要的应用价值。
首先,中子测井可以提供岩石成分和密度信息,从而帮助确定地层的岩石类型和性质,判断潜在油气储集层的存在和质量。
其次,中子测井可以测量地层中的氢原子密度,从而帮助估计油气水饱和度和流体类型。
此外,中子测井在解释地震数据和构建地层模型时也发挥重要作用。
除了油气勘探领域,中子测井还广泛应用于地下水勘探、地质工程和环境行业。
例如,用于地下水勘探时可以通过测量含水层的水含量和孔隙度来评估地下水资源量和流动性。
第九章中子测井(Neutron log)利用中子与地层相互作用的各种效应,来研究钻井地质剖面的一类测井方法统称中子测井。
它是利用岩石的另一种特性,即岩石中的含氢量来研究岩石性质和孔隙度等地质问题。
这种测井方法在于将装有中子源和探测器的井下仪器下入井中,由中子源→中子→进入岩层,同物质的原子核发生碰撞将产生减速、扩散和被俘获几个过程,到达探测器。
在这些过程中,探测器周围的中子分布状况,以及中子被俘获后所放出的伽马射线强度,与仪器周围的岩石性质,特别是岩石的含氢量有关。
而储集层的含氢量又取决于它的孔隙度,因此,中子测井是目前广泛使用的一种孔隙度测井。
根据中子测井的记录内容:可以将它分为中子-中子测井和中子-伽马测井。
根据仪器的结构特点,中子—中子测井又可分为中子-超热中测井(SNP)—井壁中子测井中子-热中子测井(CNL)—补偿中子测井一、中子测井的核物理基础1 中子和中子源中子是组成原子核的一种不带电荷的中性粒子,其质量与氢核的质量相近。
中子与物质作用时,能穿过原子的电子壳层而与原子核相碰撞,所以它对物质的穿透能力较强。
通常中子与质子以很强的核力结合在一起,形成稳定的原子核。
要使中子从原子核里释放出来,就必须供给一定的能量。
如果使原子核获得的能量大于中子结合能,中子就可能从核中发射出来。
可以用α粒子、氘核d、质子p或γ光子轰击原子核,引起各种核反应,使中子从核内释放出来。
这种产生中子的装置称中子源。
一、中子测井的核物理基础因为不同能量的中子与原子核作用时有着不同的特点,所以通常根据中子的能量大小,可以把它分成几类:高能快中子:能量大于10万电子伏特;中能中子:能量在100电子伏特—10万电子伏特之间;慢中子:能量小于100电子伏特;其中0.1—100电子伏特的中子为超热中子;能量等于0.025电子伏特的中子为热中子。
一、中子测井的核物理基础1 中子和中子源中子测井所用的中子源有两类:即同位素中子源和加速器中子源。
《地球物理测井方法》第九章中子测井中子测井是地球物理测井中一种常用的方法,通过测量自然放射性中子在地下岩石中的吸收和散射情况,给出含氢量,从而判断岩石的岩性和含水性质。
本章主要介绍中子测井的原理、测井曲线的解释和应用。
9.1中子测井的原理中子测井通过探测和测量中子在地下岩石中的吸收和散射情况,来确定地层的物性参数。
中子测井一般使用两种中子源:放射性核素源和中子发生器。
9.1.1放射性核素源放射性核素源一般采用锶-90/钇-90和铯-137源。
当源辐射中子进入地层时,与地层中的核与原子进行散射、吸收和成为散裂中子,从而改变中子的传输规律。
通过测量地层中散射中子和散裂中子的比例,可以确定地层的平均原子质量和中子俘获截面。
9.1.2中子发生器中子发生器一般采用贝里利钠源。
中子发生器产生高速中子,通过地层的散射和核反应,快速减速并且散射成热中子。
测量地层中的散射中子可以得到地层的平均原子质量。
9.2中子测井曲线的解释中子测井曲线是通过记录和测量地下岩石中散射和吸收中子的响应,从而得到岩石的物性参数。
9.2.1中子通量曲线中子测井中,中子源发射的中子流经地层时会发生吸收和散射,散射到测井仪器的中子将与原子核发生散射反应。
记录和测量测井仪器接收到的中子数目,可以得到中子的通量曲线。
中子通量曲线反映了地层中散射和吸收中子的情况,从而可以判断地层的物性参数。
9.2.2归一化中子通量曲线为了消除不同测井工具之间的差异,通常会将中子通量曲线归一化。
将测井仪器接收到的中子数目除以源活度和测井仪器的响应系数,得到归一化的中子通量曲线。
9.2.3中子测井曲线的解释根据中子测井曲线的形态和变化,可以判断地层的物性参数。
当地层中的含水量较高时,中子通量较高,因为水对中子的吸收较强。
而当地层中的含水量较低时,中子通量较低。
通过测量中子测井曲线的斜率,还可以得到地层的氢指数,从而判断地层的岩性。
9.3中子测井的应用中子测井可以用于判断地层的物性参数,从而对地层进行岩性和含水性质的判断。
中子测井原理中子测井是一种利用中子与地层中核子相互作用的物理现象来确定地层孔隙度、含水量和岩石类型的测井方法。
它是目前油田勘探开发中广泛应用的一种测井技术,具有测井深度范围广、测井响应灵敏、测井解释简便等特点。
中子测井原理的理解对于油田勘探开发工作具有重要意义。
中子测井原理的核心在于中子与地层中核子的相互作用。
当中子进入地层后,会与地层中的核子(主要是氢核)发生弹性散射和非弹性散射。
弹性散射是指中子与核子碰撞后改变方向但能量不变,非弹性散射是指中子与核子碰撞后能量发生改变。
通过对中子在地层中的散射过程进行测量和分析,可以得到地层的孔隙度、含水量等信息。
在进行中子测井时,通常会使用中子发生器和探测器。
中子发生器会产生一定能量的中子束,这些中子束会照射到地层上并与地层中的核子发生相互作用。
探测器则用于检测散射后的中子,并将其转化为电信号。
通过分析这些电信号的强度和时间分布,可以得到地层中核子的散射信息,进而推断地层的性质。
中子测井原理的应用范围非常广泛。
首先,它可以用于确定地层的孔隙度。
由于中子与地层中的核子相互作用,不同孔隙度的地层对中子的散射响应也不同,因此可以通过中子测井来估算地层的孔隙度。
其次,中子测井还可以用于确定地层的含水量。
由于地层中的水含有氢核,因此对中子的散射响应也不同于其他地层成分,通过对中子的散射信号进行分析,可以推断地层的含水量。
此外,中子测井还可以用于识别地层的岩石类型。
不同类型的岩石对中子的散射响应也不同,通过分析中子的散射信号,可以推断地层的岩石类型。
总的来说,中子测井原理是一种重要的地球物理勘探技术,它通过对中子与地层核子相互作用的测量和分析,可以得到地层的孔隙度、含水量和岩石类型等信息。
在油田勘探开发中,中子测井技术具有重要的应用价值,可以为勘探开发工作提供重要的地质信息和数据支撑。
通过深入理解中子测井原理,可以更好地指导实际工作,并取得更好的勘探开发效果。
中子寿命测井技术一、测井原理中子寿命测井是用脉冲中子源向地层发射能量为14Mev 的中子,测量热中子或俘获伽马计数率随时间的衰减,算出地层的热中子宏观俘获截面或寿命。
在地层水矿化度高时,可求出地层含水饱和度,进而得到地层的含油饱和度。
中子寿命测井是测量地层中热中子寿命(τ)的一种测井方法,其资料最广泛的开拓应用是确定地层剩余油饱和度,它一般应用于套管井产层含油性评价。
其特点是能精确地和连续地测定油层的剩余油饱和度在纵向上的分布,同时应用于多口井时,又有可能确定剩余油饱和度在横向上的分布。
而利用中子寿命测井“测—注—测”工艺后,对同一地层可消除地层岩石骨架、孔隙中的原油和泥质等核特性的影响,使计算剩余油饱和度更为精确和简化。
它能为你解决区块剩余油饱和度评价、水淹层出水点判断、油气水动态监测、凝析油气层判断与识别等生产中存在的具体问题,是及时而准确地监测油层纵横向上动用情况、合理调整油田开发方案、优化油井工作制度、充分挖掘中、低孔渗油藏潜力的重要手段之一。
目前该技术已在江汉、新疆、大庆、中原等油田应用,形成了时间推移、测—注—测、测—堵—测以及示踪剂为载体等多种测井施工工艺,并取得了明显的地质效果。
二、仪器种类及技术指标三、典型的热中子衰减曲线四、选井要求✧井眼规则、无垮塌✧测量井段小于200米,厚度大于1米✧已知产液层的含水量,水质类型、矿化度及地层压力✧不能在同位素施工井、负压井及漏失井上进行中子寿命的测--注--测工艺✧所选井要有一定的接替厚度,即目前油层的开采量并未达到使油层枯竭的程度。
✧重点选取层间、纵向差异较大,或注水不均衡的井。
✧套管无损坏,固井质量好,保证测井施工及以后能正常上堵水等措施。
✧井深、温度、压力要在仪器设备正常工作范围之内。
✧地质条件要求目的层厚度在1-40米,不注硼时,地层水矿化度在15万PPM以上,孔隙度大于15%;注硼时,地层孔隙度大于11%,渗透率在50×10-3um2以上。
第九章中子测井中子测井(NUETRON LOGGING):利用中子和地层的相互作用(的各种效应)为基础的测井方法,来研究井剖面地层性质的各种测井方法的总称。
它包括中子—热中子、中子—超热中子、中子—伽马测井、中子活化测井以及非弹性散射伽马能谱测井和中子寿命测井。
测井时,中子源向地层发射快中子,快中子在地层中运动与地层物质的原子核发生各种作用,由探测器探测超热中子、热中子或次生伽马射线的强度,研究地层的孔隙度、岩性及孔隙流体性质等地质问题。
§1 中子测井的核物理基础一、中子和中子源能产生中子的装臵叫中子源。
核测井中使用的中子源有放射性同位素中子源和加速器中子源两大类,前者发射的中子的能量在4~5MeV,而后者为12MeV,能量不同的中子与地层的相互作用的特点不同,由此形成了各具特色的中子测井。
1、中子(1) 中子的电荷:组成原子核不带电的中性微粒,它与质子以很强的核力结合在一起,形成原子核。
研究认为中子可能带有很小的难以探测的电荷,其上限在10-8电子电荷,因而可以看成是中性粒子。
当中子与原子相互作用时,和核外电子几乎没有库仑力作用,而直接与原子核碰撞,其反应几率主要取决于核的性质。
因此,中子入射物质后,主要是与原子核发生作用。
(2)中子的质量:1.00887u;质子的质量1.00758u(3)中子的半衰期中子的静止质量大于质子和电子的静止质量之和,会自发的发生β-衰变,它的半衰期为11.7±0.3min,因此,自然界几乎不存在自由中子。
β+→-+n+Qvpv称为反中微子。
(4)中子的分类当中子与原子相互作用时,和核外电子几乎没有库仑力作用,而直接与原子核碰撞,其反应几率主要取决于核的性质。
因此,中子入射物质后,主要是与原子核发生作用。
中子能量不同(速度不同),它与物质相互作用的行为也就大不相同,因此,目前使用的中子测井包括使用同位素中子源测井和加速器中子源中子测井。
根据中子的能量可将中子分为:高能中子 能量〉10 MeV 穿透能力极强快中子 10MeV —10KeV 穿透能力极强中能中子 100eV —10KeV慢中子 0.03eV —100eV 超热中子约为0.2~10ev热中子约为0.025ev ,热中子标准速度2200M/S快中子的穿透能力很强,能穿透下井仪器的钢外壳、泥浆、套管、水泥环而进入地层。
中子测井一、超热中子测井用点状同位素中子源向地层发射快中子,在离源一定距离的观察点上选择记录超热中子的测井方法叫超热中子测井。
超热中子测井仪器有普通管式和贴井壁两类,用后一种仪器进行测井通常称为井壁中子测井。
1. 超热中子测井原理1) 地层的含氢指数 前面已经讲过,地层对快中子的减速能力主要决定于它的含氢量。
含氢量高的地层宏观减速能力大、减速长度小。
为了方便,在中子测井中把淡水的含氢量定义为一个单位,用它来衡量所有地层中其物质的含氢量。
单位体积的任何物质中氢核数与同样体积的淡水中氢核数的比值,称为该物质的含氢指数,用H表示。
H与单位体积介质里的氢核数成正比,因而它可用下式表示(9.6.1)式中ρ是介质密度,单位为克/厘米 3;M是该化合物的克分子量;x是该化合物每个分子中的氢原子数;K是比例常数。
2) 纯水的含氢指数按规定,淡水的含氢指数为1,由此确定出(9.6.1)式中的K值。
因水的分子式为H2O,所以x=2,M=18,而水的密度ρ=1,由此求出K=9。
代入上式得(9.6.2)用(9.6.2)式可求出任何密度为ρ、分子量为M且每个分子中有x个氢核的单一分子组成的物质的含氢指数。
3) 盐水的含氢指数NaCl溶于水后占据了空间,而使盐水的氢密度减小。
计算盐水含氢指数的一般公式为(9.6.3)-8)。
式中ρw为盐水的密度,p为NaCl的浓度(单位为ppm×10在测裸眼井时,地层一般都有侵入,中子测井探测范围内的水的矿化度,可以认为与泥浆滤液的矿化度基本相同。
4) 油、气的含氢指数液体烃的含氢指数与水接近,然而天然气具有很低的氢浓度,并且随温度和压力而变化。
因而当天然气很靠近井眼而处于探测范围时,中子测井测出的含氢指数就较小。
烃的含氢指数可根据其组分和密度来估算。
分子式为CH X(其分子量为12+x)和密度为ρh 的烃的含氢指数为(9.6.4)3,用此式可算出甲烷(CH4)的含氢指数为2.25ρ甲烷,而石油(nCH2)的含氢指数为1.28ρ油。
中子测井原理中子测井是一种广泛应用于石油勘探和地质勘探领域的测井技术,它利用中子与原子核发生作用的原理,通过测量中子在岩石中的衰减情况,来获取地层岩石的物性参数。
中子测井原理的核心在于中子与原子核的相互作用,这种相互作用可以提供有关地层中岩石类型、孔隙度、含水量等重要信息,为油气勘探和地质研究提供了重要的数据支持。
中子测井的原理基于中子与原子核的作用机制,当中子入射到岩石中时,会与岩石中的原子核发生作用。
这种作用主要包括弹性散射、非弹性散射和吸收三种方式。
在这些相互作用中,弹性散射和非弹性散射是主要的作用方式,而吸收则相对较小。
通过测量中子在岩石中的散射和吸收情况,可以得到有关地层岩石性质的信息。
在中子测井中,中子源发射中子束,中子束经过减速剂减速后进入地层,与地层中的原子核作用。
在这个过程中,中子束会发生散射和吸收,散射和吸收的情况取决于地层岩石的物性参数,如孔隙度、含水量等。
测量探测器接收到的散射和吸收信号,经过处理和分析后,可以得到地层的物性参数信息。
中子测井原理的关键在于根据中子与原子核的相互作用,推断地层岩石的物性参数。
在实际应用中,通过对中子测井数据的分析和解释,可以获得地层的孔隙度、密度、含水量等重要信息,为油气勘探和地质研究提供了重要的参考依据。
总之,中子测井原理是基于中子与原子核的相互作用机制,通过测量中子在地层中的散射和吸收情况,来获取地层岩石的物性参数信息。
这种测井技术在石油勘探和地质勘探领域具有重要的应用意义,为地下岩石的研究提供了重要的数据支持,有助于更准确地评价地层的储集性能和勘探潜力。
中子孔隙度测井汇总中子孔隙度测井的原理是利用自然伽马辐射和中子衰减的原理来测量地层中的孔隙度。
该方法通过测量地层中的伽马射线和中子流,并分析其与地层相互作用的物理特性,来计算孔隙度。
中子射线通过地层时,可能被地层中的水、油和岩石等物质吸收,使中子流的强度减小。
通过测量减小的中子流强度和其他参数,可以推断出地层的孔隙度。
中子孔隙度测井需要使用一种称为中子密度测井仪的测井工具。
该工具通常由中子源、探测器以及其他必要的测量系统组成。
中子源产生高速中子束,通过地层,并与地层中的核物质相互作用。
中子流将散射回来,并被探测器检测到。
探测器测量散射中子的能量和数量,并将其转化为地层的孔隙度。
中子孔隙度测井的应用非常广泛。
在油气勘探和开发中,中子孔隙度测井可以帮助评估岩石储集层的孔隙度,从而评估储层的储量和产能。
此外,中子孔隙度测井还可用于评估水资源、煤矿和地热储层等其他地下储层的孔隙度。
在实际应用中,中子孔隙度测井还可以与其他测井方法相结合,例如密度测井、声波测井等。
通过多种测井方法的综合分析,可以更准确地评估地层的孔隙度,并提供更可靠的地质参数。
尽管中子孔隙度测井方法简单易行,但在实际测井中仍存在一些挑战。
例如,地层的复杂性和非均质性可能会引起测井结果的偏差。
此外,测井仪器的精度和校准也会对测井结果产生影响。
因此,在进行中子孔隙度测井时,需要进行精确的数据处理和解释。
总的来说,中子孔隙度测井是一种常用的地球物理测井方法,可用于评估地层的孔隙度和储层特性。
通过分析中子流与地层相互作用的物理特性,可以推断出地层的孔隙度,并为油气勘探、水资源评估和地热储层开发等提供有价值的信息。
在实际应用中,需要综合考虑其他测井方法的结果,并进行准确的数据处理和解释,以获得可靠的测井结果。
脉冲中子测井原理
脉冲中子测井原理:中子是一种电磁辐射,它在介质中的传播速度比光速快。
脉冲中子测井的原理是通过测量中子在井眼周围介质中的发射、吸收和散射等现象,计算出流体的渗透率。
它的基本原理是,当一束中子入射到井壁上时,它将与井壁发生碰撞并释放出一种中子,这种中子称为快中子。
快中子与井壁的相互作用产生一个脉冲,使脉冲前沿在井眼周围不断地加速。
当脉冲前沿到达测井仪器时,由于脉冲前沿是带电粒子运动的结果,所以它会将电子加速到很高的速度。
这样,在井眼周围就产生了一系列连续变化的伽马射线。
这些射线就是快中子,它们会被物质所吸收并转换成热能。
如果将一块含快中子的物质放入井中,那么这块物质就会逐渐变热而发出伽马射线,而地层中存在着一种对快中子很敏感的放射性元素铀,这种元素的放射性强度取决于它与地层原子发生碰撞时释放出的能量大小。
当这种元素被释放出来时,它会在井中产生快中子。
利用这种快中子来探测地层中流体渗透率时就可以进行脉冲中子测井了。
—— 1 —1 —。