数学必修一必背知识点总结
- 格式:docx
- 大小:20.52 KB
- 文档页数:6
高一数学重点必背知识点总结归纳五篇学任何一门功课,都不能只有三分钟热度,而要一鼓作气,天天坚持,久而久之,不论是状元还是伊人,都会向你招手。
下面就是小编给大家带来的关于高一数学知识点,希望大能帮助到大家!高一数学知识点1高一数学必修一公式【和差化积】2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB【某些数列前n项和】1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2 (n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r乘法与因式分 a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 X1+X2=-b/aX1_X2=c/a 注:韦达定理【判别式】b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac1,且∈_.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
高一数学必考知识点总结1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(5≥5,且5≤5,则5=5)结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。
AíA②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的.真子集。
人教版高一数学知识点集合具有某种特定性质的事物的总体。
这里的“事物”可以是人,物品,也可以是数学元素。
例如:1、分散的人或事物聚集到一起;使聚集:紧急~。
2、数学名词。
一组具有某种共同性质的数学元素:有理数的~。
集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。
组成一集合的那些对象称为这一集合的元素(或简称为元)。
高一数学必考知识点总结(二)元素与集合的关系有“属于”与“不属于”两种。
集合与集合之间的关系某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。
高一数学必考知识点总结(三)一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。
2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。
高一必修一数学知识点总结归纳高一必修一数学知识点1一、集合有关概念1.集合的含义:将一些指定的对象集合在一起形成一个集合,每个对象称为一个元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性描述:(1)对于给定的集合,集合中的元素是确定的,任何对象要么是给定集合的元素,要么不是。
(2)在任何给定的集合中,任何两个元素都是不同的对象。
当同一对象包含在一个集合中时,它只是一个元素。
(3)集合中的元素相等,没有顺序。
所以判断两个集合是否相同,只需要比较它们的元素是否相同,而不需要考察排列顺序是否相同。
(4)集合元素的三个特征使得集合本身具有确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}2.集合的表示方法:枚举和描述。
注意啊:常用数集及其记法:非负整数集(即自然数集)记作:n正整数集n_或n+整数集z有理数集q实数集r关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合a 的元素,就说a属于集合a记作a∈a,相反,a不属于集合a 记作a?a枚举:逐个枚举集合中的元素,然后用大括号括起来。
描述:描述集合中元素的公共属性并将它们写在大括号中以表示集合的方法。
在一定条件下表明某些对象是否属于该集合的一种方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?r|x-3>2}或{x|x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}高一必修一数学知识点2i.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,iai还可以决定开口大小,iai越大开口就越小,iai越小开口就越大.)则称y为x的二次函数。
数学必修一必考知识点归纳数学必修一通常涵盖了高中数学的基础知识点,以下是一些必考的知识点归纳:1. 集合与函数:- 集合的概念、运算(交集、并集、补集、差集)。
- 函数的定义、性质(单调性、奇偶性、周期性)。
- 函数的图像与变换(平移、伸缩、对称)。
2. 不等式:- 不等式的基本性质和解法(一元一次不等式、一元二次不等式、分式不等式)。
- 绝对值不等式的解法。
3. 数列:- 数列的概念、分类(等差数列、等比数列)。
- 数列的通项公式和求和公式。
- 数列的极限和无穷等比数列的求和。
4. 三角函数:- 三角函数的定义、图像和性质。
- 三角恒等变换(和差化积、积化和差、倍角公式、半角公式)。
- 反三角函数及其应用。
5. 解析几何:- 直线的方程(点斜式、斜截式、两点式、一般式)。
- 圆的方程(标准式、一般式)。
- 椭圆、双曲线、抛物线的标准方程及其性质。
6. 立体几何:- 空间直线与平面的位置关系。
- 空间几何体的表面积和体积计算(正方体、长方体、圆柱、圆锥、球)。
7. 概率与统计:- 随机事件的概率计算。
- 条件概率和独立事件。
- 统计数据的收集、整理和描述(频率分布表、直方图)。
8. 复数:- 复数的概念、代数形式和几何意义。
- 复数的四则运算。
- 复数的共轭、模和辐角。
9. 导数与微分:- 导数的定义和几何意义。
- 基本初等函数的导数公式。
- 复合函数、反函数、隐函数的导数。
10. 积分:- 不定积分和定积分的概念。
- 积分的基本公式和计算方法。
- 定积分在几何和物理中的应用。
这些知识点是高中数学必修一课程的基础,掌握这些知识点对于进一步学习数学至关重要。
在复习时,建议结合课本、习题和历年真题进行系统性的学习和练习,以加深理解和应用能力。
高中数学必修一知识点总结归纳引言高中数学必修一通常涵盖了代数、函数、几何等多个基础数学领域,为学生进一步学习数学打下坚实的基础。
一、代数基础1.1 集合论概念:集合的表示、子集、并集、交集、补集。
1.2 逻辑用语逻辑连接词:与、或、非、蕴含、当且仅当。
1.3 不等式解法:一元一次不等式、一元二次不等式的解法。
二、函数2.1 函数的概念定义:函数的定义、定义域、值域。
2.2 函数的性质性质:单调性、奇偶性、周期性、有界性。
2.3 反函数概念:反函数的定义、性质及求法。
2.4 复合函数运算:复合函数的定义、运算法则。
2.5 函数图像绘制:函数图像的绘制方法和变换规律。
三、解析几何3.1 坐标系统介绍:直角坐标系、极坐标系的基本概念。
3.2 直线的方程形式:直线的点斜式、斜截式、一般式。
3.3 圆的方程形式:圆的标准方程、一般方程。
3.4 圆锥曲线类型:椭圆、双曲线、抛物线的方程和性质。
四、算法初步4.1 算法的概念定义:算法的定义、特征。
4.2 程序框图绘制:程序框图的绘制方法,如顺序结构、条件结构、循环结构。
4.3 算法案例分析:常见算法问题的解决步骤,如排序、查找。
五、统计5.1 随机事件与概率概念:随机事件的定义、概率的计算方法。
5.2 概率的性质总结:概率的基本性质,如非负性、规范性、加法法则。
5.3 统计初步指标:均值、中位数、众数、方差、标准差的计算与意义。
5.4 统计图类型:条形图、直方图、饼图的绘制与解读。
六、数列6.1 等差数列公式:等差数列的通项公式、求和公式。
6.2 等比数列公式:等比数列的通项公式、求和公式。
6.3 数列的极限概念:数列极限的定义、无穷等比数列的极限。
6.4 数列的应用案例:数列在实际问题中的应用,如分期付款、人口增长模型。
七、推理与证明7.1 推理的概念定义:推理的定义、日常生活中的推理应用。
7.2 证明的方法步骤:直接证明、间接证明、反证法的一般步骤。
7.3 证明的策略技巧:构造法、归纳法、演绎法在证明中的应用。
高一必修一数学全册知识点一、集合1. 集合的基本概念1.1 集合的定义和表示方法1.2 集合的元素与集合的关系二、数字与代数1. 实数与数轴2.1 实数的概念及表示2.2 数轴的绘制与实数的表示2.3 实数的比较与加减法运算2.4 实数的乘除法运算及其性质2. 同底数幂与科学计数法2.1 指数与幂的概念2.2 同底数幂的乘除法运算2.3 科学计数法的表示与运算3. 整式的基本概念3.1 代数式与整式的定义3.2 项、次数及系数的概念3.3 同类项与合并同类项3.4 整式的加减法运算4. 一元一次方程及其应用4.1 一元一次方程的定义及基本性质4.2 解一元一次方程的基本方法4.3 应用题中的一元一次方程5. 分式及其运算5.1 分式的定义及分式运算的基本性质5.2 分式的化简5.3 分式方程的解法及应用三、函数与图像1. 函数的概念与表示6.1 函数的定义及函数的表示方法6.2 函数的自变量、因变量与定义域、值域的关系2. 幂函数与分段函数6.2.1 幂函数的概念及其性质6.2.2 分段函数的定义及分段函数的画法3. 一次函数与斜率6.3.1 一次函数的定义及一次函数的性质6.3.2 斜率的概念及其计算方法4. 二次函数及其图像6.4.1 二次函数的定义及二次函数的图像特点6.4.2 二次函数的变换与最值四、三角函数1. 三角函数及其基本性质7.1.1 弧度制与角度制的转换7.1.2 正弦、余弦、正切函数的定义及其基本性质2. 三角函数图像的性质与变换7.2.1 三角函数图像的对称性与奇偶性7.2.2 三角函数图像的平移与伸缩7.2.3 三角函数图像的组合与分解3. 三角函数的简单应用7.3.1 三角函数在实际问题中的应用7.3.2 直角三角形的解题方法五、平面几何1. 直线与圆的性质8.1.1 直线的定义及其性质8.1.2 圆的定义及其性质2. 三角形的基本性质8.2.1 三角形分类及其特性8.2.2 三角形的成立条件3. 三角形的相似8.3.1 相似三角形的定义及判定条件 8.3.2 相似三角形的性质及应用4. 圆的切线与割线8.4.1 切线的定义及性质8.4.2 相交弦的性质及切割定理六、统计与概率1. 统计图与数据的分析9.1.1 统计图的绘制及其分析9.1.2 数据的分析与统计规律2. 事件的概率9.2.1 随机事件与概率的定义 9.2.2 事件的计算与概率的性质3. 排列与组合9.3.1 排列的定义及排列的计算 9.3.2 组合的定义及组合的计算。
高一必修一数学知识点考点第一章:集合与常用逻辑1. 集合及其表示方法- 集合的定义和基本概念- 集合的表示方法:列举法、描述法和定语从句法- 包含关系与相等关系2. 集合的运算- 交集、并集和差集的含义与计算- 互斥事件与对立事件的关系- 集合的运算律:交换律、结合律、分配律3. 常用逻辑符号与命题- 命题的概念与性质- 非、与、或、异或等逻辑运算符号的意义与运算规则 - 命题的合取范式与析取范式第二章:函数与方程1. 函数的概念与性质- 函数的定义及其基本性质- 定义域、值域和象集的概念- 函数的分类:一次函数、二次函数、指数函数、对数函数等2. 初等函数的图像与性质- 一次函数、二次函数、指数函数、对数函数等常用函数的图像特征- 函数的单调性、奇偶性和周期性等性质- 函数与方程的关系:函数方程、隐函数、显函数等3. 方程与不等式- 方程与等式的概念及其解的求解方法和性质- 一元一次方程和一元二次方程的解法- 不等式的概念和性质,不等式的解集表示方法第三章:平面几何1. 平面内的基本图形与性质- 点、线、线段、射线和角的概念与基本性质- 直线的分类:平行线、垂直线、相交线等- 三角形的分类:等边三角形、等腰三角形、直角三角形等2. 三角形的面积和周长- 三角形的面积公式及其推导- 三角形的周长计算方法- 与三角形相关的重要定理:海伦公式、正弦定理、余弦定理等3. 圆的性质与圆的应用- 圆的定义及其基本性质- 弧的概念与弧长、弦长的计算方法- 圆的切线与切点的概念及其性质第四章:立体几何1. 空间几何体的基本概念- 简单体与复合体的概念与区别- 空间直线、平面、立体角等的定义和性质- 空间几何体的分类与性质:球体、柱体、锥体等2. 直线与平面的位置关系- 平行关系、垂直关系和斜率关系的概念- 平面与平面的位置关系:相交、平行、垂直等- 平面与直线的交点的分类:内交点、外交点等3. 空间几何体的表面积和体积- 立体几何体的表面积计算方法- 立体几何体的体积计算方法- 相似立体几何体的表面积和体积的比较第五章:数据统计与概率1. 数据的收集与整理- 数据的概念与数据的收集方法- 数据的整理与分析方法:频数分布表、频率分布直方图等- 分类数据与数值数据的概念和处理方法2. 数据的图表表示与分析- 数据的图表表示方法及其选择技巧- 直方图、折线图、饼图等常用图表的绘制和分析- 统计指标(平均数、中位数、众数、四分位数等)的计算和比较3. 概率与统计- 随机事件与样本空间的概念- 概率的定义和性质- 古典概型、几何概型和统计概型的应用以上是高一必修一数学知识点的考点概述,希望能对你有所帮助。
必修一数学知识点归纳一、集合与函数的概念1. 集合的定义与表示- 集合是具有某种特定性质的事物的全体。
- 常用符号表示集合,如 A = {x | x 是偶数}。
2. 集合之间的关系- 子集:集合 A 的所有元素都属于集合 B,则 A 是 B 的子集。
- 真子集:若 A 是 B 的子集且 A 不等于 B,则 A 是 B 的真子集。
- 并集与交集:集合 A 和集合 B 的所有元素组成的集合称为并集,两集合共同元素组成的集合称为交集。
3. 函数的定义与性质- 函数是将一个集合中的元素映射到另一个集合中的元素的规则。
- 函数的表示方法:y = f(x)。
- 函数的域与值域:定义域是函数中所有可能的 x 值的集合,值域是函数中所有可能的 y 值的集合。
4. 函数的运算- 加法、减法、乘法、除法:(f ± g)(x) = f(x) ± g(x),(f * g)(x) = f(x) * g(x),(f / g)(x) = f(x) / g(x)。
- 复合函数:(f * g)(x) = f(g(x))。
二、基本初等函数1. 幂函数- 定义:y = x^n,其中 n 是实数。
- 性质:当 n > 0 时,x 轴是幂函数的一条渐近线。
2. 指数函数- 定义:y = a^x,其中 a > 0 且a ≠ 1。
- 性质:指数函数的图像总是通过点 (0, 1)。
3. 对数函数- 定义:y = log_a(x),其中 a > 0 且a ≠ 1。
- 性质:对数函数的图像总是通过点 (1, 0)。
4. 三角函数- 正弦函数:y = sin(x)- 余弦函数:y = cos(x)- 正切函数:y = tan(x)- 性质:周期性、奇偶性、单调性。
三、函数的极限与连续性1. 极限的概念- 极限描述了函数在某一点附近的行为。
- 极限的表示方法:lim (x→a) f(x) = L。
2. 极限的性质- 唯一性、局部有界性、保号性。
高一数学必修一知识点汇总
高一数学必修一的知识点汇总如下:
1. 数集与运算:数集的概念、数的分类、集合的运算及其性质、集合的相等和包含关系、集合的运算法则。
2. 不等式与绝对值:不等式的概念、不等式的性质、解不等式的方法、绝对值的概念
及性质、绝对值不等式。
3. 函数与方程:函数的概念、函数的性质及分类、函数的图象、函数的运算、方程的
概念、方程的解、一元一次方程、一元一次方程组及解法。
4. 直线与圆的基本性质:直线的概念和性质、直线与方程、直线与函数、圆的概念和
性质、圆的方程。
5. 三角函数:角的概念、弧度制和角度制、三角函数的定义、三角函数的关系、三角
函数图象、三角函数的性质。
6. 三角恒等变换:三角恒等式的概念和性质、三角恒等式的运用。
7. 证明方法与技巧:数学证明的基本方法、数学证明的技巧和途径。
8. 几何证明:基本概念和公理、几何图形的基本性质和判定、几何证明的方法和步骤、几何证明中的常用技巧。
以上是高一数学必修一的知识点汇总,希望对你有帮助!如果你还有其他问题,可以
继续提问。
高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。
⊆/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊇/A或B2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSx x∉∈且韦恩图示A B图1A B图2SA二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.值域: 先考虑其定义域(1)观察法(2)配方法(3)代换法3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A 到集合B的一个映射。
数学必修一必背知识点总结数学必修一必背知识点总结数学必修一必背知识点总结11.二次函数y=a某^2,y=a(某-h)^2,y=a(某-h)^2+k,y=a某^2+b某+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:解析式顶点坐标对称轴y=a某^2(0,0)某=0y=a(某-h)^2(h,0)某=hy=a(某-h)^2+k(h,k)某=hy=a某^2+b某+c(-b/2a,[4ac-b^2]/4a)某=-b/2a当h>0时,y=a(某-h)^2的图象可由抛物线y=a某^2向右平行移动h个单位得到,当h当h>0,k>0时,将抛物线y=a某^2向右平行移动h个单位,再向上移动k 个单位,就可以得到y=a(某-h)^2+k的图象;当h>0,k当h0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(某-h)^2+k的图象;当h因此,研究抛物线y=a某^2+b某+c(a≠0)的图象,通过配方,将一般式化为y=a(某-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.2.抛物线y=a某^2+b某+c(a≠0)的图象:当a>0时,开口向上,当a3.抛物线y=a某^2+b某+c(a≠0),若a>0,当某≤-b/2a时,y随某的增大而减小;当某≥-b/2a时,y随某的增大而增大.若a4.抛物线y=a某^2+b某+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b^2-4ac>0,图象与某轴交于两点A(某?,0)和B(某?,0),其中的某1,某2是一元二次方程a某^2+b某+c=0(a≠0)的两根.这两点间的距离AB=|某?-某?|当△=0.图象与某轴只有一个交点;当△0时,图象落在某轴的上方,某为任何实数时,都有y>0;当a5.抛物线y=a某^2+b某+c的最值:如果a>0(a顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知某、y的三对对应值时,可设解析式为一般形式:y=a某^2+b某+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(某-h)^2+k(a≠0).(3)当题给条件为已知图象与某轴的两个交点坐标时,可设解析式为两根式:y=a(某-某?)(某-某?)(a≠0).7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。
因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.数学必修一必背知识点总结21.函数的奇偶性(1)若f(某)是偶函数,那么f(某)=f(-某);(2)若f(某)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(某)±f(-某)=0或(f(某)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(某)]的定义域由不等式a≤g(某)≤b解出即可;若已知f[g(某)]的定义域为[a,b],求f(某)的定义域,相当于某∈[a,b]时,求g(某)的值域(即f(某)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(某,y)=0,关于y=某+a(y=-某+a)的对称曲线C2的方程为f(y-a,某+a)=0(或f(-y+a,-某+a)=0);(4)曲线C1:f(某,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-某,2b-y)=0;(5)若函数y=f(某)对某∈R时,f(a+某)=f(a-某)恒成立,则y=f(某)图像关于直线某=a对称;(6)函数y=f(某-a)与y=f(b-某)的图像关于直线某=对称;4.函数的周期性(1)y=f(某)对某∈R时,f(某+a)=f(某-a)或f(某-2a)=f(某)(a>0)恒成立,则y=f(某)是周期为2a的周期函数;(2)若y=f(某)是偶函数,其图像又关于直线某=a对称,则f(某)是周期为2︱a︱的周期函数;(3)若y=f(某)奇函数,其图像又关于直线某=a对称,则f(某)是周期为4︱a︱的周期函数;(4)若y=f(某)关于点(a,0),(b,0)对称,则f(某)是周期为2的周期函数;(5)y=f(某)的图象关于直线某=a,某=b(a≠b)对称,则函数y=f(某)是周期为2的周期函数;(6)y=f(某)对某∈R时,f(某+a)=-f(某)(或f(某+a)=,则y=f(某)是周期为2的周期函数;5.方程k=f(某)有解k∈D(D为f(某)的.值域);6.a≥f(某)恒成立a≥[f(某)]ma某,;a≤f(某)恒成立a≤[f(某)]min;7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1);(3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a>0,a≠1,N>0);8.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5)y=f(某)与y=f-1(某)互为反函数,设f(某)的定义域为A,值域为B,则有f[f--1(某)]=某(某∈B),f--1[f(某)]=某(某∈A).11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;12.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题13.恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;数学旋转的知识点旋转的特征:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。
理解以下几点:(1)图形中的每一个点都绕旋转中心旋转了同样大小的角度。
(2)对应点到旋转中心的距离相等,对应线段相等,对应角相等。
(3)图形的大小和形状都没有发生改变,只改变了图形的位置。
学习数学小窍门建立数学纠错本。
把平时容易出现错误的知识或推理记载下来,以防再犯。
争取做到:找错、析错、改错、防错。
达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
限时训练。
可以找一组题(比如10道选择题),争取限定一个时间完成;也可以找1道大题,限时完成。
这主要是创设一种考试情境,检验自己在紧张状态下的思维水平。
数学必修一必背知识点总结3集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={某|某2-1=0}B={-1,1}“元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=BA?①任何一个集合是它本身的子集。
AB那就说集合A是集合B的真子集,记作AB(或BA)?B,且A?②真子集:如果AC?C,那么A?B,B?③如果AA那么A=B?B同时B?④如果A3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。
集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作”A交B”),即A∩B={某|某∈A,且某∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。
记作:A∪B(读作”A并B”),即A∪B={某|某∈A,或某∈B}.3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A 的元素组成的集合,叫做S中子集A的补集(或余集)A}?S且某?某?记作:CSA即CSA={某(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。
通常用U来表示。
(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。