椭圆基础练习题
- 格式:doc
- 大小:378.50 KB
- 文档页数:6
(完整版)椭圆基础练习题1. 问题描述请解决以下椭圆基础练题:1. 椭圆的标准方程是什么?请给出椭圆标准方程的一般形式和参数的含义。
2. 如何确定椭圆的焦点和直径?请解释每个参数的意义。
3. 已知椭圆的半长轴和半短轴的长度分别为a和b,求椭圆的离心率。
4. 已知一椭圆的焦点F1位于原点,离心率为e,焦点F2位于(0, c),求椭圆的标准方程。
5. 若一椭圆的长轴与x轴夹角为θ,离心率为e,求椭圆的标准方程。
2. 解答1. 椭圆的标准方程是$x^2/a^2 + y^2/b^2 = 1$,其中a和b分别为椭圆的半长轴和半短轴的长度。
2. 椭圆的焦点和直径可以通过半长轴和半短轴的长度来确定。
焦点F1和F2位于椭圆的长轴上,与长轴的中点O等距离。
焦点和直径的参数含义如下:- 焦点F1和F2:焦点是椭圆的两个特殊点,其与椭圆上的每个点到焦点的距离之和等于2a,即2倍的半长轴的长度。
- 直径:椭圆的直径是通过椭圆的中心点O,并且两端点与椭圆上的点相切。
直径的长度等于2倍的短轴的长度。
3. 椭圆的离心率e可以通过半长轴和半短轴的长度计算。
离心率的计算公式为e = √(a^2 - b^2) / a。
4. 已知椭圆的焦点F1位于原点,离心率为e,焦点F2位于(0,c)。
根据定义,焦距为c = ae。
代入焦点和离心率的信息,可以得到椭圆的标准方程为$x^2/a^2 + y^2/(a^2(1-e^2)) = 1$。
5. 若一椭圆的长轴与x轴夹角为θ,离心率为e。
由于椭圆是一个轴对称图形,所以可以将长轴对齐于x轴。
根据该信息,可以得到椭圆的标准方程为$[(x*cosθ + y*sinθ)^2 / a^2] + [(x*sinθ -y*cosθ)^2 / b^2] = 1$。
以上是关于椭圆的基础练习题的解答。
希望可以帮助到您!。
椭圆及其标准方程基础练习 一、选择题:1.方程2222)2()2(y x y x ++++-=10,化简的结果是( )A.1162522=+y x B. 1212522=+y x C.142522=+y x D.1212522=+x y 2.若点P 到两定点F 1(-4,0),F 2(4,0)的距离和是8,则动点P 的轨迹为( )A.椭圆B.线段F 1F 2C.直线F 1F 2D.不能确定 3.下列说法正确的个数是 ( )①平面内与两个定点F 1、F 2的距离和等于常数的点的轨迹是椭圆②与两个定点F 1、F 2的距离的和等于常数(大于| F 1F 2|)的点的轨迹是椭圆③方程122222=-+c a y c x (a>c>0)表示焦点在x 轴上的椭圆④方程12222=+bx a y (a>0,b>0)表示焦点在y 轴上的椭圆 A .14.椭圆1422=+y m x 的焦距为2,则m 的值等于( )或3 5.若椭圆2kx 2+ky 2=1的一个焦点是(0,-4),则k 的值为( )A.321 C. 816.过点(3,-2)且与14922=+y x 有相同焦点的椭圆是( )A.1101522=+y x B. 110022522=+y x C.1151022=+y x D.122510022=+y x 7.α)2,0(π∈,方程sin αx 2+cos αy 2=1表示焦点在x 轴上的椭圆则α的取值范围为 ( )A.(0,4π)B.(0,2π]C.(4π,2π]D.[ 4π ,2π)8.椭圆ax 2+by 2+ab=0(a<b<0)的焦点坐标是 ( ) A.()0,b a -± B.(0,b a -±) C.(a b -±,0) D.(0,a b -±)二、填空题:9.如果椭圆13610022=+y x 上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是 ;10.方程x+y+xy =0化简成不含根式为 ;11.动点M 到两个定点A (0,-49),B (0,49)的距离的和是225,则动点M 的轨迹方程是 ;12.已知椭圆的标准方程中a+c=10,a-c=4, 则标准方程是 . 三、解答题:13.已知方程(2-k )x 2+ky 2=2k-k 2表示焦点在x 轴上的椭圆, 求实数k 的取值范围.14.椭圆的两个焦点F 1、F 2在x 轴上,以| F 1F 2|为直径的圆与椭圆的一个交点为 (3,4),求椭圆标准方程.。
椭圆基础大题训练25道椭圆基础大题训练25道1.已知动点M(x,y)到直线l:x= 4的距离是它到点N(1,0)的距离的2倍.(Ⅰ) 求动点M的轨迹C的方程;(Ⅱ) 过点P(0,3)的直线m与轨迹C交于A, B两点. 若A是PB的中点, 求直线m的斜率.yA2.设椭圆C :x2a2+y2b2=1a>b>0 的左焦点为F,上顶F OPQ x点为A,过点A作垂直于AF直线交椭圆C于另外一点P,交x轴正半轴于点Q,且PQAP=85⑴求椭圆C的离心率;⑵若过A,Q,F三点的圆恰好与直线l:x+3y-5=0相切,求椭圆C的方程.3.已知椭圆E:x2a2+ y2b222 =1(a>b>0)过点A(3,1),左,右焦点分别为F,1,F2,离心率为3经过F1的直线l与圆心在x轴上且经过点A的圆C恰好相切于点B(0,2).(1)求椭圆E及圆C的方程;(2) 在直线l上是否存在一点P,使△PAB为以PB为底边的等腰三角形?若存在,求点P的坐标,否则说明理由.4. 已知F1, F2 是椭圆x21, F2 是椭圆x22+y2 = 1的左,右焦点,过F2 作倾斜角为π2 作倾斜角为π4的直线与椭圆相交于A,B两点.(1)求△F1AB的周长; (2)求△FAB的面积.1椭圆基础大题训练25道5.已知椭圆与双曲线2x2-2y2=1共焦点,且过(2, 0)(1)求椭圆的标准方程.(2)求斜率为2的一组平行弦的中点轨迹方程;6.已知椭圆C的中心在原点,焦点在x轴上,焦距为8,且经过点(0,3)(1)求此椭圆的方程(2)若已知直线l: 4x- 5y+ 40=0,问:椭圆C上是否存在一点,使它到直线l的距离最小?最小距离是多少?7.已知椭圆y2a2+x2b2=1(a>b>0)的焦点分别是F1(0,-1),F2(0,1),且3a2=4b2.(Ⅰ)求椭圆的方程;(Ⅱ)设点P在这个椭圆上,且PF 1 -PF 2 =1,求∠F1PF2的余弦值.8.已知动点P与直线x=4的距离等于它到定点F(1,0)的距离的2倍,(1)求动点P的轨迹C的方程;(2)点M1,1 在所求轨迹内,且过点M的直线与曲线C交于A,B,当M是线段AB中点时,求直线AB的方程.9.已知直线y=-x+1与椭圆x2a2+ y2b2=1(a>b>0)相交于A,B两点,且线段AB的中点在直线l:x-2y=0上.(Ⅰ)求此椭圆的离心率;(Ⅱ)若椭圆的右焦点关于直线l的对称点在圆x2+y2=4上,求此椭圆的方程.。
椭圆基础练习题一、选择题1. 椭圆的长轴和短轴长度分别为2a和2b,其中a和b的关系是()。
A. a > bB. a < bC. a = bD. 无法确定2. 椭圆的焦点到椭圆上任意一点的距离之和等于()。
A. 2aB. 2bC. a + bD. a - b3. 如果椭圆的方程是 \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中a和b是常数,那么a和b的单位是什么?A. 米B. 秒C. 无单位D. 角度4. 椭圆的离心率e的取值范围是()。
A. 0 ≤ e < 1B. 0 ≤ e ≤ 1C. 0 < e < 1D. 1 < e ≤ 25. 椭圆的面积公式是()。
A. πabB. π(a + b)C. π(a - b)D. π(a^2 + b^2)二、填空题6. 椭圆的中心点坐标是(____,____)。
7. 椭圆的离心率e定义为____,其中c是焦点到中心的距离。
8. 如果一个椭圆的长轴是10,短轴是6,那么它的面积是____。
9. 椭圆的焦点坐标可以表示为(____,0)和(____,0)。
10. 椭圆的方程 \( \frac{x^2}{16} + \frac{y^2}{9} = 1 \) 中,a 和b的值分别是____和____。
三、简答题11. 描述椭圆的基本性质,并给出一个实际生活中椭圆的应用例子。
12. 解释为什么椭圆的离心率总是小于1。
13. 如果一个椭圆的长轴是20,短轴是10,求出它的焦点坐标。
四、计算题14. 给定一个椭圆的方程 \( \frac{x^2}{25} + \frac{y^2}{16} = 1 \),求出它的离心率e。
15. 已知一个椭圆的长轴是26,短轴是15,求出它的面积和离心率。
五、证明题16. 证明椭圆上任意一点到两个焦点的距离之和是一个常数。
17. 证明椭圆的中心点到长轴和短轴的距离相等。
. WORD格式.资料.椭圆的定义与标准方程一.选择题(共19小题)或22223.椭圆上一点P到一个焦点的距离为5,则P 到另一个焦点的距离为()5.椭圆上一动点P到两焦点距离之和为()B7.已知F1、F2是椭圆=1的两焦点,经点F2的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于()8.设集合A={1,2,3,4,5},a,b∈A,则方程表示焦点位于y轴上的椭圆()9.方程=10,化简的结果是()B(x≠0)(x≠0)(x≠0)(x≠0)13.已知P是椭圆上的一点,则P到一条准线的距离与P到相应焦点的距离之比为()B14.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B为焦15.如果方程表示焦点在y轴上的椭圆,则m的取值范围是()2217.已知动点P(x、y)满足10=|3x+4y+2|,则动点P的轨迹是()18.已知A(﹣1,0),B(1,0),若点C(x,y)满足=()19.在椭圆中,F1,F2分别是其左右焦点,若|PF1|=2|PF2|,则该椭圆离心率的取值范围是()B二.填空题(共7小题)20.方程+=1表示椭圆,则k的取值范围是_________ .21.已知A(﹣1,0),B(1,0),点C(x,y)满足:,则|AC|+|BC|= _________ .22.设P是椭圆上的点.若F1、F2是椭圆的两个焦点,则PF1+PF2= _________ .23.若k∈Z,则椭圆的离心率是_________ .24.P为椭圆=1上一点,M、N分别是圆(x+3)2+y2=4和(x﹣3)2+y2=1上的点,则|PM|+|PN|的取值范围是_________ .25.在椭圆+=1上,它到左焦点的距离是它到右焦点距离的两倍,则点P的横坐标是_________ .26.已知⊙Q:(x﹣1)2+y2=16,动⊙M过定点P(﹣1,0)且与⊙Q相切,则M点的轨迹方程是:_________ .三.解答题(共4小题)27.已知定义在区间(0,+∞)上的函数f(x)满足,且当x>1时f(x)<0.(1)求f(1)的值(2)判断f(x)的单调性(3)若f(3)=﹣1,解不等式f(|x|)<228.已知对任意x.y∈R,都有f(x+y)=f(x)+f(y)﹣t(t为常数)并且当x>0时,f(x)<t(1)求证:f(x)是R上的减函数;(2)若f(4)=﹣t﹣4,解关于m的不等式f(m2﹣m)+2>0.29.已知函数y=f(x)的定义域为R,对任意x、x′∈R均有f(x+x′)=f(x)+f(x′),且对任意x>0,都有f(x)<0,f(3)=﹣3.(1)试证明:函数y=f(x)是R上的单调减函数;(2)试证明:函数y=f(x)是奇函数;(3)试求函数y=f(x)在[m,n](m、n∈Z,且mn<0)上的值域.30.已知函数是奇函数.(1)求a的值;(2)求证f(x)是R上的增函数;(3)求证xf(x)≥0恒成立.参考答案与试题解析一.选择题(共19小题)或,,22223.椭圆上一点P到一个焦点的距离为5,则P 到另一个焦点的距离为(),∴a=5,5.椭圆上一动点P到两焦点距离之和为()B7.已知F1、F2是椭圆=1的两焦点,经点F2的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于()8.设集合A={1,2,3,4,5},a,b∈A,则方程表示焦点位于y轴上的椭圆()9.方程=10,化简的结果是()B)的距离,所以椭圆的方程为:.(x≠0)(x≠0)(x≠0)(x≠0)13.已知P是椭圆上的一点,则P到一条准线的距离与P到相应焦点的距离之比为()Bc===14.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B为焦15.如果方程表示焦点在y轴上的椭圆,则m的取值范围是().22可化为17.已知动点P(x、y)满足10=|3x+4y+2|,则动点P的轨迹是(),等式左边为点到定直线的距离的,由椭圆定义即可判断解:∵10的距离的18.已知A(﹣1,0),B(1,0),若点C(x,y)满足=(),整理得:.可知点)满足,.c=19.在椭圆中,F1,F2分别是其左右焦点,若|PF1|=2|PF2|,则该椭圆离心率的取值范围是B代入得,,即,即故该椭圆离心率的取值范围是二.填空题(共7小题)20.方程+=1表示椭圆,则k的取值范围是k>3 .+=1表示椭圆,则解:方程=121.已知A(﹣1,0),B(1,0),点C(x,y)满足:,则|AC|+|BC|= 4 .,按照椭圆的第二定义,=,∴a=2,22.设P是椭圆上的点.若F1、F2是椭圆的两个焦点,则PF1+PF2= 10 .解:椭圆是椭圆上的点,23.若k∈Z,则椭圆的离心率是.,=,=故答案为24.P为椭圆=1上一点,M、N分别是圆(x+3)2+y2=4和(x﹣3)2+y2=1上的点,则|PM|+|PN|的取值范围是[7,13] .+解:依题意,椭圆25.在椭圆+=1上,它到左焦点的距离是它到右焦点距离的两倍,则点P的横坐标是.+=1解:由椭圆+,右准线方程为:=2﹣x=故答案为:26.已知⊙Q:(x﹣1)2+y2=16,动⊙M过定点P(﹣1,0)且与⊙Q相切,则M点的轨迹方程是:=1 .=故答案为:三.解答题(共4小题)27.已知定义在区间(0,+∞)上的函数f(x)满足,且当x>1时f(x)<0.(1)求f(1)的值(2)判断f(x)的单调性(3)若f(3)=﹣1,解不等式f(|x|)<2,(,,或28.已知对任意x.y∈R,都有f(x+y)=f(x)+f(y)﹣t(t为常数)并且当x>0时,f(x)<t(1)求证:f(x)是R上的减函数;(2)若f(4)=﹣t﹣4,解关于m的不等式f(m2﹣m)+2>0.29.已知函数y=f(x)的定义域为R,对任意x、x′∈R均有f(x+x′)=f(x)+f(x′),且对任意x>0,都有f(x)<0,f(3)=﹣3.(1)试证明:函数y=f(x)是R上的单调减函数;(2)试证明:函数y=f(x)是奇函数;(3)试求函数y=f(x)在[m,n](m、n∈Z,且mn<0)上的值域.30.已知函数是奇函数.(1)求a的值;(2)求证f(x)是R上的增函数;(3)求证xf(x)≥0恒成立.是奇函数,其定义域为)∵函数的定义域为)可得>>=﹣。
椭圆基础练习题一、选择题1. 下列关于椭圆的说法,正确的是()A. 椭圆的长轴和短轴长度相等B. 椭圆的焦点到中心的距离相等C. 椭圆的离心率大于1D. 椭圆的离心率小于02. 在椭圆的标准方程 x^2/a^2 + y^2/b^2 = 1(a>b>0)中,下列说法正确的是()A. a表示椭圆的短轴长度B. b表示椭圆的长轴长度C. a和b分别表示椭圆的焦点到中心的距离D. a和b分别表示椭圆的半长轴和半短轴长度二、填空题1. 椭圆的标准方程是 x^2/a^2 + y^2/b^2 = 1,若椭圆的焦距为2c,则离心率e=______。
2. 在椭圆 x^2/25 + y^2/16 = 1 中,长轴的长度为______,短轴的长度为______。
3. 椭圆的两个焦点到椭圆上任意一点的距离之和等于______。
三、解答题1. 已知椭圆的标准方程为 x^2/4 + y^2/3 = 1,求椭圆的焦点坐标。
2. 设椭圆的方程为 x^2/36 + y^2/25 = 1,求椭圆的离心率。
3. 已知椭圆的长轴为10,焦距为6,求椭圆的短轴长度。
4. 在椭圆 x^2/25 + y^2/16 = 1 上任取一点P,求点P到椭圆两个焦点的距离之和。
5. 已知椭圆的离心率为0.6,求椭圆的焦距与长轴长度的比值。
6. 设椭圆的方程为 x^2/9 + y^2/16 = 1,求椭圆上离原点最近的点的坐标。
7. 已知椭圆的两个焦点分别在x轴上,且椭圆经过点(2, 3),求椭圆的标准方程。
8. 设椭圆的方程为 x^2/4 + y^2/b^2 = 1(b>0),若椭圆的焦距为2,求椭圆的离心率。
9. 已知椭圆的长轴长度为8,离心率为0.5,求椭圆的焦距。
10. 在椭圆 x^2/25 + y^2/9 = 1 上任取一点P,求点P到椭圆长轴的距离范围。
四、应用题1. 一个椭圆的长轴长度为20米,短轴长度为10米,一个人从椭圆的一个焦点出发,沿着椭圆边缘行走一周,求此人走过的总路程。
椭圆练习题带答案,知识点总结(基础版)椭圆是平面内与两个定点F1、F2的距离的和等于常数2a (其中2a>F1F2)的点的轨迹。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
当椭圆焦点在x轴上时,标准方程为x^2/a^2+y^2/b^2=1(a>b>0)。
当椭圆焦点在y轴上时,标准方程为x^2/b^2+y^2/a^2=1(a>b>0)。
椭圆的范围为-a≤x≤a,-b≤y≤b。
椭圆有x轴和y轴两条对称轴,对称中心为坐标原点O(0,0)。
椭圆的长轴长为2a,短轴长为2b。
椭圆的顶点坐标为(±a,0),(0,±b)。
椭圆的焦点坐标为(±c,0),其中c^2=a^2-b^2.椭圆的离心率为e=c/a(其中0<e<1)。
a、b、c、e的几何意义:a叫做长半轴长;b叫做短半轴长;c叫做半焦距;a、b、c之间满足a^2=b^2+c^2.e叫做椭圆的离心率,e可以刻画椭圆的扁平程度,e越大,椭圆越扁,e 越小,椭圆越圆。
对于椭圆上任一点P和椭圆的一个焦点F,PF_max=a+c,PF_min=a-c。
当点P在短轴端点位置时,∠F1PF2取最大值(余弦定理)。
椭圆方程常用三角换元为x=acosθ,y=bsinθ。
弦长公式为:设直线y=kx+b交椭圆于P1(x1,y1),P2(x2,y2),则|P1P2|=√(1+k^2(x1-x2)^2)或|P1P2|=√(1+(y1-y2)^2/k^2)(k≠0)。
判断点P(x,y)是否在椭圆内,当且仅当x^2/a^2+y^2/b^21.若椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为c/a,短轴长为4√2,则它的长轴长为2a=6.1.在椭圆$x^2/a^2+y^2=1$的内部,点$A(a,1)$,则$a$的取值范围是$-2<a<2$。
2.已知椭圆方程$x^2/16+y^2/8=1$,焦点为$F_1,F_2$,点$P$在椭圆上且$\angle F_1PF_2=\pi/3$。
椭圆基础训练题姓名____________分数______________一、选择题1 .方程my x ++16m -2522=1表示焦点在y 轴上的椭圆,则m 的取值范围是 ( )A .—16〈m 〈25B .—16〈m 〈29 C .29〈m<25 D .m>292 .已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2B .3C .5D .73 .椭圆2241x y +=的焦距是( )A B .1C D .24 .对于椭圆22525922=+y x ,下列说法正确的是( )A .焦点坐标是()40±,B .长轴长是5C .准线方程是425±=yD .离心率是54 5 .椭圆2212x y +=的焦距是 ( )A .1B .2C .3D .46 .如果方程222=+ky x 表示焦点在y 轴的椭圆,那么实数k 的取值范围是( )A .),0(+∞B .)2,0(C .),1(+∞D .)1,0(7 .若椭圆221169x y +=上一点P 到它的右焦点是3,那么点P 到左焦点的距离是 ( )A .5B .1C .15D .88 .设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于 ( ) A .4B .5C .8D .109 .已知F 1、F 2是椭圆192522=+y x 的两个焦点,AB 是过F 2的弦,则△ABF 1 的周长等于 ( ) A .100 B .50C .20D .1010.椭圆4x 2+2y 2=1的准线方程是( )A .x=±1B .x=±21 C .y=±1 D .y=±21 11.已知椭圆1162522=+y x 上一点P 到椭圆一个点的距离为3,则P 点到另一个焦点距离为 ( ) A .2B .3C .5D .712.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于学科网( )A .12B .22C .2D .32学科网 13.椭圆2216x y m +=的焦距为2,则m 的取值是 ( )A .7B .5C .5或7D .1014.椭圆161522=+y x 的两条准线方程是 ( )A .2175-=y ,2175=y B .2175-=x ,2175=x C .y=-5,y=5 D .x=-5,x=5 15.椭圆2214x y +=的长轴长为 ( )A .16B .2C .8D .416.若椭圆x a 22+y b22=1的两焦点F 1、F 2三等分它两准线间的距离,则此椭圆的离心率为 ( )A .3B .33C .63D .以上均不对17.若椭圆x y b222161+=过点()-23,,则其焦距为 ( )A .23B .25C .43D .4518.已知焦点在x 轴上的椭圆的离心率为,21它的长轴等于圆0152:22=--+x y x C 的半径,则椭圆的标准方程为 ( )A .13422=+y xB .1121622=+y xC .1422=+y x D .141622=+y x 19.若椭圆两准线间的距离是焦距的4倍,则该椭圆的离心率为( )A .21。
高二数学椭圆同步练习(一)一、选择题(本大题共10小题,每小题5分,共50分)1.设P 是椭圆1162522=+y x 上的点. 若1F 、2F 是椭圆的两个焦点,则21PF PF +等于(D ) A. 4. B.5. C. 8. D. 10. 2.椭圆2241x y +=的离心率为( A )B.34D.233.已知长方形ABCD ,4AB =,3BC =,则以A B ,为焦点,且过C D ,两点的椭圆的离心率为______.124.在平面直角坐标系xOy 中,已知ABC △的顶点(40)A -,和(40)C ,,顶点B 在椭圆221259x y +=上,则sin sin sin A C B +=_____. 54 5.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.求椭圆C 的标准方程;高二数学椭圆同步练习(二)1.下列命题是真命题的是( )A .到两定点距离之和为常数的点的轨迹是椭圆B .到定直线ca x 2=和定点F(c ,0)的距离之比为ac 的点的轨迹是椭圆C .到定点F(-c ,0)和定直线ca x 2-=的距离之比为ac (a >c>0)的点的轨迹 是左半个椭圆D .到定直线ca x 2=和定点F(c ,0)的距离之比为ca (a >c>0)的点的轨迹是椭圆2.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x3.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围为 ( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)4.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件)0(921>+=+a aa PF PF ,则点P 的轨迹是 ( ) A .椭圆 B .线段 C .不存在 D .椭圆或线段5.椭圆12222=+b y a x 和k by a x =+2222()0>k 具有 ( )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴 6.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为 ( ) A .41B .22 C .42 D .217.已知P 是椭圆13610022=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离是( )A .516B .566 C .875 D .877 8.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .109.在椭圆13422=+y x 内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是( )A .25 B .27 C .3D .410.过点M (-2,0)的直线m 与椭圆1222=+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(01≠k ),直线OP 的斜率为k 2,则k 1k 2的值为 ( )A .2B .-2C .21D .-21 二、填空题(本题共4小题,每小题6分,共24分)11.离心率21=e ,一个焦点是()3,0-F 的椭圆标准方程为 ___________ .12.与椭圆4 x 2 + 9 y 2 = 36 有相同的焦点,且过点(-3,2)的椭圆方程为_______________.13.已知()y x P ,是椭圆12514422=+y x 上的点,则y x +的取值范围是________________ . 14.已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于__________________.三、解答题(本大题共6题,共76分) 15.已知椭圆的对称轴为坐标轴,离心率32=e ,短轴长为58,求椭圆的方程.(12分)16.已知A 、B 为椭圆22a x +22925a y =1上两点,F 2为椭圆的右焦点,若|AF 2|+|BF 2|=58a ,AB 中点到椭圆左准线的距离为23,求该椭圆方程.(12分)17.过椭圆4:),(148:220022=+=+y x O y x P y x C 向圆上一点引两条切线PA 、PB 、A 、 B 为切点,如直线AB 与x 轴、y 轴交于M 、N 两点. (1)若0=⋅,求P 点坐标;(2)求直线AB 的方程(用00,y x 表示); (3)求△MON 面积的最小值.(O 为原点)(12分)18.椭圆12222=+b y a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O为坐标原点.(1)求2211b a +的值; (2)若椭圆的离心率e 满足33≤e ≤22,求椭圆长轴的取值范围.(12分)19.一条变动的直线L 与椭圆42x +2y 2=1交于P 、Q 两点,M 是L 上的动点,满足关系|MP|·|MQ|=2.若直线L 在变动过程中始终保持其斜率等于1.求动点M 的轨迹方程,并说明曲线的形状.(14分)20.椭圆的中心是原点O ,它的短轴长为22,相应于焦点F (c ,0)(0>c )的准线l 与x 轴相交于点A ,|OF|=2|FA|,过点A 的直线与椭圆相交于P 、Q 两点 .(1)求椭圆的方程及离心率;(2)若0=⋅OQ OP ,求直线PQ 的方程;(3)设λ=(1>λ),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明λ-=.(14分)参考答案一、选择题(本大题共10小题,每小题5分,共50分)二、填空题(本大题共4小题,每小题6分,共24分)11.1273622=+x y 12.1101522=+y x 13.]13,13[- 14.54 三、解答题(本大题共6题,共76分)15.(12分) [解析]:由 2223254c b a a c e b =-===⇒812==,∴椭圆的方程为:18014422=+y x 或18014422=+x y . 16.(12分) [解析]:设A(x 1,y 1),B(x 2,y 2),,54=e 由焦半径公式有a -ex 1+a -ex 2=a 58,∴x 1+x 2=a 21, 即AB 中点横坐标为a 41,又左准线方程为a x 45-=,∴234541=+a a ,即a =1,∴椭圆方程为x 2+925y 2=1.17.(12分)[解析]:(1)PB PA ⊥∴=⋅0∴OAPB 的正方形由843214882020202020==⇒⎪⎩⎪⎨⎧=+=+x y x y x 220±=∴x ∴P 点坐标为(0,22±) (2)设A (x 1,y 1),B (x 2,y 2) 则PA 、PB 的方程分别为4,42211=+=+y y x x y y x x ,而PA 、PB 交于P (x 0,y 0)即x 1x 0+y 1y 0=4,x 2x 0+y 2y 0=4,∴AB 的直线方程为:x 0x +y 0y=4(3)由)0,4(400x M y y x x 得=+、)4,0(0y N ||18|4||4|21||||210000y x y x ON OM S MON⋅=⋅=⋅=∆22)48(22|222|24||20200000=+≤⋅=y x y x y x 22228||800=≥=∴∆y x S MON 当且仅当22,|2||22|m in 00==∆MON S y x 时.18.(12分)[解析]:设),(),,(2211y x P y x P ,由OP ⊥ OQ⇔ x 1 x 2 + y 1 y 2 = 0① 01)(2,1,121212211=++--=-=x x x x x y x y 代入上式得:又将代入x y -=1 12222=+b y a x 0)1(2)(222222=-+-+⇒b a x a x b a ,,2,022221b a a x x +=+∴>∆222221)1(b a b a x x +-=代入①化简得 21122=+b a .(2) ,3221211311222222222≤≤⇒≤-≤∴-==a b ab a b ac e 又由(1)知12222-=a a b 26252345321212122≤≤⇒≤≤⇒≤-≤∴a a a ,∴长轴 2a ∈ [6,5]. 19.(14分)[解析]:设动点M(x ,y),动直线L :y=x +m ,并设P(x 1,y 1),Q(x 2,y 2)是方程组⎩⎨⎧=-++=042,22y x m x y 的解,消去y ,得3x 2+4m x +2m 2-4=0,其中Δ=16m 2-12(2m 2-4)>0,∴-6<m<6,且x 1+x 2=-3m 4,x 1x 2=34m 22-,又∵|MP|=2|x -x 1|,|MQ|=2|x -x 2|.由|MP||MQ|=2,得|x -x 1||x -x 2|=1,也即|x 2-(x 1+x 2)x +x 1x 2|=1,于是有.13423422=-++m mx x ∵m=y -x ,∴|x 2+2y 2-4|=3.由x 2+2y 2-4=3,得椭圆172722=+x x 夹在直线6±=x y 间两段弧,且不包含端点.由x 2+2y 2-4=-3,得椭圆x 2+2y 2=1. 20.(14分) [解析]:(1)由题意,可设椭圆的方程为)2(12222>=+a y a x .由已知得⎪⎩⎪⎨⎧-==-).(2,2222c c a c c a 解得2,6==c a ,所以椭圆的方程为12622=+y x ,离心率36=e .(2)解:由(1)可得A (3,0) .设直线PQ 的方程为)3(-=x k y .由方程组⎪⎩⎪⎨⎧-==+)3(,12622x k y y x 得062718)13(2222=-+-+k x k x k ,依题意0)32(122>-=∆k ,得3636<<-k .设),(),,(2211y x Q y x P ,则13182221+=+k k x x , ①136272221+-=k k x x . ②,由直线PQ 的方程得 )3(),3(2211-=-=x k y x k y .于是]9)(3[)3)(3(2121221221++-=--=x x x x k x x k y y . ③∵0=⋅,∴02121=+y y x x . ④,由①②③④得152=k ,从而)36,36(55-∈±=k .所以直线PQ 的方程为035=--y x 或035=-+y x .(2)证明:),3(),,3(2211y x y x -=-=.由已知得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=-=-.126,126,),3(3222221212121y x y x y y x x λλ注意1>λ,解得λλ2152-=x ,因),(),0,2(11y x M F -,故 ),1)3((),2(1211y x y x FM -+-=--=λ),21(),21(21y y λλλλ--=--= .而),21(),2(222y y x λλ-=-=,所以λ-=.。