【人教版】初一七年级数学上册《1.2.4 第1课时 绝对值2》教案
- 格式:doc
- 大小:234.00 KB
- 文档页数:4
1.2.4 绝对值课题:1.2.4 绝对值课时第1课时教学设计课标要求借助数轴理解绝对值的意义,掌握求有理数的绝对值的方法教材及学情分析本节内容是人教版七年级上册第一章第二节第四小节第一课时的内容,主要讲述和绝对值有关的知识。
借助数轴,可以用数轴上的点直观地表示有理数,从而也为学生提供了理解绝对值的直观工具,帮助学生学习绝对值这是绝对值得几何意义;通过计算观察归纳等方法发现有理数绝对值的规律,从而知道绝对值的代数意义。
七年级的学生思维正处于从以具体形象思维成分为主,向以逻辑思维为主的转折期,授课时要注意具体性、形象性,同时还要有适当的抽象、概括要求课时教学目标1、掌握绝对值的概念,会求出一个数的绝对值,能利用数轴及绝对值的知识2、经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想重点绝对值的概念难点绝对值的概念提炼课题利用数轴理解绝对值得意义教法学法指导归纳总结、探究教具准备多媒体课件教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课回顾知识回顾知识:什么叫数轴?什么叫相反数?怎样表示数a的相反数?回顾知识教学过程分析情景,思考问题知道绝对值的几何意义完成练习,思考问题情景分析:(1)甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正。
两辆出租车都从O地出发,甲车向东行驶10km到达A处,记作km,乙车向西行驶10km到达B处,记做km。
以O为原点,取适当的单位长度画数轴,并在数轴上标出A、B的位置,则A、B两点与原点距离分别是多少?它们的实际意义是什么?(2)数轴上表示-4和4的点到原点的距离分别是多少?表示的0.5和-0.5点呢?绝对值的概念:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值,用“| |”表示。
例如:探究新知:先求下列各数的绝对值,再思考后面的问题:|5|= |-10|=|3.5|= |-4.5|=|50|= |-3|=|100|= |-5000|=0|=0创设情景,引入新知。
人教版数学七年级上册1.2.4《绝对值》教案一. 教材分析《绝对值》是人教版数学七年级上册第1章第2节的内容,本节课主要让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些实际问题。
绝对值是数学中的一个基本概念,它在日常生活和工农业生产中有着广泛的应用。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,他们对数学概念的理解和运用已经有了一定的基础。
但同时,学生对新的数学概念的接受和理解还需要一定的引导和培养。
他们对绝对值的概念和性质可能还存在一些模糊的认识,需要通过实例和练习来加深理解。
三. 教学目标1.让学生理解绝对值的概念,掌握绝对值的性质。
2.培养学生运用绝对值解决实际问题的能力。
3.培养学生的抽象思维能力和逻辑思维能力。
四. 教学重难点1.绝对值的概念和性质。
2.运用绝对值解决实际问题。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法,引导学生通过观察、思考、讨论、操作等活动,掌握绝对值的概念和性质,提高学生的动手操作能力和解决问题的能力。
六. 教学准备1.PPT课件。
2.相关例题和练习题。
3.学生分组合作学习资料。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如温度、距离等,引导学生思考这些问题的共同特点,从而引出绝对值的概念。
2.呈现(10分钟)介绍绝对值的定义,用PPT展示绝对值的图形表示,让学生直观地理解绝对值的概念。
同时,给出绝对值的性质,让学生通过观察和思考来理解这些性质。
3.操练(10分钟)让学生分组合作,运用绝对值的性质解决一些实际问题,如求距离、计算温度等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对绝对值概念和性质的掌握程度。
教师选取部分题目进行讲解,分析解题思路。
5.拓展(10分钟)让学生思考绝对值在实际生活中的应用,如地图上的距离、股票的涨跌等。
引导学生运用绝对值的知识解决这些问题,提高学生的应用能力。
七年级数学《绝对值》教案【优秀6篇】数学《绝对值》教案篇一●教学内容七年级上册课本11----12页1.2.4绝对值●教学目标1、知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2、过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。
通过应用绝对值解决实际问题,体会绝对值的意义。
3、情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
●教学重点与难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
●教学准备多媒体课件●教学过程一、创设问题情境1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。
若规定向右为正,则A处记作__________,B处记作__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。
二、建立数学模型1、绝对值的概念(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5.注意:①与原点的关系②是个距离的概念2、。
人教版七年级数学上册:1.2.4《绝对值》教学设计2一. 教材分析《绝对值》是人教版七年级数学上册第一章第二节第四个小节的内容,主要让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些简单的问题。
绝对值是数学中的一个重要概念,它在日常生活和工农业生产中有着广泛的应用。
二. 学情分析学生在学习《绝对值》之前,已经学习了有理数的概念,对正数、负数、零有所了解。
但是,他们对绝对值的概念和性质可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对绝对值的应用场景有所疑惑,需要通过生活中的实例来帮助他们理解。
三. 教学目标1.理解绝对值的概念,掌握绝对值的性质。
2.能够运用绝对值解决一些简单的问题。
3.理解绝对值在日常生活和工农业生产中的应用。
四. 教学重难点1.绝对值的概念和性质。
2.绝对值的应用。
五. 教学方法采用讲授法、实例分析法、练习法、小组合作学习法等,结合多媒体教学手段,让学生在理解绝对值的概念和性质的基础上,能够运用绝对值解决实际问题。
六. 教学准备1.PPT课件。
2.练习题。
3.生活中的实例。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,引出绝对值的概念。
例如,一个人在地图上从原点出发,走了10公里向东,又走了10公里向西,问他现在离原点有多远?引出绝对值的概念,即离原点的距离是10公里。
2.呈现(10分钟)通过PPT课件,呈现绝对值的性质,如:–绝对值是非负数。
–互为相反数的两个数的绝对值相等。
–绝对值大的数比绝对值小的数大。
同时,给出相应的例子,让学生理解和掌握这些性质。
3.操练(10分钟)让学生独立完成一些练习题,巩固对绝对值概念和性质的理解。
例如:–计算下列各数的绝对值:-5, 3, -2, 0, 4。
–如果两个数互为相反数,它们的绝对值是否相等?4.巩固(10分钟)让学生分组合作,找出生活中的其他实例,运用绝对值的概念和性质解决问题。
例如,计算两个人之间的距离,或者计算物体的位移等。
人教版七年级数学上册:1.2.4《绝对值》说课稿2一. 教材分析《人教版七年级数学上册:1.2.4《绝对值》》这一章节是在学生已经掌握了有理数的概念和运算法则的基础上进行讲解的。
绝对值是数学中的一个重要概念,它表示一个数在数轴上所对应的点与原点的距离。
本节课的主要内容有:绝对值的定义,绝对值的性质,以及绝对值在实际问题中的应用。
通过本节课的学习,学生能够理解和掌握绝对值的定义和性质,并能够运用绝对值解决一些实际问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于有理数的概念和运算法则有一定的了解。
但是,对于绝对值这一概念,他们可能比较陌生,需要通过具体的例子和实际问题来理解和掌握。
此外,学生可能对于数轴的概念不是很清晰,因此需要通过数轴来帮助理解绝对值的含义。
三. 说教学目标1.知识与技能目标:学生能够理解绝对值的定义,掌握绝对值的性质,并能够运用绝对值解决一些实际问题。
2.过程与方法目标:通过观察、思考、交流等活动,学生能够培养自己的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:学生能够体验到数学与生活的紧密联系,增强对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:绝对值的定义和性质。
2.教学难点:绝对值在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、数轴模型和实际问题来进行教学。
六. 说教学过程1.导入:通过一个实际问题,让学生思考如何求一个数的绝对值,引发学生对绝对值的兴趣。
2.讲解:讲解绝对值的定义和性质,通过具体的例子和数轴来帮助学生理解和掌握。
3.练习:让学生通过一些练习题来巩固对绝对值的理解和运用。
4.应用:通过一些实际问题,让学生运用绝对值来解决问题,培养学生的应用能力。
5.总结:对本节课的内容进行总结,强调绝对值的重要性和应用。
七. 说板书设计板书设计要简洁明了,能够突出本节课的重点内容。
人教版初中七年级数学第一单元有理数1.2.4 绝对值第一课时一、教材分析:1.教材的地位和作用绝对值是人教版《义务教育课程标准实验教科书·数学》七年级上册第一章第二节绝对值第一课时的教学内容。
绝对值是有理数的重要概念之一,学习绝对值的概念和意义,不仅可以加深学生对数轴、相反数的认识和运用,也为后面学习两个负数的比较大小及有理数运算作好铺垫,因此起着承上启下的作用.同时通过本节课的学习,可以培养学生数形结合、分类讨论的思想方法,对发展学生数学观察、归纳、探究的能力起着积极有效的作用。
2.教学目标分析新课标指出,教学目标应包括知识与技能、数学思考、解决问题、情感与态度这四个方面,而这些目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程.这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在数学思考与解决问题的过程中。
教学目标:①理解绝对值的概念;了解绝对值的意义;运用绝对值的相关知识解决问题;②经历绝对值概念及意义的探究过程,使学生感受分类讨论思想,增强学生的符号意识;③初步形成反思意识,通过多种学习形式使学生学会合作,并能与他人交流解决绝对值相关问题过程的思维和结果;④通过探究的过程,让学生获得数学活动的经验,并在用数学知识解答问题的活动中获取成功的体验,建立学习的自信。
3.教学重难点:根据以上对教材的地位和作用,以及目标分析,结合新课标对本节课的要求,本节课的重点:绝对值的概念及意义的探究过程;难点:利用绝对值的概念及意义解决实际问题。
二、学情分析:1.认知基础分析:学生在小学已初步形成对数的基本认识,再加上之前学习了数轴、相反数的相关知识,对两点之间距离的概念也有所理解,共同为新课学习奠定了必要的基础.心理及能力分析:学生已初步具备一定的观察、分析、概括的思维能力,但思维的严密性仍相对薄弱。
并且他们天性活泼、求知欲强,愿意同学间合作交流,乐于接受形象生动、形式多样的学习方式。
课案(教师用)1.2.4 绝对值(二)(新授课) 【理论支持】根据赫尔巴特的“诱发学习兴趣原理”学说,与旧有知识相关的新事物会引起我们的注意.而我们全然未知的事物是不会引起我们的注意的.但是,尽管熟知的事物会引起我们的注意,但其注意不会持久的.可以引起我们最大的兴趣的事物是知与未知的混合物.本节课联系小学及课本内容,把两个有理数的大小比较进行系统的概括,体验出两个有理数比较大小的方法.⑴利用数轴比较大小;⑵利用绝对值比较大小.本节课的教学目标是让学生掌握这两种方法.在教用数轴比较有理数大小的方法时,引入是采用温度的排序.根据常识,学生可以由低到高地排列这些温度,再让学生把这些数表示在数轴上,可以看到表示它们的各点是从左到右的顺序,由此引出利用数轴比较有理数大小的规定:“在数轴上,左边的数小于右边的数.”在这部分教学中,要让学生结合图形理解这些结论.在讲解利用绝对值比较大小时,采用把两个负数在数轴表示,利用在数轴上的数“左边的数小于右边的数”;得出“绝对值大的负数反而小”的结论.从而得出利用绝对值比较有理数大小的方法.这节课的重点是利用绝对值比较两个负数的大小.难点是利用绝对值比较两个异分母负数大小;这是本节课较难的部分,为了解决难点,特别要让学生清楚地了解进行比较时的过程:⑴先求出两个负数的绝对值.⑵比较两个绝对值的大小(要通分,化为同分母分数).⑶根据绝对值大的负数反而小的结论判断这两个负分数的大小. 【教学目标】 知识与技能:1.会利用数轴比较两个有理数的大小.2.会利用绝对值比较两个负数的大小. 数学思考:体验绝对值解决实际问题的过程,感受数学在生活中的应用价值. 解决问题:利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力. 情感态度:敢于面对数学活动中的困难,有学好数学的自信心. 【教学重难点】重点:利用绝对值比较两个负数的大小.难点:利用绝对值比较两个异分母负分数的大小 【课时安排】 一课时【教学设计】课前延伸一、基础知识及答案比较下列各组数的大小:(1)83--与 ; (2) 4332--与; (3)4与-5 , (4) 0.9与1.1. 【答案】(1)38-<-;(2) 2334-<-;(3)4>-5; (4) 0.9<1.1. 【设计说明】本题是为了分散利用绝对值比较两个负分数的大小这一难点埋下了伏笔,在这个题目中用最简单的“∵,∴”的形式训练学生简单的推理能力.二、预习思考题及答案比较下列各组数的大小:(1)-10与0; (2) -9与-1;(3)5477--与; (4)7384--与. 【答案】(1)-10<0; (2)-9<-1;(3)5477--<; (4)73-<-84. 【设计说明】让学生体会出这四道题的难度较大,培养学生的自学能力.课内探究 一、导入新课,探究新知教材12页探究如图1.2-6给出了一周中每天的最高气温和最低气温,其中最低的是 ℃,最高的是 ℃.你能将这14个数按从低到高的顺序排列吗?分析:图1.2-6给出的14个温度按从低到高排列为: -4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9.按照这个顺序排列的温度,与温度计上所对应的点是从下到上的,按照这个顺序把这些数表示在数轴上,表示它们的各点的顺序是从左到右的.(学生活动)在练习纸上画出数轴,把每个数标在对应点上,并比较大小. 师:我们已知两个正数(或0)之间怎样比较大小,例如0<1,1<2,2<3,… 任意两个有理数(例如-4和-3,-2和0,-1和1)怎样比较大小呢?数学中规定,在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.由这个规定可知:-6<-5,-5<-4,-4<-3,-2<0,-1<1,… 得出结论:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小. 例如 1 0,0 -1,1 -1,-1 -2【设计说明】探究数的大小比较的方法,采用把两个负数在数轴表示,利用在数轴上的数“左边的数小于右边的数”;得出“绝对值大的负数反而小”的结论.从而得出利用绝对值比较有理数大小的方法. 二、应用新知例 比较下列各对数的大小 (1)-(-1)和-(+2); (2)73218--和; (3)-(-0.3)和31-.解:(1)先化简,-(-1)=1,-(+2)=-2.正数大于负数,1>-2,即-(-1)>-(+2) .(2) 这是两个负数比较大小,要比较它们的绝对值.218218=-,2197373==- . ∵219218<, 即73218-<-, ∴ 73218-<-. (3)先化简,-(-0.3)=0.3, 3131-= , ∵0.3 <31,∴-(-0.3) <31-.【设计说明】比较两个负分数的大小是这节的重点也是难点,利用这两个小题让学生从整体上把握一下方法,达到熟练掌握的程度. 三、巩固新知(1)比较下列各对数的大小:-3和-5; -2.5和5.2--(2)判断题:①两个有理数比较大小,绝对值大的反而小 . ( ) ②有理数中没有最小的数.( )③若b a -=,则b a =.( ) ④若a <b <0,则a <b .( )(3)写出绝对值不大于4的所有整数,并把它们表示在数轴上. (4)比较大小:-2_________-5,-2.5 2.5--; 65-56-,87- 98-. (写出过程)四、归纳小结师:谁能说说今天这节课我们学习了哪些内容?生:如何比较两个有理数大小.师:两个有理数是如何比较大小的? 生:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小. 师:还有没有方法了?生:利用数轴比较,左边的数小于右边的数.【设计说明】教师的小结必须把今天的所学纳入知识系统,明确说明利用数轴可以比较任意两数的大小,而利用绝对值比较大小只适用于两个负数. 【布置作业】比较下列各组数的大小. 5-9-和,-2.22和-2.25,85-2413和-,14.3-722-和⎪⎭⎫⎝⎛+ 〖参考答案〗-9<-5,-2.22>-2.25,852413->-,14.3722--<⎪⎭⎫⎝⎛+【板书设计】 2.4 绝对值 (2)(1)正数大于0,0大于负数,正数大于负数 (2)两个负数,绝对值大的反而小.例 解:(1) -(-1)=1,-(+2)=-2. ∴ 1>-2,即-(-1)>-(+2).(2) 218218=-,2197373==- . ∵219218<, 即73218-<-, ∴ 73218-<-. (3)先化简,-(-0.3)=0.3, 3131-= . ∵0.3 <31,∴-(-0.3) <31- .课后提升课后练习题及答案:(1)若|a|=6,则a=______;(2)若|-b|=0.87,则b=______;(3)若x+|x|=0,则x是______数.(4)已知│a│=4,│b│=3,且a>b,求a、b的值.〖参考答案〗(1)∵|a|=6,∴a=±6;(2)∵|-b|=0.87,∴b=±0.87;(3)∵x+|x|=0,∴|x|=-x.∵|x|≥0,∴-x≥0∴x≤0,x是非正数.(4) ∵|a|=4,∴a=±4∵|b|=3,∴b=±3∵a>b,∴a=4,b=±3【设计说明】“绝对值”是代数中最重要的概念之一,应当从正、逆两个方面来理解这个概念.对绝对值的代数定义,至少要认识到以下三点:(1)任何一个数的绝对值一定是正数或0,即|a|≥0;(2)互为相反数的两个数的绝对值相等,|a|=|-a|;(3) 求一个含有字母的代数式的值,一定要根据字母的取值范围分情况进行讨论.。
1.2.4 绝对值
第1课时绝对值
【教学目标】
(一)知识技能
1.使学生掌握有理数的绝对值概念及表示方法。
2.使学生熟练掌握有理数绝对值的求法和有关计算问题。
(二)过程方法
1.在绝对值概念形成的过程中,渗透数形结合等思想方法,并注意培养学生的概括能力。
2.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念。
3.给出一个数,能求它的绝对值。
(三)情感态度
从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。
教学重点
给出一个数会求它的绝对值。
教学难点
绝对值的几何意义,代数定义的导出;负数的绝对值是它的相反数。
【情景引入】
问题:两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米.为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米.这样,利用有理数就可以明确表示每辆汽车在公路上的位置了.
我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向.当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离).这里的5叫做+5的绝对值,4叫做-4的绝对值.
【教学过程】
1.绝对值的定义:
我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值)。
记作|a|。
例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6。
同样可知|―4|=4,|+1.7|=1.7。
2.试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道:
1= ,|+8.2|= ;(2)|0|= ;
(1)|+2|= ,
5
(3)|―3|= ,|―0.2|= ,|―8.2|= 。
概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?由学生分类讨论,归纳出数a的绝对值的一般规律:
(1)一个正数的绝对值是它本身;
(2)0的绝对值是0;
(3)一个负数的绝对值是它的相反数。
即:①若a>0,则|a|=a;
②若a <0,则|a |=–a ; 或写成:)0()0()0(0<=>⎪⎩
⎪⎨⎧-=a a a a a a 。
③若a =0,则|a |=0;
3.绝对值的非负性
由绝对值的定义可知:不论有理数a 取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a |≥0。
4.例题解析
例1:求下列各数的绝对值:217-,10
1,―4.75,10.5。
解:217-=217;101+=10
1;|―4.75|=4.75;|10.5|=10.5。
例2: 化简:(1)⎪⎪⎭⎫ ⎝⎛+-21; (2)3
11--。
解:(1) 2121211=-=⎪⎪⎭⎫ ⎝⎛+-; (2) 311311-=--。
例3:计算:(1)|0.32|+|0.3|; (2)|–4.2|–|4.2|;
(3)|–32|–(–32)。
分析:求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到。
在(3)中要注意区分绝对值符号与括号的不同含义。
解答:(1)0.62; (2)0; (3)3
4。
解:|8|=8,|-8|=8,|41|=41,|-41|=41,|0|=0,|6-π|=6-π,|π-5|=5-π 例 5. ,求x 。
分析:本题应用了绝对值的一个基本性质:互为相反数的两个数的绝对值相等。
即或,由此可求出正确答案或。
解:
或
或
补充:一对相反数的绝对值相等。
【课堂作业】
1.在括号里填写适当的数:
-|+3|=( ); |( )|=1, |( )|=0; -|( )|=-2.
2. 求+7,-2,
31,-8.3,0,+0.01,-52,12
1的绝对值。
3. (1)绝对值是43的数有几个?各是什么? (2)绝对值是0的数有几个?各是什么?
(3)有没有绝对值是-2的数?
(4)求绝对值小于4的所有整数。
4. 计算:
(1)|-15|-|-6|; (2)|-0.24|+|-5.06|; (3)|-3|×|-2|;
(4)|+4|×|-5|; (3)|-12|÷|+2|; (6)|20|÷|-2
1| 5.检查了5个排球的重量(单位:克),其中超过标准重量记为正数,不足的记为负数,结果如下:
-3.5,+0.7,-2.5,-0.6. 其中哪个球的重量最接近标准?
参考答案: 1. 3.5 2
11
-5 -3 ±1 0 ±2 2. |+7|=7,|-2|=2,|31|=3
1,|-8.3|=8.3, |0|=0,|+0.01|=0.01,|-52|=52,|121|=12
1 3.(1)2个,4343 和 (2)1个,0 (3)没有 (4)0,-1,1,-2,2,-3,3 4. (1) 9; (2)5.3; (3)6;
(4)20; (3)6; (6)40
5. ∵|-3.5| > |-2.5| > |+0.7| > |-0.6|
∴第4个排球最接近标准。
【教学反思】
绝对值是中学数学中一个非常重要的概念,它具有非负性,在数学中有着广泛的应用。
本节从几何与代数的角度阐述绝对值的概念,重点是让学生掌握求一个已知数的绝对值,对绝对值的几何意义、代数定义的导出、对“负数的绝对值是它的相反数”的理解是教学中的
难点。
课堂上留给学生一定的提问时间,很容易暴露学生知识的缺陷,通过问题引导学生联想,大胆猜想,可以拓宽学生的知识面,增强知识的系统性,加深对课本知识的理解,培养学生的创新意识和发散思维。
教师在课堂上也往往能收到意想不到的收获。