_式__分__别__乘__方__,_再__把__所__得__的__幂__相__乘_。
符号叙述:_(_a_b__)_n_=__a__n_b_n___(n_是__正__整__数__)_
.
15
作业
P21 练习
2
P24 习题12.1 4
.
16
④( 1 ab)4
2
=( 1 )4• a4• b4
2
= 1 a4b4
16
⑤(3a2b3)3 = 33 •(a2)3 •(b3)3
= 27a6b9
.
12
2.计算: ① (-2a2b)3 • (-2a2b)2
= (-2a2b)5 = (-2)5 (a2)5 b5
= -32a10b5
② (3a3b3)2 - (2a2b2)3 = 32 (a3)2 (b3)2 -23 (a2)3 (b2)3
=9a6b6 - 8a6b6
=a6b6
.
13
运算 种类
公式
法则
中运 算
计算结果 底数 指数
同底数幂 乘法
amanamn
乘法
不变
指数 相加
幂的乘方(am)n amn 乘方
不变
指数 相乘
计算结果
积的乘方 (ab)n= anbn 积的每一个因式乘方,
. 再把所得的幂相乘14
小结
积的乘方的法则 语言叙述:_积__的__乘__方__,_等__于__把__积__的__每__一__个__因_
1、完成试一试,观察这几道题的解题过程和 计算结果,你能发现什么规律?
2、式子(ab)n =anbn(n为正整数)成立吗?试推 理。
3、你能用自己的话说一说乘方的运算法则吗 ?