例题讲解
【例1】计算: (1)(2b)3 ; (2)(2a3)2 ; (3)(-a)3; (4)(-3x)4 .
解:(1) (2b)3 =23b3 = 8b3 (2) (2a3)2 = 22×(a3)2 = 4a6 (3) (-a)3 = (-1)3 ·a3 = -a3 (4) (-3x)4 = (-3)4 ·x4 = 81x4
12.1 幂的运算
积的乘方
目 Contents 录
01 旧知回顾 02 新知探究
03 例题讲解
04 拓展提升
05 课堂小结
旧知回顾
幂的乘方法则
幂
(am)n=amn (m,n都是正整数)
的
意 义 同底数幂乘法的运算性质:
am ·an= am+n (m,n都是正整数)
新知探究
计算
(2×3)2 =(2×3)(2×3)=6×6=36 22×32 =4×9=36
(1) 23×53 = (2×5)3 = 103 (2) 28×58 = (2×5)8 = 108 (3) (-5)16 × (-2)15
= (-5)×[(-5)×(-2)]15 = -5×1015 (4) 24 × 44 ×(-0.125)4 = [2×4×(-0.125)]4 = 14 = 1
课堂小结
22×32= (2×3)2
你能发 现什么?
(ab)2与a2b2是否相等?
探索 & 交流
(ab)3= ab·ab·ab =a·a·a ·b·b·b =a3·b3
猜想 (ab)n= anbn
(ab)n = an·bn
n个ab
(ab)n = ab·ab·……·ab
n个a
n个b
=(a·a·……·a) (b·b·……·b)