矩阵的运算
- 格式:pptx
- 大小:490.32 KB
- 文档页数:25
§2 矩阵的运算一、矩阵的相等、加、减、数乘、乘法、转置与共轭(A +B )=A +B (kA )=kA (k 为任意复数) (AB )τ=BA (反序定律)(A 1A 2...A s )=τττ12...A A A s(A k )=(A )k (k 为整数)二、 矩阵的初等变换与初等矩阵设I =⎥⎥⎥⎥⎤⎢⎢⎢⎢⎡10101,称为单位矩阵.用数k(0)乘矩阵的第i 列(或行)初等变换具有性质:1° 任何矩阵(a ij )都可经过有限次初等变换化为对角矩阵(a ij )⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡0001012° 初等变换不改变矩阵的秩.三、 矩阵的微积分假设矩阵A 的元素a ij 都是参数t 的函数,那末1° 矩阵A 的导数定义为⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡==t a t a ta t a t a tat a t a t a A tA mn m m n n d d ...d d d d ............d d ...d d d d d d ...d d d d d d 212222111211同样可定义矩阵的高阶导数. 2° 矩阵A 的积分定义为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰t a t a ta t at at a t a t a ta t A mn m m n nd ...d d ............d ...d d d ...d d d 212222111211同样可定义矩阵的多重积分.四、 特殊矩阵[零矩阵与零因子] 元素a ij 全为零的矩阵称为零矩阵,记作O =(0)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0...00............0 (00)0 (00)零矩阵具有性质:O +A =A +O =A OA =AO =OA +(-A )=O ,-A 称为A 的负矩阵若A ,B 为非零矩阵,即A ≠O ,B ≠O ,而AB =O ,则称矩阵A 为矩阵B 的左零因子,矩阵B 为矩阵A 的右零因子,例如A =⎥⎦⎤⎢⎣⎡--1111,B =⎥⎦⎤⎢⎣⎡--1111 AB =⎥⎦⎤⎢⎣⎡--1111⎥⎦⎤⎢⎣⎡--1111=⎥⎦⎤⎢⎣⎡0000=O[对角矩阵] 主对角线以外的元素都是零(d ij =0,i ≠j )的方阵称为对角矩阵,记作D =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0...021=diag(d 1,d 2,...,d n )=[ d 1 d 2 ... d n ] 对角矩阵具有性质: 1° 左乘BDB =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0021⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b .....................212222111211=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n n n n b d b d b d b d b d b d b d b d b d ............... (2)12222221211121111 =)(ij i b d 2° 右乘BBD =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b (2)12112111211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0021=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n n n n b d bd b d b d b d bd b d b d b d (2211222)22111122111 3° 两个对角矩阵的和、差、积仍为对角矩阵.[数量矩阵] d i =d (i =1,2,...,n )的对角矩阵称为数量矩阵,记作D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡d d d00 =[d d... d ]显然DB =BD =dB .[单位矩阵] d =1的数量矩阵称为单位矩阵,记作 I =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10101 =「1 1 ... 1」显然IB =BI =B .[对称矩阵] 满足条件a ij =a ji (i ,j =1,2,...,n )的方阵A =(a ij )称为对称矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--423261315 是对称矩阵.对称矩阵具有性质: 若A ,B 都是对称矩阵,则A A=τ,且A -1(使A -1=A -1A =I 的矩阵.详见本节,六),A m (m 为正整数),A +B 仍是对称矩阵.[实对称矩阵]实对称矩阵按其特征值(本节,七)可分为正定矩阵,半正定矩阵、负定矩阵、半负定矩阵和不定矩阵,它们的定义与充分必要条件如下[反对称矩阵] 满足条件⎩⎨⎧-=jiij a a 0 )()(j i j i ≠= (i ,j =1,2,...,n )的方阵A =(a ij )称为反对称矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---023201310 是反对称矩阵.反对称矩阵具有性质:1° 若A ,B 都是反对称矩阵,则A τ=-A ,且A -1, A +B 仍是反对称矩阵,A m 为⎩⎨⎧反对称矩阵对称矩阵)()(为奇数为偶数m m2° 任意方阵A 都可分解为一个对称矩阵B =(b ij )与一个反对称矩阵C =(c ij )之和,即A =B +C只需取b ij =21 (a ij +a ji ),c ij =21(a ij -a ji )(i ,j =1,2,...n )[埃尔米特矩阵] 满足条件A τ=A的方阵A 称为埃尔米特矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++-4232231212215i i i i i i 是埃尔米特矩阵.埃尔米特矩阵具有性质:若A ,B 都是埃尔米特矩阵,则1-A ,A +B 仍是埃尔米特矩阵.若A 又是实方阵(即a ij 全为实数),则A 就是对称矩阵.[反埃尔米特矩阵] 满足条件A τ=A -的方阵A 称为反埃尔米特矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--+-05250212210i i i i i i 是反埃尔米特矩阵.反埃尔米特矩阵具有性质: 若A ,B 都是反埃尔米特矩阵,则1-A , A +B 仍是反埃尔米特矩阵.若A 又是实方阵,则A 就是反对称矩阵.[正交矩阵] 满足条件A τ=1-A的方阵A 称为正交矩阵.例如 A =⎥⎦⎤⎢⎣⎡-θθθθcos sin sin cos 是正交矩阵.正交矩阵具有性质:若A =(a ij )和B 都是正交矩阵,则 1° 1-A , AB 仍是正交矩阵. 2° det A =±1.3° ⎩⎨⎧=∑=011n k jk ik a a )()(j i j i ≠=⎩⎨⎧=∑=011n k kj ki a a )()(j i j i ≠=[酉(U )矩阵] 满足条件1-=A A τ的方阵A 称为酉(U )矩阵.例如:A =⎥⎦⎤⎢⎣⎡00i i 是酉矩阵.酉矩阵具有性质:若A =(a ij )和B 都是酉矩阵,则 1° A -1,AB 仍是酉矩阵. 2° det A ∙det A =1.3° 若A 又是实方阵,则A 是正交矩阵.[带型矩阵] 满足条件a ij =0 )(m j i >-的方阵A =(a ij )称为带型矩阵.2m +1称为带宽.一般形式为A =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--++++nn mn n n m n n n n m a a a a a a a,,1,11,11,11100[三角矩阵] 满足条件a ij =0 (i >j )的方阵A =(a ij )称为上三角形矩阵,一般形式为A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n a a a a a a 022211211 满足条件()j i b ij <=0的方阵()ij b B =称为下三角形矩阵,一般形式为B =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n b b b b b b 212221110 三角形矩阵具有性质:1° 任何秩为r 的方阵C 的前r 个顺序的主子式不为0时,C 可表为一个上三角形矩阵A与一个下三角形矩阵B 的乘积,即C =AB2° 上(或下)三角形矩阵的和、差、积及数乘仍是上(或下)三角形矩阵.[分块矩阵] 用水平和垂直虚线将矩阵A 中的元素的阵列分成小块(称为子阵),A 就成为分块矩阵.例如A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a =⎥⎦⎤⎢⎣⎡22211211B B B B 式中B 11=⎥⎦⎤⎢⎣⎡22211211a a a a,B 12=⎥⎦⎤⎢⎣⎡2313a a B 21=[]3231a a , B 22=[]33a 它们都是A 的子阵. 进行分块矩阵的运算时,可将子阵当作通常矩阵的元素看待.这些运算指加、减、乘法、数乘、转置与共轭等.[分块对角矩阵] 主对角线上的子阵都是方阵,其余子阵都是零矩阵的分块矩阵称为分块对角矩阵.一般形式为A =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡kkB O B O O O B 2211 分块对角矩阵A 的逆矩阵A -1和A 的行列式可以用下面简单公式求出A -1=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---1122111KK B OB O Bdet A =det B 11·det B 22·...·det B kk注意,一般分块矩阵的行列式不能用把子阵当作通常矩阵的元素的方法来计算,例如把四阶方阵化为分块矩阵A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡44434241343332312423222114131211...........................a a a a a a a a a a a a a a a a =⎥⎦⎤⎢⎣⎡22211211B B B B 一般det A =det B 11·det B 22-det B 21·det B 12不成立(参见§1,二,3中的四阶行列式).五、 相似变换[相似变换] 如果有一非奇异矩阵X (即det X ≠0)使得B =1-X AX那末称矩阵A 与矩阵B 相似,也称A 经相似变换化为B ,记作A ~B .它具有下列性质: 1° A ~A ,AA .2° 若A ~B ,则BA .3° 若A ~C ,B ~C ,则A ~B .4° 1-X (A 1+ A 2+...+ A m )X =1-X A 1X + 1-X A 2X + ...+ 1-X A m X 5° 1-X (A 1 A 2 ...A m )X =1-X A 1 X ·1-X A 2 X ·... ·1-X A m X 6° 1-X A m X =( 1-X AX )m7° 若)(A f 为矩阵A 的多项式,则1-X )(A f X =)(1AX X f -8° 若A ~B ,则A 与B 的秩相同,即rank A =rank B . A 与B 的行列式相同,即det A =det B .A 与B 的迹(定义见本节,七)相同,即tr A =tr B . A 与B 具有相同的特征多项式和特征值(本节,七).[正交变换] 若Q 为正交矩阵(即1-Q =Q τ),则称Q τAQ 为矩阵A 的正交变换,其性质与相似变换类似.特别还有性质: 对称矩阵A 经正交变换后仍是对称矩阵.[旋转变换] 取正交矩阵U 为)(p)(qU pq =(u ij )=)()(11cos sin 11sin cos 11q p ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡θθ-θθ 即u pp =u qq =θcosu pq =-u qp =θsin u ii =1 (i ≠p,q )u ij =0 (i,j ≠p,q;i ≠j ) 这时称B =pq pq AU U τ为A 的旋转变换,称为旋转角,如果A 是对称矩阵,那末B 的元素b ij 与A 的元素a ij 有 如下对应关系:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=θ+θ=θ-θ=θ-θ+θθ-==θ+θθ+θ=θ+θθ-θ=ijijqj pj qj qj pj pj pq qq pp qp pqqq pq pp qq qq pq pp pp a b a a b a a b a a a b b a a a b a a a b cos sin sin cos )sin (cos cos sin )(cos cos sin 2sin sin cos sin 2cos 222222)其他元素(),(),(q p j q p j ≠≠同时有性质:∑=nj i ija1,2=∑=nj i ij b 1,2∑=ni iia 12∑=≤ni ii b 12 若取旋转角pqpp qq a a a 2cot arc 21-=θ则旋转变换使0==qp pq b b六、 逆矩阵[逆矩阵及其性质] 若方阵A ,B 满足等式AB=BA=I (I 为单位矩阵)则称A 为B 的逆矩阵,或称B 为A 的逆矩阵,记作A=1-B 或B=1-A这时A,B 都称为可逆矩阵(或非奇异矩阵,或满秩矩阵).否则称为不可逆矩阵(或奇异矩阵,或降秩矩阵).可逆矩阵具有性质:1° 若A,B 为可逆矩阵,则AB 仍为可逆矩阵,且111)(---=A B AB (反序定律)一般地,若A 1 ,A 2 ,…,A s 为可逆矩阵,则=-121)(s A A A 11121---A A A s2° 矩阵A 可逆的充分必要条件是:det A ≠0.3° 若矩阵A 可逆,则det 1-A ≠0 且 det 1-A =(det 1)-A11)(--A =A , 111)(---=A a aA (a ≠0)1)(-τA =(1-A )τ,()()11--=A A4° 矩阵A 可逆的充分必要条件是:矩阵A 的特征值全不为零.[伴随矩阵与逆矩阵表达式] 设A ij 为矩阵A =(a ij )的第i 行第j 列元素a ij 的代数余子式,则矩阵A *=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (2122212)12111称为矩阵A 的伴随矩阵.若A 为非奇异矩阵,即det A ≠0,则A 的逆矩阵表达式为AA A det *1=-注意,A *的第i 行第j 列元素是A 的第j 行第i 列元素的代数余子式.[对角矩阵的逆矩阵] 对角矩阵D =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0...021, d i ≠0 (i =1,2,...,n )的逆矩阵为D -1=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---112110...0n d d d 显然对角矩阵的逆矩阵仍是对角矩阵.[三角形矩阵的逆矩阵] 三角形矩阵L =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n l l l l l l ...............0...0...21222111, 00=≠ij ii l l )(),...,2,1(i j n i >= 的逆矩阵为1-L =P =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n p p p p pp ...............0...0 (02)1222111 式中iiii l p 1=(i =1,2,...,n )∑-=-=11i jk kj ikiiij p ll p⎪⎪⎭⎫ ⎝⎛+=-=n j i n j ,...,11,...,2,1 0=ij p)(i j >显然非奇异下(上)三角形矩阵的逆矩阵仍是下(上)三角形矩阵.[正定矩阵的逆矩阵] 1° 高斯—若当法正定矩阵A =(a ij )的逆A -1=(b ij )可由下列递推公式求出:)1(11)(1-=k k nnaa, )1(11)1(1)(1,----=k k jk j n aa a, )1(11)1(1)(,1---=k k i k ni a a a)1(11)1(1)1(1)1()(1,1-------=k k jk i k ij k j i aa a a a )2,...,1,,(-=n n j i ij n ij a a =)((k=1,2,...,n )最后得到)(n ijij a b = 式中n 为该正定矩阵A 的阶. 2° 三角阵法 其步骤如下:(1) 把正定矩阵A =(a ij )表示为A =ΛD Λτ式中D 为实的非奇异对角矩阵D =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0021为实的非奇异下三角矩阵.Λ=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡λλλλ-1111,2121n n n n是的转置矩阵.d i (i =1,2,...,n )与λij (i =2,...,n;j=1,…,n )由下面递推公式算出:0=ij λ)(i j > 1=λii ),...,2,1(n i =∑-=-=11j k jk ik ij ij x a x λ)1,...,2,1;,...,2(-==i j n ijij ij d x =λ)1,...,2,1;,...,2(-==i j n i∑-=-=11i k ik ik ii i x a d λ),...,2,1(n i =(2)求出D 的逆矩阵1-D =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡n d d d 11121(3)求出Λ的逆矩阵1-Λ=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1112121 n n ρρρ 式中⎪⎩⎪⎨⎧=-=∑-=11ii i jk kjik ij ρρλρ ),...,2,1(),...,2,1;1,...,2,1(n i n j j i n j =++=-=(4)求出A 的逆矩阵1-A =(ΛD 1)-τΛ=(1-Λ)τ1-D 1-Λ =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n βββββββββ212222112111式中∑==nik kkjki ij d ρρβ ),,2,1;,,2,1(n i i j ==注意,这种方法的好处是避免了求平方根的运算.[分块矩阵的逆矩阵] 设非奇异矩阵A 的分块矩阵为A =⎥⎦⎤⎢⎣⎡22211211B B B B 式中B 11,B 22为方子阵,那末A 的逆矩阵A -1=⎥⎦⎤⎢⎣⎡22211211C C C C由下面公式求出111211211111111212221221211112112111212222)(-------=-=-=-=B B C B C B B C C C B B C B B B B C[初等变换法求逆矩阵] 设1-A =1212222111211...........................-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b 212222111211=B 对矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100010001212222111211 nn n n n n a a a a a a a a a 作一系列行的初等变换,使虚线左边一块矩阵化为单位矩阵,而右边一块单位矩阵就变为A 的逆矩阵B =A -1,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b212222111211100010001[逆矩阵的近似求法] 设10-A 为矩阵A 的初始近似逆矩阵,可由下列迭代公式求出更精确的逆矩阵:)2(1111---+-=n n n AA I A A (n=0,1,2,...)式中I 为与A 同阶的单位矩阵.[计算机求逆程序的检验矩阵] 用下列n 阶非奇异矩阵及其逆矩阵,来检验大矩阵求逆的计算程序.A =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡++-+------+-++222210221211210002112100002112122100021222n n n n n n1-A =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------n n n n n n n n n n n n n13211432341223111221七、 特征值与特征矢量[特征值与特征矢量] 对n 阶方阵A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211 和n 维非零列矢量α=(a 1,a 2,...,a n )τ如果有一个数λ,使得A α=λα则称λ为矩阵A 的特征值(特征根),α为矩阵A 的特征值λ所对应的特征矢量. 矩阵A 的所有特征值中绝对值最大的一个称为A 的第一特征值.[特征矩阵特征多项式特征方程] n 阶方阵A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211 的特征矩阵定义为=-I A λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---λλλnn n n n n a a a a a aa a a212222111211 式中I 为n 阶单位矩阵.行列式|A -λI |称为矩阵A 的特征多项式,记作()=|-A λI |方程()=0称为矩阵A 的特征方程.[矩阵的迹与谱] n 阶方阵A 的主对角线上各元素之和称为A 的迹,记作∑==ni ii a A 1tr特征方程()=0的n 个根1,2,...,n 就是矩阵A 的n 个特征值.集合{1,2,...,n }称为矩阵A 的谱,记作ch A .线性齐次方程组0)(=-αλI A i的非零解便是矩阵A 的特征值i 所对应的特征矢量.[特征值与特征矢量的性质]1° 设1,2,...,n 为n 阶方阵A 的n 个特征值,则A k 的特征值为k n k k λλλ,,,21 (k 为正整数). A 的逆矩阵A -1的特征值为11211,,,---n λλλ .A 的伴随矩阵A *的特征值为A A A n 11211,,,---λλλ .2° n 阶方阵A 的n 个特征值之和等于A 的迹,矩阵A 的n 个特征值之积等于A 的行列式,即1+2+...+n =a 11+a 22+...+a nn12...n =A由此可以推出矩阵可逆的另一充分必要条件是:A 的所有特征值都不为零. 3° 若i 是特征方程的k 重根,则对应于i 的线性无关的特征矢量的个数不大于k .当i 为单根时,对应于i 的线性无关特征矢量只有一个.4° 矩阵A 的不同特征值所对应的特征矢量线性无关.若n 阶方阵A 对应于特征值1,2,...,s 的线性无关的特征矢量分别有k 1,k 2,...,k s个,则这∑=s i i k 1个特征矢量线性无关,且n k si i ≤∑=1.5° 实对称矩阵的特征值都是实数,并且有 n 个线性无关(而且是正交)的特征矢量. 6° 矩阵的特征值在相似变换下保持不变,特别,A τ与A 具有相同的特征值.[求第一特征值的迭代法] 在实际问题中,往往不要求算出矩阵A 的全部特征值,只需算出第一特征值,用迭代法计算如下:⎩⎨⎧=λ=α++b αα)0()1()1(1)(k k k A )2,1,0( =k 假定当ε<-+)1()(m m αα时,可以认为(k ) ≈(m +1),那末迭代到m k =即可.这时)1(1+m λ为矩阵A 的第一特征值的近似值,(m +1)为所对应的特征矢量.[求实对称矩阵的雅可比法] 设n 阶实对称矩阵A =(a ij )的特征值是1,2,...,n ,则必存在一正交矩阵Q ,使得Q τAQ =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡λλλn 0021为对角矩阵.正交矩阵Q 可用一系列旋转矩阵的积来逼近:Q =∏pq U式中)()(11cos sin 11sin cos 11)()()(q p u U q p ij pq⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-==θθθθ取pqpp qq a a a 2cot arc 21-=θ因为在这种旋转变换下,消去了矩阵中位于第p 行第q 列(p ≠q )交点上的元素(见本节,五),而矩阵所有元素的平方和保持不变,而且对角线上的元素的平方和增大,因而非对角线元素的平方和随之减小,因此,当旋转次数足够大时,可使非对角线元素的绝对值足够小.对于预先给定的精度>0,如果|a ij |<(i ≠j ),则可认为a ij ≈0.于是得到求矩阵A 的特征值与特征矢量的具体迭代方法.1° 按以下递推公式求特征值1,2,...,n :⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧+=θ=⎪⎪⎩⎪⎪⎨⎧<+->-+=θ=⎪⎩⎪⎨⎧<ςς++ς-≥ςς++ς=θ=-=θ=ς--2221212)()()(1sin )0(11)0(112tan )0()1()0()1(tan 22cot k k k k k k k k k kk k k k k k k k pq k pp k qq k t t s t t t t t t v t a a a⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===≠≠=≠-+=≠+-=+=-=+++++),2,1(),,2,1,(),,,()()()()()1()1()()()()1()()()()1()()()1()()()1( k n j i a a q p j q p i a a q j a a s a a p j a a s a a a t a a a t a a ij ij kijk ijk qj k k pj k k qj k qj k pj k k qj k k pj k pj k pqk k qq k qq k pqk k pp k pp υυ假定当)()(j i a m ij ≠<ε时,可以认为0)(≈m ij a ,则迭代到1-=m k 即可.而取)(m iia 作为i的近似值:),,2,1(n i a miii =≈λ2° 求特征矢量 从1°有m m m m U U AU U U U 1111-- τττ=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ0021记P m =U 1…U m-1U m则AP m = P m ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ0021所以P m 为特征矢量矩阵.P m 由下列递推公式算出:)1,,2,1(),,2,1,(),,2,1(),()()()1()()1()()()()1()()()()1(-=⎪⎪⎪⎩⎪⎪⎪⎨⎧===≠=-+=+-=+++m k n j i u u n i q p j u u u u s u u u u s u u ijij k ijk ij k iq k k ip k k iq k iq k ip k k iq k k ip k ip υυ最后得到 )()(m ij m u P =即 τ),,,()()(2)(1)(m ni m i m i m i u u u u =为对应于特征值i 的特征矢量的近似值.[求对称三对角矩阵特征值的方法]1° 相似变换法 设A 为n 阶对称三对角矩阵:A =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--n n n d e e d e e d e e d 113222111(1)经过相似变换1211211)(U U U I t A U U U A n k k n k --+-=τττ式中I 为单位矩阵,t k 为适当选定的常数,U i 为雅可比旋转矩阵:)1()(1111)1()(+⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-=+i i c s s c U i i ii i iiτi U 为U i 的转置矩阵.又A 1=A ,A k +1与k k t A -I 相似,且A m 与∑-=-111m j j I t A 相似.因此,若A m 的特征值为),,2,1()(n i m i =λ,则A 1的特征值i (i=1,2,...,n )为∑-=+=11)(m j j m ii t λλ(i =1,2,…,n )假定当),,2,1()(n i e m i =<ε时,可认为0)(≈m i e ,那末可适当选择s i ,c i ,使得当m 充分大时,A m 在该精度下化为对角线矩阵;其特征值),,2,1()()(n i d m i m i =≈λ.)(m i d (i=1,2,...,n )可由下列递推公式算出:()())1,,2,1;1,2,,2,1(,)]([)(//g ])()[(0,,)(1)(1)1(1)(1)(1)1(1)(1)(1)1(1)()()(1)()()(1)1(1)(1)()()()()(1)()()(1)(1)()(1)(1(k)1)()(1(k)1212)(2)(1)(1)()(-=--=⎪⎩⎪⎨⎧===-++=--=====+==-=+++++++++++++++++++++m k n n i q s e q c d r s e t d s g c s h d g s t d c q r e s r q c q c h e c c q rs c t d q k k k k k k k i k i k i k k i k i k i k i k i k i k i k i k i k k i k i k i k i k i k i k i k i k i k i k i i k i k i i k ik i k i k nk n k k n k nt k 的选择对收敛速度影响较大,取t k 为二阶矩阵⎥⎦⎤⎢⎣⎡)(2)(1)(1)(1k k k k d e e d 的接近于)(1k d 的那个特征值,即t k =⎪⎩⎪⎨⎧≥ββ++β-<ββ+-β-)0()1/()0()1/(2)(1)(12)(1)(1k k k k e d e d式中 )(1)(1)(22k k k e d d -=β 2° 二分法 设A 为n 阶对称三对角矩阵(如(1)式),对任意,设序列q 1()=d 1-q i ()=),,2()()(121n i q e d i i i =----λλ中q i ()<0的个数为N ()(在这些关系式中,对于某些i ,如果q i -1()=0,则只需用适当小的数代替即可),则N ()等于矩阵A 的小于的特征值的个数.假定矩阵A 的第k 个特征值k (1≤2≤… ≤k ≤…≤n )在区间[u ,υ]中,令21υ+=u r ,当N (r 1)≥k 时,则k ∈[u , r 1];当N (r 1)<k 时,则k ∈[ r 1,v ];…依此类推,m步之后,k 包含在宽度为mu2-υ的区间中.m 充分大时,便可得到所求的特征值.八、 矩阵多项式与最小多项式[矩阵多项式] 设i a (i=1,2,...,n )为某一数域(实数域或复数域)中的数,A 为这个数域上的n 阶方阵,则表示式f (A )=a 0I+a 1A+...+a n A n称为矩阵A 的多项式,式中I 为n 阶单位矩阵.如果矩阵A 使得f (A )=O那末称A为多项式f(λ)=a0λ+ a1λ+ ...+a nλn的根.[哈密顿-凯莱定理] 任一方阵都是它的特征多项式的根.[最小多项式及其性质] 以矩阵A为根的非零多项式f(λ)中,存在首项系数为1次数最低的多项式(λ),它就称为矩阵A的最小多项式.最小多项式具有性质:1°任一方阵仅有一个最小多项式;2°任一以A为根的多项式f(λ)都可被A的最小多项式(λ)所整除.特别,任一方阵的最小多项式可整除其特征多项式;3°方阵A的特征多项式的根都是A的最小多项式的根:4°相似矩阵具有相同的特征多项式和最小多项式.。
矩阵的数学运算包括加法、减法、数乘、乘法、转置、共轭和共轭转置等。
矩阵的加法满足A+B=B+A;
数乘是保持矩阵加法满足交换律的运算;
乘法是线性运算,满足结合律,不满足交换律和消去律;
转置是矩阵的一种运算,把矩阵A的行和列互相交换所产生的矩阵称为A的转置矩阵,这一过程称为矩阵的转置;
共轭是复数的一个运算,一个复数乘上它的共轭是与原来的复数模长相等的;
共轭转置是复数矩阵的一种运算,一个矩阵乘上它的共轭转置是与原来的矩阵模长相等的。
矩阵的运算一、矩阵的加法1、定义设有两个 n m ⨯ 矩阵 ()(),,ij ij b B a A == 那末矩阵A 与B 的和记作 A+B ,规定为 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++++++++=+mn mn m m m m n n n n b a b a b a b a b a b a b a b a b a B A221122222221211112121111 说明 只有当两个矩阵是同型矩阵时,才能进行加法运算。
二、数与矩阵相乘1、定义规定为或的乘积记作与矩阵数,λλλA A A :⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==mn m m n n a a a a a a a a a A A λλλλλλλλλλλ 112222111211 2、数乘矩阵的运算规律(设A 、B 为 n m ⨯矩阵,μλ, 为数) ()()();1A A μλλμ= ()();2A A A μλμλ+=+ ()().3B A B A λλλ+=+ 矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算.三、矩阵与矩阵相乘1、定义设 ()ij a A = 是一个s m ⨯矩阵,()ij b B = 是一个n s ⨯ 矩阵,那末规定矩阵 A 与矩阵B 的乘积是一个n m ⨯ 矩阵 ()ij c C = ,其中 ∑==+++=sk kj ik sj is j i j i ij b a b a b a b a c 12211 (),,,2,1;,2,1n j m i ==并把此乘积记作 .AB C =例1222263422142⨯⨯⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=C注意 只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘例2 设⎪⎪⎪⎭⎫⎝⎛---=415003112101A ⎪⎪⎪⎪⎪⎭⎫⎝⎛--=121113121430B解(),43⨯=ij a A (),34⨯=ij b B ().33⨯=∴ij c C⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫⎝⎛---==121113121430415003112101AB C .101726210765⎪⎪⎪⎭⎫⎝⎛---=()⎪⎪⎪⎭⎫⎝⎛123321()132231⨯+⨯+⨯=().10=2、矩阵乘法的运算规律()()();1BC A C AB =()(),2AC AB C B A +=+();CA BA A C B +=+()()()()B A B A AB λλλ==3(其中 λ 为数)();4A EA AE ==(5)若A 是 n 阶矩阵,则 k A 为A 的 K 次幂,即 个k k A A A A = 并且 ,k m k m A A A +=().mk k m A A =()为正整数k m ,,2002⎪⎪⎭⎫ ⎝⎛=A ,1111⎪⎪⎭⎫ ⎝⎛--=B ,⎪⎪⎭⎫⎝⎛=AB ⎪⎪⎭⎫⎝⎛=BA.BA AB =⇒()21322 ⎪⎪⎪⎭⎫⎝⎛.634242⎪⎪⎪⎭⎫⎝⎛=。
矩阵的运算法则
1矩阵的概念
矩阵是一种特殊的结构,它由多个数值所组成。
一般长成一个m 行n列的形状,被称为m×n矩阵,第i行第j列的数值被称为矩阵的第i行第j列的元素。
2矩阵的运算
关于矩阵的运算,有加法、减法、乘法、数乘和幂运算等。
-加减法:要求矩阵行数列数一致,对应元素相加减,就可以求得相应的结果。
-乘法:要注意左边矩阵的列数要等于右边矩阵的行数,如果符合要求,就可以求得乘积矩阵的结果。
-数乘:数乘就是将矩阵的每一个元素全部乘以一个数,就可以求得数乘结果。
-幂运算:如果矩阵为方阵(行数和列数相等),就可以进行幂运算,结果是原来的矩阵结果的n次幂结果。
3矩阵的运算法则
-根据交换律,矩阵可以把加减法运算中的减号两边交换位置,但是乘法不能这么做。
-根据分配率,可以将加减法中的变量先分配到两个矩阵中,在对两个矩阵分别运算,最后将结果相加,或者相减。
-根据结合律,矩阵可以将两个乘法相乘,而不改变结果。
以上就是矩阵的运算法则。
掌握了这些法则,可以帮助我们更直观的看到矩阵的运算结果,从而更好的理解矩阵的运算。
矩阵的基本运算法则矩阵是线性代数中的重要概念,广泛应用于多个学科领域。
矩阵的基本运算法则包括矩阵加法、矩阵乘法、矩阵转置和矩阵求逆等。
下面将详细介绍这些基本运算法则。
一、矩阵加法矩阵加法是指将两个具有相同维度的矩阵相加的运算。
设有两个m行n列的矩阵A和B,它们的和记作C,那么矩阵C的第i行第j列元素等于矩阵A和B对应位置的元素之和,即:C(i,j)=A(i,j)+B(i,j)其中,1≤i≤m,1≤j≤n。
矩阵加法满足以下性质:1.交换律:A+B=B+A,对任意矩阵A和B都成立。
2.结合律:(A+B)+C=A+(B+C),对任意矩阵A、B和C都成立。
3.零元素:存在一个全0矩阵,记作O,满足A+O=A,对任意矩阵A 都成立。
4.负元素:对于任意矩阵A,存在一个矩阵-B,使得A+B=O,其中O 为全0矩阵。
二、矩阵乘法矩阵乘法是指将两个矩阵相乘的运算。
设有两个m行n列的矩阵A和n行k列的矩阵B,它们的乘积记作C,那么矩阵C的第i行第j列元素等于矩阵A的第i行与矩阵B的第j列对应元素相乘再求和,即:C(i,j)=Σ(A(i,k)*B(k,j))其中,1≤i≤m,1≤j≤k,1≤k≤n。
矩阵乘法满足以下性质:1.结合律:(A*B)*C=A*(B*C),对任意矩阵A、B和C都成立。
2.分配律:A*(B+C)=A*B+A*C,并且(A+B)*C=A*C+B*C,对任意矩阵A、B和C都成立。
3.乘法单位元素:对于任意矩阵A,存在一个m行m列的单位矩阵I,使得A*I=I*A=A,其中单位矩阵I的主对角线上的元素全为1,其他元素全为0。
4.矩阵的乘法不满足交换律,即A*B≠B*A,对一些情况下,AB和BA的结果甚至可能维度不匹配。
三、矩阵转置矩阵转置是指将矩阵的行和列互换的运算。
设有一个m行n列的矩阵A,它的转置记作A^T,那么矩阵A^T的第i行第j列元素等于矩阵A的第j行第i列元素,即:A^T(i,j)=A(j,i)其中,1≤i≤n,1≤j≤m。
矩阵运算总结矩阵运算是线性代数中的一个重要内容,也是在解决许多实际问题时经常使用的数学工具。
矩阵可以用来表示线性变换、方程组、向量空间等,通过各种矩阵运算操作,可以实现对向量和矩阵的加减乘除、转置、求逆等操作,进而解决实际问题。
矩阵的加法是指将两个矩阵按相同的位置对应元素相加,得到一个新的矩阵。
矩阵的加法满足交换律和结合律,可以通过加法将多个矩阵合并成一个矩阵。
矩阵的减法是指将两个矩阵按相同的位置对应元素相减,同样也满足交换律和结合律。
矩阵的乘法是指将一个矩阵的每个元素与另一个矩阵的对应行的每个元素分别相乘,并将结果相加得到一个新的矩阵。
矩阵的乘法满足分配律和结合律,但不满足交换律。
矩阵的乘法可以用来实现线性变换,通过矩阵的乘法可以将一个向量变换到另一个向量。
矩阵的乘法在计算机图形学中有广泛的应用,用来实现图形的平移、缩放和旋转等变换操作。
矩阵的转置是指将矩阵的行和列互换得到一个新的矩阵。
转置后的矩阵与原矩阵有相同的元素,但行和列的顺序发生了变化。
转置操作可以用来实现矩阵的行列变换,也可以用来求解线性方程组和计算矩阵的特征值和特征向量等。
矩阵的求逆是指找到一个与原矩阵相乘等于单位矩阵的逆矩阵。
只有方阵才存在逆矩阵,非方阵只能求广义逆矩阵。
求逆矩阵可以用来解线性方程组,通过乘以原矩阵的逆矩阵,可以将方程组转化为一个等价的形式。
求逆矩阵在计算机图形学中也有广泛的应用,用来实现变换的逆操作。
除了上述常见的矩阵运算,还有一些其他的矩阵运算操作。
矩阵的幂运算是指一个矩阵自乘多次,幂运算可以用来计算矩阵的高阶项。
矩阵的行列式是指一个方阵的一个标量值,可以用来判断方阵是否可逆。
矩阵的迹是指一个方阵主对角线上元素的和,迹运算可以用来计算矩阵的特征值。
矩阵的秩是指一个矩阵的最大线性无关行(列)向量的个数,可以用来描述矩阵的维度。
总之,矩阵运算是线性代数中的一个重要内容,通过各种矩阵运算可以实现对向量和矩阵的加减乘除、转置、求逆等操作。
矩阵的计算
矩阵的基本运算公式有加法,减法,数乘,转置,共轭和共轭转置。
1.加法运算A+B=C、数乘运算k*A=B、乘法运算A*B=C,加法运算和数乘运算合称线性运算,由加法运算和数乘运算可以得到减法运算A+(-1)*B=A-B,矩阵没有除法运算,两个矩阵之间是不能相除的,但是当矩阵可逆的时候,可以对矩阵求逆。
2.矩阵的秩计算公式是A=aij m×n。
矩阵的秩是线性代数中的一个概念。
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。
3.行列式和他的转置行列式相等,变换一个行列式的两行,行列式改变符号即变为之前的相反数,如果一个行列式有两行完全相同,那么这个行列式等于零,一个行列式中的某一行,所有元素的公因子可以提到行列式符号的外面,如果一个行列式中有一行,的元素全部是零,那么这个行列式等于零。