动态法测量杨氏弹性模量资料
- 格式:doc
- 大小:148.00 KB
- 文档页数:8
动态法测量杨氏弹性模量郑新飞杨氏模量是固体材料在弹性形变范围内正应力与相应正应变(当一条长度为L、截面积为S的金属丝在力F作用下伸长ΔL时,F/S 叫应力,其物理意义是金属丝单位截面积所受到的力;ΔL/L叫应变,其物理意义是金属丝单位长度所对应的伸长量)的比值,其数值的大小与材料的结构、化学成分和加工制造方法等因素有关。
杨氏模量的测量是物理学基本测量之一,属于力学的范围。
根据不同的测量对象,测量杨式模量有很多种方法,可分为静态法、动态法、波传播法三类。
一、实验目的1、理解动态法测量杨氏模量的基本原理。
2、掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。
3、了解压电陶瓷换能器的功能,熟悉信号源和示波器的使用。
4、培养综合运用知识和使用常用实验仪器的能力。
二、实验仪器1、传感器I(激振):把电信号转变成机械振动。
2、试样棒:由悬线把机械振动传给试样,使试样受迫做共振动。
3、传感器II (拾振):机械振动又转变成电信号。
4、示波器:观察传感器II 转化的电信号大小。
三、实验原理 理论上可以得出用动态悬挂法测定金属材料的杨氏模量,为2436067.1f dm l E (1) 式中l 为棒长,d 为棒的直径,m 为棒的质量。
如果在实验中测定了试样(棒)在不同温度时的固有频率f ,即可计算出试样在不同温度时的杨氏模量E 。
四、实验内容1、测定试样的长度l 、直径d 和质量m 。
每个物理量各测六次,列表记录。
2、在室温下不锈钢和铜的杨氏模量分别为211102m N ⨯和211102.1m N ⨯,先由公式(1)估算出共振频率f ,以便寻找共振点。
3、把试样棒用细钢丝挂在测试台上,试样棒的位置约距离端面l 224.0和l 776.0处,悬挂时尽量避开这两个位置。
4、把2-YM 型信号发生器的输出与2-YM 型测试台的输入相连,测试台的输出与放大器的输入相接,放大器的输出与示波器的1CH (或2CH )的输入相接。
动态法测量杨氏弹性模量郑新飞杨氏模量是固体材料在弹性形变范围内正应力与相应正应变(当一条长度为L、截面积为S的金属丝在力F作用下伸长ΔL时,F/S 叫应力,其物理意义是金属丝单位截面积所受到的力;ΔL/L叫应变,其物理意义是金属丝单位长度所对应的伸长量)的比值,其数值的大小与材料的结构、化学成分和加工制造方法等因素有关。
杨氏模量的测量是物理学基本测量之一,属于力学的范围。
根据不同的测量对象,测量杨式模量有很多种方法,可分为静态法、动态法、波传播法三类。
一、实验目的1、理解动态法测量杨氏模量的基本原理。
2、掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。
3、了解压电陶瓷换能器的功能,熟悉信号源和示波器的使用。
4、培养综合运用知识和使用常用实验仪器的能力。
二、实验仪器1、传感器I(激振):把电信号转变成机械振动。
2、试样棒:由悬线把机械振动传给试样,使试样受迫做共振动。
3、传感器II (拾振):机械振动又转变成电信号。
4、示波器:观察传感器II 转化的电信号大小。
三、实验原理 理论上可以得出用动态悬挂法测定金属材料的杨氏模量,为2436067.1f dm l E (1) 式中l 为棒长,d 为棒的直径,m 为棒的质量。
如果在实验中测定了试样(棒)在不同温度时的固有频率f ,即可计算出试样在不同温度时的杨氏模量E 。
四、实验内容1、测定试样的长度l 、直径d 和质量m 。
每个物理量各测六次,列表记录。
2、在室温下不锈钢和铜的杨氏模量分别为211102m N ⨯和211102.1m N ⨯,先由公式(1)估算出共振频率f ,以便寻找共振点。
3、把试样棒用细钢丝挂在测试台上,试样棒的位置约距离端面l 224.0和l 776.0处,悬挂时尽量避开这两个位置。
4、把2-YM 型信号发生器的输出与2-YM 型测试台的输入相连,测试台的输出与放大器的输入相接,放大器的输出与示波器的1CH (或2CH )的输入相接。
动态法测量杨氏模量杨氏模量是描述固体材料弹性形变的一个重要物理量,测量杨氏模量的方法很多,我们学过的有静态拉伸法,其缺点是不能真实地反映材料内部结构的变化,而且不能对脆性材料进行测量,本实验采用动态法。
一、 实验目的1. 学习用动态法测量杨氏模量的原理和方法。
2. 学会用示波器观察判断样品共振的方法。
二、 实验仪器DCY-3(动态)弹性模量测定仪,包括CY-2型功率函数信号发生器(5位数显、5-500)示波器,加热炉,数显温控器,激发-接收换能器,悬挂测定支架及支撑测定支架。
听诊器,式样若干,悬丝,游标卡尺,螺旋测微计。
三、 共振法测量杨氏模量的基本理论任何物体都有其固有的振动频率,这个固有振动频率取决于试样的振动模式、边界条件、弹性模量、密度以及试样的几何尺寸、形状。
只要从理论上建立了一定振动模式、边界条件和试样的固有频率及其他参量之间的关系,就可通过测量试样的固有频率、质量和几何尺寸来计算弹性模量。
1. 杆振动的基本方程一细长杆做微小横(弯曲)振动时,取杆的一端为坐标原点,沿杆的长度方向为x 轴建立坐标系,利用牛顿力学和材料力学的基本理论可推出杆的振动方程:04422=∂∂+∂∂x U EI tU λ (1) 式中U (x, t )为杆上任一点x 在时刻t 的横向位移;E 为杨氏模量;I 为绕垂直于杆并通过横截面形心的轴的惯量矩;λ为单位长度质量。
对长度为L ,两端自由的杆,边界条件为:弯矩 022=∂∂=xU EJ M 作用力 33x U EJ x M F ∂∂-=∂∂=即x =0, L 时: 0,03322=∂∂=∂∂x U x U (2) 用分离变量法解微分方程(1)并利用边界条件(2),可推倒出杆自由振动的频率方程:1cos =⋅chkL kL (3)其中k 为求解过程中引入的系数,其值满足:EI k λω24=(4) ω为棒的固有振动角频率。
从方程(4)可知,当λ、E 、I 一定时,角频率ω(或频率f )是待定系数k 的函数,k 可由方程(3)求得。
动态法测杨氏模量数据处理模板
动态法测杨氏模量数据处理模板如下:
1. 数据采集: 使用动态法进行杨氏模量实验时,需要采集以下数据:质量(m),长度(L),横截面面积(A),振动频率(f),共振频率(fr)和样品直径(d)。
2. 计算平均值: 对于每组实验数据,计算质量、长度、横截面面积、振动频率和共振频率的平均值。
同时,计算样品直径的平均值。
3. 计算模量: 使用以下公式计算样品的杨氏模量(E):
E = 4π²mL²f²/Ad²
其中,m为质量的平均值,L为长度的平均值,A为横截面面积的平均值,f为振动频率的平均值,d为样品直径的平均值。
4. 数据分析与结果: 对于每组实验数据,计算并记录样品的杨氏模量。
可以将不同样品的杨氏模量进行比较,分析其差异和规律。
根据需要,可以绘制图表或进行统计分析。
5. 计算不确定度: 对于每个测量量,计算其不确定度并进行合成计算,得到最终杨氏模量的不确定度。
根据需要,可以进行不确定度的传递和展示。
以上是一种基本的动态法测杨氏模量数据处理模板,根据具体实验条件和要求,可能会有所调整和变化。
动态法测杨氏模量班级:姓名:学号:一.实验原理:实验原理1.杆的弯曲振动基本方程:对一长杆作微小横振动时可建立如下方程:(1)式中E为杨氏模量。
I为转动惯量,ρ为密度。
对二端自由的杆,其边界条件为::;用分离变数的试探解:以及上述边界条件带入(1)得超越方程ChHCosH=1 (2)解这个超越方程。
经数值计算得到前n个H的值是,, n>2.因振动频率若取基频可推导对圆棒于是有:(3)同理对b为宽度,h为厚度的矩形棒有:(4)式中:尺寸用m,质量用Kg,频率用Hz为单位。
计算出杨氏模量E的单位为N/m22.理论推导表明,杆的横振动节点与振动级次有关,Hn值第1,3,5……数值对应于对称形振动,第2,4,6……对应于反对称形振动。
最低级次的对称振动波形如图3所示。
图3 二端自由杆基频弯曲振动波形表1 振动级次――-节点位置―――频率比表中L为杆的长度由表1可见,基频振动的理论节点位置为0.224L(另一端为0.776L)。
理论上吊扎点应在节点,但节点处试样激发接收均困难。
为此可在试样节点和端点之间选不同点吊扎,用外推法找出节点的共振频率。
不作修正此项系统误差一般不大于0.2%。
推荐采用端点激发接收方式非常有利于室温及高温下的测定。
3.须注意(3)式是在d<<1时推出,否则要作修正,E(修正)=KE(未修正),当材料泊松比为0.25时,K值如下表:径长比d/L 0.02 0.04 0.06 0.08 0.10修正系数K 1.002 1.008 1.019 1.033 1.051二.实验目的1.测量材料在常温下的杨氏模量;2.测量材料在不同温度下的杨氏模量;三.实验所用仪器函数信号发生器,换能器,温控器,示波器,加热炉。
四.实验数据记录及数据处理常温下共振频率试棒参数:f 1 f2 f3 f/Hz764 765 764 764E=215GPa高温(变温条件)下杨氏模量的测量 试棒参数:t/C 50 100 150 200 250 300 f/Hz762755 747 740 734 726 E/GPa 214210206 202198194t-E 图18018519019520020521021522050100150200250300系列1五.思考题对于相同材料的,长度和截面积都相等的圆截面试样和方截面试样,哪一种共振频率更高?答:方截面试样的共振频率更高。
南昌大学物理实验报告课程名称:普通物理实验(2)实验名称:动态法测量杨氏模量学院:理学院专业班级:应用物理学152班学生姓名:学号:实验地点:B510 座位号:22实验时间:第二周星期五下午4点开始一、实验目的:1、理解动态法测量杨氏模量的基本原理。
2、掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。
3、了解压电陶瓷换能器的功能,熟悉信号源和示波器的使用。
学会用示波器观察判断样品共振的方法。
4、培养综合运用知识和使用常用实验仪器的能力。
二、实验仪器:信号发生器,动态弹性模量测定仪,铜棒,示波器。
三、实验原理:1、杨氏模量是固体材料在弹性形变范围内正应力与相应正应变的比值,其数值的大小与材料的结构、化学成分和加工制造方法等因素有关。
测量杨氏模量有多种方法,可分为静态法、动态法和波传播法三类。
此实验中所采用动态法,既可测量金属的杨氏模量,也可以测量玻璃、陶瓷材料的杨氏模量,测量准确度也较高。
2、如图1所示,长度L远远大于直径d(L>>d)的一细长棒,作微小横振动(弯曲振动)时满足的动力学方程(横振动方程)为2244=∂∂+∂∂tEJySxyρ(1)其中,棒的轴线沿x方向,y为棒上距左端x处截面的y方向位移,E为杨氏模量,单位为Pa或N/m2;ρ为材料密度;S为截面积;J为某一截面的转动惯量,⎰⎰=sdsyJ2。
横振动方程的边界条件为:棒的两端(x=0、L)是自由端,端点既不受正应力也不受切向力。
用分离变量法求解方程(1),令)()(),(tTxXtxy=,则有224411dtTdTEJSdxXdX•-=ρ(2)由于等式两边分别是两个变量x和t的函数,所以只有当等式两边都等于同一个常数时等式才成立。
假设此常数为K4,则可得到下列两个方程yxO图1 细长棒的弯曲振动xL444=-X K dx X d (3) 0422=+T SEJ K dt T d ρ (4)如果棒中每点都作简谐振动,则上述两方程的通解分别为⎩⎨⎧+=+++=)cos()(sin cos )(4321ϕωt b t T Kxa Kx a shKx a chKx a x X (5) 于是可以得出)cos()sin cos (),(4321ϕω+•+++=t b Kx a Kx a shKx a chKx a t x y (6)式中214⎥⎥⎦⎤⎢⎢⎣⎡=S EJK ρω (7) 式(7)称为频率公式,适用于不同边界条件任意形状截面的试样。
实验四 动态法测定材料杨氏模量杨氏模量是工程材料的一个重要物理参数,它标志着材料抵抗弹性形变的能力。
杨氏模量测量方法有多种,最常用的有拉伸法测量金属材料的杨氏模量,这属于静态法测量,这种方法一般仅适用于测量形变较大、延展性较好的材料,对如玻璃及陶瓷之类的脆性材料就无法用此方法测量。
动态法由于其在测量上的优越性,在实际应用中已经被广泛采用,也是国家标准指定的一种杨氏模量的测量方法。
本实验用悬挂、支撑二种“动态法”测出试样振动时的固有基频,并根据试样的几何参数测得材料的杨氏模量。
一、实验目的1.理解动态法测量杨氏模量的基本原理。
2.掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。
3.培养综合运用知识和使用常用实验仪器的能力。
4.进一步了解信号发生器和示波器的使用方法。
二、实验原理长度L远远大于直径d(L>>d)的一细长棒,作微小横振动(弯曲振动)时满足的动力学方程(横振动方程)为: (1)式中为棒的密度,S为棒的截面积,J 称为惯量矩(取决于截面的形状),Y为杨氏模量。
解以上方程的具体过程如下(不要求掌握):用分离变量法:令代入方程(1)得:等式两边分别是和的函数,这只有都等于一个常数才有可能,设该常数为,于是得:这两个线形常微分方程的通解分别为:于是解振动方程式得通解为:其中式(2)称为频率公式: (2)该公式对任意形状的截面,不同边界条件的试样都是成立的。
我们只要用特定的边界条件定出常数,并将其代入特定截面的转动惯量,就可以得到具体条件下的计算公式了。
如果悬线悬挂(支撑点)在试样的节点附近,则其边界条件为自由端横向作用力:弯矩:即将通解代入边界条件,得到,用数值解法求得本征值和棒长应满足:,由于其中第一个根“”对应于静态情况,故将其舍去。
将第二个根作为第一个根,记作。
一般将所对应的共振频率称为基频(或称作固有频率)。
在上述值中,1,3,5…个数值对应着“对称形振动”, 第2、4、6…个数值对应着“反对称形振动”。
动态法测量杨氏模量实验报告一、实验目的1、学会用动态法测量杨氏模量。
2、掌握共振频率的测量方法。
3、了解实验仪器的使用和数据处理方法。
二、实验原理杨氏模量是描述固体材料抵抗形变能力的物理量。
动态法测量杨氏模量的基本原理是基于振动系统的共振特性。
一根细长的棒,作微小横振动(弯曲振动)时,其振动方程为:$Y=\frac{4ml^3f^2}{d^4}$其中,$Y$为杨氏模量,$m$为棒的质量,$l$为棒的长度,$d$为棒的直径,$f$为棒的共振频率。
当棒在某一频率下发生共振时,振幅达到最大值。
通过测量棒的共振频率、质量、长度和直径,就可以计算出杨氏模量。
三、实验仪器1、动态杨氏模量测量仪:包括激振器、拾振器、示波器等。
2、游标卡尺:用于测量棒的长度和直径。
3、电子天平:用于测量棒的质量。
四、实验步骤1、测量棒的尺寸用游标卡尺在棒的不同位置测量其长度$l$,多次测量取平均值。
在棒的两端和中间部位测量直径$d$,同样多次测量取平均值。
2、安装实验装置将棒的一端固定在支架上,另一端通过细绳连接激振器。
拾振器安装在棒的适当位置,与示波器相连。
3、寻找共振频率开启激振器,逐渐改变其输出频率,同时观察示波器上的信号。
当示波器上显示的振幅达到最大值时,此时的频率即为共振频率$f$。
4、测量质量用电子天平测量棒的质量$m$。
5、重复测量改变拾振器的位置,重复上述步骤,测量多组数据。
五、实验数据记录与处理1、实验数据记录|测量次数|长度$l$ (mm) |直径$d$ (mm) |共振频率$f$ (Hz) |质量$m$ (g) ||::|::|::|::|::|| 1 |______ |______ |______ |______ || 2 |______ |______ |______ |______ || 3 |______ |______ |______ |______ |2、数据处理计算长度$l$、直径$d$、共振频率$f$和质量$m$的平均值。
动态法测量杨氏模量实验报告实验报告:动态法测量杨氏模量一、实验目的1.学习和掌握动态法测量杨氏模量的原理和方法。
2.锻炼动手操作能力,提高实验技能。
3.培养观察和分析实验数据的能力。
二、实验原理杨氏模量是描述材料抵抗弹性形变能力的物理量,是材料内部结构特性的反映。
动态法是一种常用的测量杨氏模量的方法,其原理是利用振动系统在弹性力和阻尼力的共同作用下,振动幅度随时间衰减的规律,通过测量衰减过程中的振动频率和阻尼比,计算得到材料的杨氏模量。
三、实验步骤1.准备实验器材:动态法测量杨氏模量的实验器材包括:激光器、光电池、振动样品、质量块、弹簧、阻尼器、数据采集器和计算机等。
2.安装实验器材:按照实验原理图,将激光器、光电池、振动样品、质量块、弹簧、阻尼器和数据采集器正确连接并安装好。
3.启动实验系统:打开计算机,进入实验操作系统,设置采样频率、采样点数和采样时间等参数。
4.进行实验操作:先将振动样品置于静止状态,然后启动振动系统,使振动样品产生振动。
根据实验需要,可改变振动频率、幅值和相位等参数。
5.记录实验数据:通过数据采集器采集样品的振动信号,记录各个采样点的振动频率和幅值。
同时,记录阻尼器的阻尼比。
6.数据处理与分析:利用记录的实验数据,进行数据处理和分析。
可以采用拟合等方法,得到样品的杨氏模量。
7.整理实验结果:整理实验数据,得到样品的杨氏模量测量结果。
同时,分析实验误差,提高实验精度。
四、实验结果与分析通过实验测量得到了样品的杨氏模量测量结果,并对其进行了误差分析和讨论。
以下是实验结果与分析的详细内容:1.实验结果:在本次实验中,我们测量得到样品的杨氏模量为18.5 GPa,测量误差为2.5%。
2.结果分析:通过对实验数据的处理和分析,我们发现误差主要来自于以下几个方面:一是人为操作误差,如激光器的调节和数据采集器的操作等;二是采样频率和采样点数的选择对测量结果也有一定影响;三是环境因素如温度和湿度等也可能对实验结果产生影响。
动态法测量杨氏模量一.实验目的1、理解动态法测量杨氏模量的基本原理。
2、掌握动态法测量杨氏模量的基本方法,熟悉信号源和示波器的使用。
二.实验原理如图1所示,长度L远远大于直径d(L>>d)的一细长棒,作微小横振动(弯曲振动)时满足的动力学方程(横振动方程)为棒的轴线沿x方向,(1)y L0 x x图 1式中y为棒上距左端x处截面的y方向位移,E为杨氏模量,单位为Pa或N/m²;ρ为材料密度,S为截面面积,J为某一截面的转动惯量,J=。
横振动方程的边界条件为:棒的两端(x=0,L)是自由端,端点既不受正应力也不受切向力。
用分离变量法求解方程(1),令y(x,t)=X(x)T(t),既有(2)由于等式两边分别是两个变量x和t的函数,所以只有当等式两边都等于两边都等于同一个常数时等式才成立,假设此常数为,则可得到下列两个方程(3)(4)如果棒中每点都作简谐振动,则上述两方程的通解分别为(5)于是可以得出y(x,t)=()(6)式中(7)式中(7)称为频率公式,适用于不同边界条件任意形状截面的试样。
如果试样的悬挂点(或支撑点)在试样的节点,则根据边界条件得到cosKL•chKL=1 (8)采用数值法可以得出本征值K和棒长L应满足如下关系:KnL=0,4.730,7.835,10.996,14.137, (9)其中第一根=0对应试样静止状态;第二根记为=4.730,所对应的试样振动频率称为基振频率(基频)或者称为固有频率,此时的振动状态如图2所示,第三根=7.853所对应的振动状态如图3所示,称为一次谐波。
由此可知,试样在作基频振动时存在两个节点,它们的位置分别距端面0.224L 和0.776L。
将基频对应的K1值代入频率公式,可得到杨氏模量为E(10)图2 图3如果试样为圆棒(d<<L),则,所以式(10)可改写为(11)同样,对于矩形棒试样则有(12)式中,m为棒的质量,f为基频振动的固有频率,d为圆棒直径,b和h分别为矩形棒的宽度和高度。
实验三十五用动态法测定金属的杨氏模量(最全)word资料实验三十五 用动态法测定金属的杨氏模量杨氏模量是描述固体材料弹性形变的一个重要物理量。
用静态拉伸法可以测出杨氏模量,但此方法的缺点是负荷大,加载速度慢,存在弛豫过程,不能真实地反映材料内部结构的变化;在拉伸过程中,样品的横向和纵向都有形变,而此法忽略横向形变;另外,也不能用于测量脆性材料。
动态悬挂法可以克服这些缺点,是一种非常实用的测量方法。
【实验目的】1. 学会用动态悬挂法测量金属材料的杨氏模量。
2. 培养学生综合应用物理仪器的能力。
【实验仪器】DCY-3型动态杨氏模量测定仪,信号发生器,示波器,游标卡尺,千分尺,物理天平等。
【实验原理】若将一均匀棒悬挂起来,如图5-35-2所示,并使之发生横向振动,其振动方程为02244=∂∂⋅+∂∂t yEJ S x y ρ 式中, y 为振动位移, x 为纵向变量, t 为时间, ρ为棒的密度, S 为棒的截面面积, E 为棒的 杨氏弹性模量, J 称为惯性矩。
振动方程为偏微分方程。
用分离变量法 求解方程(求解过程见附录),得:圆形棒图5-35-2(5-35-1)图5-35-1 DCY-3型动态杨氏模量测定仪 信号发生器 支撑支架2436067.1f dm l E =式中,l 为棒长,d 为棒的截面直径,m 为棒的质量,f 为棒的固有频率。
矩形棒2339464.0f bhm l E =式中,b ,h 分别为棒的宽和厚。
在国际单位制中,杨氏模量的单位为牛顿/米2(N ·m -2)。
实验原理图如5-35-3所示。
由信号发生器输出的正弦信号,加到激发换能器Ⅰ上,通过激发换能器Ⅰ把信号转变成机械振动,再由悬丝把机械振动传给待测试样,使试样受迫做横向振动,试样另一端的悬丝将振动传给接受换能器Ⅱ,这时机械振动又转变成电信号。
该信号送到示波器中显示。
当信号发生器的频率不等于待测试样的固有频率时,试样不发生共振,示波器上没有电信号,或波形幅度很小。
动态法测定金属材料的杨氏模量杨氏模量是工程材料的一个重要物理参数,它标志着材料抵抗弹性形变的能力。
测量材料杨氏模量的方法很多,诸如拉伸法、压入法、弯曲法和碰撞法等。
拉伸法是最常用的方法之一。
但该方法使用的载荷较大,加载速度慢,且会产生驰豫现象,影响测量结果的精确度。
另外,此法还不适用于脆性材料的测量。
本实验动态杨氏模量测量仪用振动法测量材料的杨氏模量。
【实验目的】1、了解测量材料杨氏模量的原理;2、学会用作图外推求值法测量振动体基频共振频率;3、学会用动态法测定金属材料的杨氏模量。
【实验器材】YJ-DYZ-I动态杨氏模量综合实验仪及其专用信号源、示波器、钢卷尺、游标卡尺、电子天平。
【实验原理】在外力的作用下,当物体的长度变化不超过某一限度时,撤去外力之后,物体又能完全恢复原状。
在该限度内,物体的长度变化程度与物体内部恢复力之间存在正比关系。
杨氏模量是反映材料应变(即单位长度变化量)与物体内部应力(即单位面积所受到的力的大小)之间关系的物理量。
或者说是反映材料的抗拉或抗压能力。
应变为单位长度的变化量:L L∆;应力为单位面积受到的力:F S;所以有:杨氏模量F SEL L=∆进一步得:F S ESE F L F kxL L L=⇒=∆⇒=∆ESkL=。
所谓“动态法”就是使测试棒(如铝棒、不锈钢棒、铜棒)产生弯曲振动,并使其达到共振,通过共振测量出该种材料的杨氏模量值。
在一定条件下(l d),试样在某温度下圆棒的杨氏模量为:3241.6067l mE fd=。
其中E为金属棒的杨氏模量,l为金属棒的长度,d为金属棒的直径,m为金属棒的质量。
在实验中测定了试样(金属棒)在某一温度时的固有频率(基频谐振频率)f ,即可计算出试样在该温度时的杨氏模量E 。
国际单位制中,杨氏模量的单位为-2•牛顿米。
现实情况不太可能达到ld 的条件,故对原理公式需要作些适当的修正,即原理公式基础上再乘以一个修正量。
3241.6067l m E f T d= 本实验统一近似取 =1.008T 。
动态共振法测金属材料的杨氏模量动态共振法是一种常用的测量金属材料杨氏模量的方法。
杨氏模量是材料的一项重要力学性能指标,它描述了材料在受到拉力或压力时的变形程度。
在工程领域中,准确测量金属材料的杨氏模量对于设计和使用结构元件至关重要。
动态共振法通过激励材料产生共振,测量共振频率来计算杨氏模量。
该方法基于共振频率与材料的弹性模量和密度之间的关系,利用材料的共振频率和几何尺寸的测量值,可以准确计算出杨氏模量。
在进行动态共振法测量时,首先需要准备一个试样,该试样应具有一定的几何形状和尺寸。
常用的试样形状包括梁形、薄板形和圆柱形等。
试样的尺寸应根据具体要求选择,并保证试样的几何形状和尺寸具有一定的规律性和均匀性。
测量开始前,需要将试样固定在一个支撑装置上,并通过激励器施加外力。
激励器可以是机械激励器,也可以是电磁激励器。
在激励作用下,试样会发生共振,共振频率可以通过传感器或振动计来测量得到。
在测量中,需要控制激励频率的范围,并逐渐改变频率以寻找共振点。
一旦找到共振点,记录下共振频率,并进行多组实验以提高测量的准确性。
测量得到的共振频率与杨氏模量之间的关系可以通过下面的公式来描述:杨氏模量= (π^2 * 密度 * 共振频率^2 * L^4) / (4 * 宽度 * 厚度)^2其中,π为圆周率,密度为材料的密度,L为试样的长度,宽度和厚度分别为试样的宽度和厚度。
通过动态共振法测量金属材料的杨氏模量,可以得到材料的力学性能信息。
这对于材料的工程应用具有重要意义。
例如,在设计结构元件时,需要根据材料的杨氏模量来选择合适的材料,并进行强度分析和许用应力计算。
此外,在材料的质量控制和品质检验中,也可以利用动态共振法来检测材料的力学性能是否符合要求。
动态共振法是一种常用的测量金属材料杨氏模量的方法。
通过测量共振频率,可以准确计算得到杨氏模量,从而为材料的工程应用提供重要的力学性能信息。
该方法在实际应用中具有广泛的适用性和可行性,对于金属材料的研究和工程实践具有重要意义。
动态法测量杨氏弹性模量
郑新飞
杨氏模量是固体材料在弹性形变范围内正应力与相应正应变(当一条长度为L、截面积为S的金属丝在力F作用下伸长ΔL时,F/S 叫应力,其物理意义是金属丝单位截面积所受到的力;ΔL/L叫应变,其物理意义是金属丝单位长度所对应的伸长量)的比值,其数值的大小与材料的结构、化学成分和加工制造方法等因素有关。
杨氏模量的测量是物理学基本测量之一,属于力学的范围。
根据不同的测量对象,测量杨式模量有很多种方法,可分为静态法、动态法、波传播法三类。
一、实验目的
1、理解动态法测量杨氏模量的基本原理。
2、掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。
3、了解压电陶瓷换能器的功能,熟悉信号源和示波器的使用。
4、培养综合运用知识和使用常用实验仪器的能力。
二、实验仪器
1、传感器I(激振):把电信号转变成机械振动。
2、试样棒:由悬线把机械振动传给试样,使试样受迫做共振动。
3、传感器II (拾振):机械振动又转变成电信号。
4、示波器:观察传感器II 转化的电信号大小。
三、实验原理 理论上可以得出用动态悬挂法测定金属材料的杨氏模量,为
2436067.1f d
m l E (1) 式中l 为棒长,d 为棒的直径,m 为棒的质量。
如果在实验中测定了试样(棒)在不同温度时的固有频率f ,即可计算出试样在不同温度时的杨氏模量E 。
四、实验内容
1、测定试样的长度l 、直径d 和质量m 。
每个物理量各测六次,列表记录。
2、在室温下不锈钢和铜的杨氏模量分别为211102m N ⨯和
211102.1m N ⨯,先由公式(1)估算出共振频率f ,以便寻找共振点。
3、把试样棒用细钢丝挂在测试台上,试样棒的位置约距离端面l 224.0和l 776.0处,悬挂时尽量避开这两个位置。
4、把2-YM 型信号发生器的输出与2-YM 型测试台的输入相连,测试台的输出与放大器的输入相接,放大器的输出与示波器的1CH (或2CH )的输入相接。
5、把示波器触发信号选择开关置于“内置”,1CH 增益置于最小档,极性置于“AC ”,X-Y 旋钮弹起。
6、打开示波器,把2-YM 型信号发生器的频率调至估算得出的频率附近,调节示波器触发电平旋钮,直至示波屏上出现稳定的正弦波形。
7、因试样共振状态的建立需要有一个过程,且共振峰十分尖锐,在共振点附近调节信号频率时,必须十分缓慢地进行,直至示波器示波屏上出现最大的信号。
8、记下室温下的共振频率f ,求出材料的杨氏模量E 。
9、本实验用铜棒和钢棒各做一次。
注意事项:
(1)千万不能用力拉悬丝,否则会损坏膜片或换能器。
挂试样或移动悬丝位置时,应轻放轻动,以免对悬丝施加冲击力。
(2)换能器由厚度为为0.1~0.3mm 的电压晶片用胶粘在0.1mm 左右的黄铜片上构成,故极其脆弱。
测定时一定要轻拿轻放,不能用力,也不能敲打。
(3)试样棒不能随处乱放,要保持清洁;拿放时应特别小心,避免弄断悬丝或摔坏试样棒。
(4)安装试样棒时,应先移动支架到既定位置后再悬挂试样棒。
(5)实验时,悬丝必须捆紧,不能松动,且在通过试样轴线的同一截面上,一定要等试样稳定之后才可正式测量。
五、数据处理
1、m d l 、、的测量
(1)不锈钢:
由2436067.1f d
m l E = ,211102m N E ⨯=不锈钢, 则()()()243-3
-32-1110992.51020.331099.146067.1102f ⨯⨯⨯⨯=⨯
解之得Hz f 90.6119=不锈钢
(2)铜:
由2436067.1f d
m l E = ,211102.1m N E ⨯=铜, 则()()()243-3
-32-1110922.51024.341000.156067.1102.1f ⨯⨯⨯⨯=⨯
解之得Hz f 57.891=铜
2、共振频率
(1)不锈钢
()()()2
112243-3
-32-'1095.14.118510992.51020.331099.146067.1m N m N E ⨯=⨯⨯⨯⨯⨯=不锈钢那么百分误差%5.2%1001021095.1-102111111'=⨯⨯⨯⨯=-=
∆E E E E (2)铜
()()()2
112243-3
-32-'10177.146.88310922.51024.341000.156067.1m N m N E ⨯=⨯⨯⨯⨯⨯=铜那么百分误差%9.1%10010
2.110177.1-101.2111111'
=⨯⨯⨯⨯=-=∆E E E E 3、误差分析:
(1)m 、l 、d 、f 的测量因为仪器的的不精准存在误差。
(2)读数时有一定误差。
(3)温度的不同也存在一定误差。
六,思考题
1、试讨论:试样的长度、直径、质量、共振频率分别采用什么规格的仪器测量?为什么?
答:分别使用直尺、千分尺或游标卡尺、电子天平、示波器测量长度、直径、质量、共振频率。
2、材料的杨氏模量体现了材料的什么性质?
答:杨氏模量体现了材料抵抗弹性形变多少的能力。
3、试样的固有频率和共振频率有何不同?有何关系?可否不测量质量而引入材料的密度ρ?这是杨氏模量计算公式应如何变动?
答:系统有多个自由度或无限个自由度时,依次使其发生共振的频率是各阶固有频率,不同频率针对不同的共振,振型也不一样。
固有频率是某种物质特有的固定振动频率。
物质在一定频率的外力作用下会以该外力的频率振动,在物理学上叫受迫振动。
但因为会消耗能量,所以受迫振动的振幅会变小。
当外力的频率与物质的固有频率相同时,振幅会达到最大。
也就是发生了共振。
能;此时杨氏模量计算公式为:
2
522432432436067.16067.16067.16067.1f d l f d dl l f d V l f d m l E πρπρρ====4、在实验过程中如何判别共振信号是否发生?
答:如果示波器的示波屏上出现最大的信号,则此时共振信号发生。