行程问题(B)-六年级奥数题之专题串讲试题(附答案)
- 格式:doc
- 大小:117.50 KB
- 文档页数:4
奥数思维拓展:行程问题(试题)一、选择题1.小张从家到单位有两条一样长的路。
一条是平路、另一条是一半上坡路,一半下坡路,小张上班走这两条路所用的时间一样多。
已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的()倍。
A.35B.25C.14D.342.15辆车组成一列车队以速度v经过主席台,已知主席台长度为L,车长为S,每辆车之间的距离为车长的15倍,请问这列车队经过主席台需要多少时间?()。
A.225S LV+B.240S LV+C.2252S LV+D.2102S LV+3.已知A、B两地相距300米.甲、乙两人同时分别从A、B两地出发,相向而行,在距A地140米处相遇;如果乙每秒多行1米,则两人相遇处距B地180米.那么乙原来的速度是每秒()米.A.235B.245C.3D.315二、填空题4.甲、乙两人同时从A、B两地开车相向而行,经过2小时在距中点21千米处相遇。
甲的平均速度为x千米/小时,乙比甲的34少6千米,乙的平均速度为( )千米小时;已知60x=,那么A、B两地相距( )千米。
5.甲、乙两人分别从A、B两地同时出发,相向而行,他们相遇时,甲比乙多行90米,相遇后乙的速度减少50%,甲到B地后立即调头,追上乙时离A地还有90米,那么A、B两地间的距离为( )米。
6.李阳和明明同时从公园的南、北门出发,相向而行,李阳每分钟行走100米,明明速度与李阳的速度比是4∶5,两人出发20分钟后相遇,公园南、北门相距( )米。
7.平时在微风吹送下,一帆船由甲地经3小时到达乙地.今天这船照例在微风中从甲地出发,行驶了全程的13;由于风向骤变,船继而以原速度的25行驶了8千米,接着风向又变得顺起来,而且风力加大,这时船以最初的速度的2倍行驶,到达乙地时比往常迟36分钟.则甲乙两地相距_______千米.8.甲、乙两人分别从A、B两地同时出发相向而行,乙的速度是甲的2,二人相遇后继续3行进,甲到B地、乙到A地后立即返回.已知两人第二次相遇的地点距第三次相遇的地点是100千米,那么,A、B两地相距( )千米.9.(2003年迎春杯)甲、乙两人同时同地同向出发,沿环形跑道匀速跑步.如果出发时乙的速度是甲的2.5倍,当乙第一次追上甲时,甲的速度立即提高25%,而乙的速度立即减少20%,并且乙第一次追上甲的地点与第二次追上甲的地点相距100米,那么这条环形跑道的周长是_______米.三、解答题10.A、B两地相距840千米,甲、乙两车同时从两地相对开出,经过6时相遇,已知两车的速度比是3∶4,甲、乙两车每时分别行驶多少千米?11.甲、乙两车从相距900km的两地相向而行,乙车速度为每小时100km。
六年级高难度奥数题及答案之行程问题
六年级高难度奥数题及答案之行程问题
六年级奥数题及答案:行程问题(高等难度)
行程问题:(高等难度)
有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发20分钟,出发后1小时40分钟追上丙,那么甲出发后需多少分钟才能追上乙。
行程问题答案:
由已知条件可知,乙用40分钟所走的路程与丙用50分钟所走的路程相等;甲用100分钟所走的.路程与丙用130分钟所走的路程相等。
故丙用130分钟所走的路程,乙用了40×(130÷50)=104(分钟),即甲用100分钟走的路程,乙用104分钟走完。
多用4分钟,由于甲比乙晚出发20分钟,所以甲出发500分钟才能追上乙。
下载全文。
八、行程问题(二)1.A、B两地相距150千米.两列火车同时从A地开往B地.快车每小时行60千米.慢车每小时行48千米.当快车到达B地时,慢车离B地还有千米.2.某人沿直线从甲城到乙城去旅行,去的时候以每小时30公里的速度匀速前进.回来时以每小时60公里的速度匀速返回,此人在往返行程中的平均速度是每小时公里.3.某教师每天早上驾车40公里到学校需要用55分钟,某天早上她迟离开家7分钟,那么她的车速每小时为公里时才能和平常一样按时到达学校.4.一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达.但汽车行驶到3/5路程时,出了故障,用5分钟修理完毕,如果仍需要在预定时间内到达乙地.汽车行驶余下的路程时,每分钟须比原来快米.5.有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发20分钟,出发后1小时40分钟追上丙,那么甲出发后需分钟才能追上乙.6.甲、乙二人相距100米的直路上来回跑步,甲每秒钟跑2.8米,乙每秒钟跑2.2米.他们同时分别在直路两端出发,当他们跑了30分钟时,这段时间内相遇了次.7.甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟.如果在出发后第45分钟甲、乙二人相遇,那么乙走一圈的时间是分钟.8.有人沿公路前进,对面来了一辆汽车,他问司机:“后面有自行车吗?”司机回答:“十分钟前我超过一辆自行车”,这人继续走了10分钟,遇到自行车.已知自行车速度是人步行速度的三倍,汽车的速度是步行速度的倍.9.某校和某工厂之间有一条公路,该校下午2点钟派车去该厂接某劳模来校作报告,往返需用1小时.这位劳模在下午1点钟便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2点40分到达.汽车速度是劳模步行速度的倍.10.游船顺流而下,每小时前进7公里,逆流而上,每小时前进5公里.两条游船同时从同一个地方出发,一条顺水而下,然后返回;一条逆流而上,然后返回.结果,1小时以后它们同时回到出发点.在这1小时内有分钟这两条船的前进方向相同?11.一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米.它们每爬行1秒,3秒,5秒……(连续的奇数),就调头爬行.那么,它们相遇时已爬行的时间是多少秒?12.小明和小刚乘火车出外旅行,离开车时间只有2小时,他们家离车站12公里,两人步行每小时只能走4公里,按这个速度非误车不可.恰好小华骑自行车经过,就先将小明带了9公里,让小明继续步行,接着返回原路接小刚.小华在距他们家3公里处遇到小刚,带着小刚追小明.他们提前赶到了车站.你知道他俩在开车前几分钟到达车站的吗?13.有100名少先队员在岸边准备坐船去湖中离岸边600米的甲岛,等最后一人到达甲岛15分钟后,再去离甲岛900米的乙岛,现有机船和木船各1条,机船和木船每分钟各行300米和150米,而机船和木船可各坐10人和25人,问最后一批少先队员到达乙岛,最短需要多长时间?(按小时计算)14.甲乙两地相距很远,每天从甲、乙两地同时相对开出一辆客车,两车速度和路线相同,都要经过整整五天才能到达终点站,然后休整两天,又按原路返回.在这条线路上的每辆客车都这样往返运行.为了保证这条线路上客运任务能正常进行,问这条线路上至少应配备多少辆客车.八、行程问题(二) (答案)第[1]道题答案:30快车到达B地所需时间是:150÷60=2.5(小时),慢车离B地的距离是150-48⨯2.5=30(千米).第[2]道题答案:V =40(公里)设甲乙两城相距S公里,平均速度为每小时V公里,依题意有VSSS26030=+,解得: V =40.第[3]道题答案:5050607605540=⎪⎭⎫⎝⎛-÷(公里/小时).第[4]道题答案:250汽车行驶余下路程需要的时间是100055315053150750=⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛-⨯÷⎪⎭⎫⎝⎛-⨯⨯(米);故每分钟必须比原来快1000-750=250(米).第[5]道题答案:500根据已知条件得知,乙用40分钟所走的距离与丙用50分钟所走的距离相等;甲用100分钟所走的距离与丙用130分钟所走的距离相等.故丙用130分钟所走的距离,乙用了1045040130=⨯(分钟),即甲用100分钟走A B的距离,乙用104分钟走完.由于甲比乙晚出发20分钟,当甲追上乙时,设甲用了x 分钟,则乙用了(x +20)分钟.依题意得20104100+=x x,解得x =500.第[6]道题答案:45两人一共跑的路程为(2.8+2.2)⨯30⨯60=9000(米),去掉二人第一次相遇时跑的100米,二人每跑200米,就相遇一次,共相遇的次数为(9000-100)÷200=44.5,取整得44次.加上第一次相遇,共44+1=45(次).第[7]道题答案:126设乙骑自行车走一圈要x 分钟,环行公路长为S 米,则有S x S S =⎪⎭⎫⎝⎛+7045,解得x =126(分钟).第[8]道题答案:7设人行速度为每分钟1单位,则自行车速度为每分钟3单位,再设汽车速度为每分钟x 单位,依题意有(x -3)⨯10=(3+1)⨯10,故有x =7.第[9]道题答案:8如下图,A 是学校,C 是工厂,B 是相遇地点.汽车从A 到C 往返需要1小时,从A 到B 往返要40分钟即32小时,这说明AC AB 32=,即也说明汽车从A 到B 要用40÷2=20(分钟).而劳模由C 到B 要用1小时20分,即80分钟.是汽车的4倍,又易知AB =2BC ,即汽车的路程是劳模的2倍,于是汽车的速度是劳模步行速度的4⨯2=8(倍).第[10]道题答案:10设1小时顺流时间为x 分钟,则逆流时间为(60-x )分钟,由于路程一定,行驶时间与速度成反比例,故x :(60-x )=5:7.解得x =25,60-x =35.当两条船同时从同一地方出发,一条顺流走25分钟后,开始返回(逆流行走),这时另一条还在逆流前进,这其间的35-20=10(分钟).两船同时向上游前进. 第[11]道题答案:两只蚂蚁分别从直径AB 的两端同时出发,相向而行,若不调头的话,两只蚂蚁的行程为半个圆的周长,即1.26÷2=0.63(米)=63(厘米).而两只蚂蚁的速度和为每秒5.5+3.5=9(厘米).它们相遇的时间为63÷9=7(秒).即两只蚂蚁需要向前爬的时间是7秒钟.但蚂蚁是按向前,再调头向后,再调头向前……的方式前进.每只蚂蚁向前爬1秒,然后调头反向爬3秒,又调头向前爬5秒,这时相当于又向前爬行了2秒.同理再向后爬7秒,再前爬9秒,再向后爬11秒,再向前爬13秒,就相当于一共向前爬了1+2+2+2=7秒,正好相遇,这时它们用了1+3+5+7+11+13=49(秒).第[12]道题答案:小刚走3公里用的时间是4343=÷(小时);小华骑自行车的速度为()2043939=÷+-(公里/小时);小明到火车站所用时间为()2.14912209=÷-+÷(小时);小刚到火车站用的时间为()2.12031243=÷-+÷(小时);小明、小刚开车前到达火车站的时间为2-1.2=0.8(小时)=48(分).即他俩在开车前48分钟到达车站.第[13]道题答案:机船去甲岛,单程时间为600÷300=2(分).木船去甲岛,单程时间为600÷150=4(分).其中机船在18分钟内,可运5次学生共10⨯5=50(人),到达甲岛时间分别为2、6、10、14、18(分钟);而木船18分钟内,只能运2次学生共25⨯2=50(人),到达甲岛的时间为4、12(分钟),故18分钟内两船可运完学生去甲岛.机船去乙岛,单程时间为:900÷300=3(分),木船去乙岛,单程时间为:900÷150=6(分).其中机船27分钟内,可运5次学生共10⨯5=50(人),到达乙岛的时间为:3、9、15、21、27(分钟),而木船27分钟内,只能运2次学生共25⨯2=50(人),到达乙岛的时间为:6、18(分钟).所以27分钟两船可运光全部学生去乙岛.最短需要时间为18+5+27=50(分)=65(小时). 第[14]道题答案:本题要求每天从甲、乙两地同时相对开出一辆客车,每辆客车运行5天再休整2天,需7天后再往回开,这样为保证每天在线路上有两辆客车在相对开,至少应配备2⨯7=14(辆)客车.A B C。
完整版)六年级奥数题及答案:行程问题六年级奥数题及答案:行程问题一、填空题(共10小题,每小题3分,满分30分)1.两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距216千米。
2.XXX从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回共用5小时。
XXX来回共走了45公里。
3.一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的1.5倍。
4.一位少年短跑选手,顺风跑90米用了10秒钟,在同样的风速下,逆风跑70米,也用了10秒钟。
在无风的时候,他跑100米要用11.67秒。
5.A、B两城相距56千米。
有甲、乙、丙三人。
甲、乙从A城,丙从B城同时出发,相向而行。
甲、乙、丙分别以每小时6千米、5千米、4千米的速度行进。
求出发后经2小时,乙在甲丙之间的中点为20千米。
6.主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑出了24步。
7.兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需走2.5米才能回到出发点。
8.骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟。
那么需要18分钟,电车追上骑车人。
9.一个自行车选手在相距950公里的甲、乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次。
他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有540公里。
10.如图,是一个边长为90米的正方形,甲从A出发,乙同时从B出发,甲每分钟行进65米,乙每分钟行进72米,当乙第一次追上甲时,乙在BC边上。
行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。
行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。
每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1.简单行程:路程=速度×时间2.相遇问题:路程和=速度和×时间3.追击问题:路程差=速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。
如“多人行程问题”,实际最常见的是“三人行程”例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。
甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。
在途中,甲和乙相遇后3分钟和丙相遇。
问:这个花圃的周长是多少米?分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。
第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。
总之,行程问题是重点,也是难点,更是锻炼思维的好工具。
只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。
多人行程---这类问题主要涉及的人数为3人,主要考察的问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系。
行程模块行程主要知识模块主要解题方法【例1】甲、乙、丙三人同时从A地步行至B地,分别用了6小时、7小时和8小时,那么此三人的速度之比为多少?【例2】三个自行车运动员,同时从市中心出发沿一条马路行进,6分钟后甲赶上一个长跑运动员,又过了4分钟,乙也赶上这个长跑运动员,再过2分钟,丙也赶上这个长跑运动员,如果这四个人的速度是保持不变,乙的速度是甲的5/6,则丙的速度是乙的_______。
【例3】一辆汽车从甲地开往乙地。
在以原速行驶120千米后出现了故障,经过一个小时修理,汽车再次出发,为了准时到达,司机将车速提高了25%,结果晚了20分钟到达。
如果从出发时间将车速提高20%,可以比原定时间提前了一个小时到达(这里不考虑汽车出现故障的情况)。
那么甲、乙两地相距________千米。
【例4】甲、乙两人同时出发向山顶冲刺,规定冲刺到山顶后立即返回,结果甲下山时与乙正上山相遇。
此时距山顶有20米,山坡共440米。
已知甲返回山底比乙少用1/2分钟,他们上山与下山的速度之比都是2 :3,那么甲回到山底共用________分钟。
【例5】甲、乙两人分别从A、B两地同时出发,相向而行,在途中两人相遇时,甲比乙多走18千米,而后甲又经过13.5小时到达B地,乙却用了24小时才到达A地,则A、B两地相距________千米。
【例6】东西两地相距9千米,小明从东向西走,每分钟走60米,小莉从西向东走,小辉骑车从东向西走,每分钟300米,三人同时动身,途中小辉遇见小莉即折回向东骑,遇见小明又折回向西骑,再遇见小莉又折回向东骑,...这样往返,如果小辉第二次返回遇见小明时,小明与小莉相距恰好1千米,那么小莉每分钟走_____米。
测试题1.甲乙两车从相距800千米的两地相向而行,5小时相遇,甲乙两车的速度比是3:5,甲车的速度是多少?A.30 B.60 C.90 D.1202.甲乙两车分别从A、B两地同时出发,相向而行。
出发时,甲、乙的速度之比是5:4,相遇后甲的速度减少20%,乙的速度增加20%。
经典奥数:行程问题(专项试题)一.填空题(共10小题)1.一座大桥长2600米,一列火车以每分钟700米的速度通过大桥,从车头开上桥到车尾离开桥共需要4分钟,这列火车长米。
2.如图,A、B是圆直径的两端,乐乐在A点,欢欢在B点,同时出发反向行走,他们在C 点第一次相遇,C点离A点90米,他们以同样的速度继续前行,在D点第二次相遇,D 点离B点70米,那么这个圆的周长是米。
3.公交车从甲站到乙站每间隔5分钟一趟,全程走15分钟,某人骑自行车从乙站往甲站行走,开始时恰好遇见一辆公交车,行走过程中又遇见10辆,到甲站时又一辆公交车刚要出发,这人走了分钟.4.两辆汽车同时从相距600km的两地相对开出,4小时后相遇.已知两辆车的速度比是7:8,慢车每小时行驶千米.5.一个长方体长40厘米、宽30厘米、高20厘米.一只红蚂蚁从D出发沿着棱按照:D →A→B→C→D的方向跑圈,每秒跑5厘米;一只黑蚂蚁同时从F出发也沿着棱按照:F →B→C→G→F的方向跑圈,每秒跑4厘米.它们像这样一直跑下去,当他们第一次相遇在B点时,用时秒.6.甲、乙两车分别从A、B两地同时出发,相向而行.甲车每小时行45千米,乙车每小时行36千米.相遇以后继续以原来的速度前进,各自到达目的地后又立即返回,这样不断地往返行驶.已知途中第二次相遇地点与第三次相遇地点相距60千米.则A、B两地相距千米.7.两地相距198千米,甲、乙两车同时从两地相对开出,经过2时相遇.甲、乙两车的速度比是4:5,乙车平均每小时行千米.8.甲乙二人分别从A、B两地相向而行.甲行了全长的12%后乙才出发.当二人相遇时,甲行了3.6km.已知甲的速度比乙快20%,相遇时乙行了km.9.客车速度每小时72千米,货车速度每小时60千米,两列火车相向而行,货车每节车厢长10米,火车头与车尾的长相当于两节车厢,每节车厢装50吨含铁60%的铁矿石,客车司机发现这列货车从他身边过时共花时间12秒,问这货车装的铁矿石共可炼铁吨.10.一个铁路工人在路基下原地不动,一列火车从他身边驶过用了40秒,如果这个工人以每小时6千米的速度迎着火车开来的方向行走,则这列火车从他身边驶过只用37.5秒,则这列火车每小时行千米.二.应用题(共11小题)11.A、B两地相距600千米,王师傅和孙师傅分别驾车从A、B两地相对开出,王师傅行车速度是72千米/小时,孙师傅车速度是80千米/小时,两车中途相遇后继续行驶。
六年级奥数题(行程问题)及答案-AB距离
导语:今天小编为同学们带来的是一道奥数中较重要的一部分,行程问题希望同学们能认真读题,认真做题。
已知甲车速度为每小时90千米,乙车速度为每小时60千米,甲乙两车分别从A,B两地同时出发相向而行,在途径C地时乙车比甲车早到10分钟;第二天甲乙分别从B,A两地出发同时返回原来出发地,在途径C地时甲车比乙车早到1个半小时,那么AB距离是多少?
答案与解析:画图可知某一个人到C点时间内,第一次甲走的和第二次甲走的路程和为一个全程还差90×10/60=15千米,第一次乙走的和第二次乙走的路程和为一个全程还差60×1.5=90千米。
而速度比为3:2;这样我们可以知道甲走的路程就是:(90-15)÷(3-2)×3=215,所以全程就是215+15=230千米。
六年级奥数.行程. 比例解行程问题(ABC 级).学生版Page 1 of 32 比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:1.当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s v ts v t =´ìí=´î甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲,得到s s t v v ==甲乙乙甲,s vs v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比2.当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,22个物体所用的时间之比等于他们速度的反比。
s v t s v t =´ìí=´î甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =´=´乙乙乙甲甲甲,得s v t v t =´=´乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比(1)理解行程问题中的各种比例关系理解行程问题中的各种比例关系. .(2)掌握寻找比例关系的方法来解行程问题.重难点知识框架比例解行程问题【例 1】 甲、乙两车从相距330千米的A 、B 两城相向而行,甲车先从A 城出发,过一段时间后,乙车才从B 城出发,并且甲车的速度是乙车速度的。
八行程问题(2)
一、填空题
1.A、B两地相距150千米.两列火车同时从A地开往B地.快车每小时行60千米.慢车每小时行48千米.当快车到达B地时,慢车离B地还有千米.
2.某人沿直线从甲城到乙城去旅行,去的时候以每小时30公里的速度匀速前进.回来时以每小时60公里的速度匀速返回,此人在往返行程中的平均速度是每小时公里.
3.某教师每天早上驾车40公里到学校需要用55分钟,某天早上她迟离开家7分钟,那么她的车速每小时为公里时才能和平常一样按时到达学校.
4.一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达.但汽车行驶到3/5路程时,出了故障,用5分钟修理完毕,如果仍需要在预定时间内到达乙地.汽车行驶余下的路程时,每分钟须比原来快米.
5.有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发20分钟,出发后1小时40分钟追上丙,那么甲出发后需分钟才能追上乙.
6.甲、乙二人相距100米的直路上来回跑步,甲每秒钟跑2.8米,乙每秒钟跑2.2米.他们同时分别在直路两端出发,当他们跑了30分钟时,这段时间内相遇了次.
7.甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟.如果在出发后第45分钟甲、乙二人相遇,那么乙走一圈的时间是分钟.
8.有人沿公路前进,对面来了一辆汽车,他问司机:“后面有自行车吗?”司机回答:“十分钟前我超过一辆自行车”,这人继续走了10分钟,遇到自行车.已知自行车速度是人步行速度的三倍,汽车的速度是步行速度的倍.
9.某校和某工厂之间有一条公路,该校下午2点钟派车去该厂接某劳模来校作报告,往返需用1小时.这位劳模在下午1点钟便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2点40分到达.汽车速度是劳模步行速度的倍.
10.游船顺流而下,每小时前进7公里,逆流而上,每小时前进5公里.两条游船同时从同一个地方出发,一条顺水而下,然后返回;一条逆流而上,然后返回.结果,1小时以后它们同时回到出发点.在这1小时内有分钟这两条船的前进方向相同?
二、解答题
11.一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米.它们每爬行1秒,3秒,5秒……(连续的奇数),就调头爬行.那么,它们相遇时已爬行的时间是多少秒?
12.小明和小刚乘火车出外旅行,离开车时间只有2小时,他们家离车站12公里,两人步行每小时只能走4公里,按这个速度非误车不可.恰好小华骑自行车经过,就先将小明带了9公里,让小明继续步行,接着返回原路接小刚.小华在距他们家3公里处遇到小刚,带着小刚追小明.他们提前赶到了车站.你知道他俩在开车前几分钟到达车站的吗?
13.有100名少先队员在岸边准备坐船去湖中离岸边600米的甲岛,等最后一人到达甲岛15分钟后,再去离甲岛900米的乙岛,现有机船和木船各1条,机船和木船每分钟各行300米和150米,而机船和木船可各坐10人和25人,问最后一批少先队员到达乙岛,最短需要多长时间?(按小时计算)
14.甲乙两地相距很远,每天从甲、乙两地同时相对开出一辆客车,两车速度和路线相同,都要经过整整五天才能到达终点站,然后休整两天,又按原路返回.在这条线路上的每辆客车都这样往返运行.为了保证这条线路上客运任务能正常进行,问这条线路上至少应配备多少辆客车.
———————————————答 案————————————————————
1. 30
快车到达B 地所需时间是:150÷60=2.5(小时),慢车离B 地的距离是150-48⨯2.5=30(千米).
2. V =40(公里)
设甲乙两城相距S 公里,平均速度为每小时V 公里,依题意有V
S S S 26030=+,解得: V =40. 3. 50
50607605540=⎪⎭
⎫ ⎝⎛-÷(公里/小时). 4. 250 汽车行驶余下路程需要的时间是
100055315053150750=⎥⎦
⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯÷⎪⎭⎫ ⎝⎛-⨯⨯(米);故每分钟必须比原来快1000-750=250(米).
5. 500
根据已知条件得知,乙用40分钟所走的距离与丙用50分钟所走的距离相等;甲用100分钟所走的距离与丙用130分钟所走的距离相等.故丙用130分钟所走
的距离,乙用了10450
40130=⨯(分钟),即甲用100分钟走的距离,乙用104分钟走完.由于甲比乙晚出发20分钟,当甲追上乙时,设甲用了x 分钟,则乙用了(x +20)
分钟.依题意得20
104100+=x x ,解得x =500. 6. 45
两人一共跑的路程为(2.8+2.2)⨯30⨯60=9000(米),去掉二人第一次相遇时跑的100米,二人每跑200米,就相遇一次,共相遇的次数为(9000-100)÷200=44.5,取整得44次.加上第一次相遇,共44+1=45(次).
7. 126
设乙骑自行车走一圈要x 分钟,环行公路长为S 米,则有S x S S =⎪⎭
⎫ ⎝⎛+7045,解得x =126(分钟).
8. 7
设人行速度为每分钟1单位,则自行车速度为每分钟3单位,再设汽车速度为每分钟x 单位,依题意有(x -3)⨯10=(3+1)⨯10,故有x =7.
9. 8
如下图,A 是学校,C 是工厂,B 是相遇地点.
汽车从A 到C 往返需要1小时,从A 到B 往返要40分钟即3
2小时,这说明AC AB 3
2=,即也说明汽车从A 到B 要用40÷2=20(分钟).而劳模由C 到B 要用1小时20分,即80分钟.是汽车的4倍,又易知AB =2BC ,即汽车的路程是劳模的2倍,于是汽车的速度是劳模步行速度的4⨯2=8(倍).
10. 10
设1小时顺流时间为x 分钟,则逆流时间为(60-x )分钟,由于路程一定,行驶时间与速度成反比例,故x :(60-x )=5:7.解得x =25,60-x =35.
当两条船同时从同一地方出发,一条顺流走25分钟后,开始返回(逆流行走),这时另一条还在逆流前进,这其间的35-20=10(分钟).两船同时向上游前进.
11. 两只蚂蚁分别从直径AB 的两端同时出发,相向而行,若不调头的话,两只蚂蚁的行程为半个圆的周长,即1.26÷2=0.63(米)=63(厘米).而两只蚂蚁的速度和为每秒5.5+3.5=9(厘米).它们相遇的时间为63÷9=7(秒).即两只蚂蚁需要向前爬的时间是7秒钟.
但蚂蚁是按向前,再调头向后,再调头向前……的方式前进.每只蚂蚁向前爬1秒,然后调头反向爬3秒,又调头向前爬5秒,这时相当于又向前爬行了2秒.同理再向后爬7秒,再前爬9秒,再向后爬11秒,再向前爬13秒,就相当于一共向前爬了1+2+2+2=7秒,正好相遇,这时它们用了1+3+5+7+11+13=49(秒).
12. 小刚走3公里用的时间是4
343=÷(小时);小华骑自行车的速度为()204
3939=÷+-(公里/小时);小明到火车站所用时间为()2.14912209=÷-+÷(小时);小刚到火车站用的时间为
()2.12031243=÷-+÷(小时);小明、小刚开车前到达火车站的时间为2-1.2=0.8(小时)=48(分).即他俩在开车前48分钟到达车站.
13. 机船去甲岛,单程时间为600÷300=2(分).木船去甲岛,单程时间为600÷150=4(分).其中机船在18分钟内,可运5次学生共10⨯5=50(人),到达甲岛A B C
时间分别为2、6、10、14、18(分钟);而木船18分钟内,只能运2次学生共25⨯2=50(人),到达甲岛的时间为4、12(分钟),故18分钟内两船可运完学生去甲岛.
机船去乙岛,单程时间为:900÷300=3(分),木船去乙岛,单程时间
为:900÷150=6(分).其中机船27分钟内,可运5次学生共10⨯5=50(人),到达乙岛的时间为:3、9、15、21、27(分钟),而木船27分钟内,只能运2次学生共
25⨯2=50(人),到达乙岛的时间为:6、18(分钟).所以27分钟两船可运光全部学生去乙岛.
最短需要时间为18+5+27=50(分)=6
5 (小时). 14. 本题要求每天从甲、乙两地同时相对开出一辆客车,每辆客车运行5天再休整2天,需7天后再往回开,这样为保证每天在线路上有两辆客车在相对开,至少应配备2⨯7=14(辆)客车.。